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Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient
method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA)
and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was
achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification
method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing
kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities
to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design
is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by
orthogonal projections, while the online system’s memory requirements and tracking are attained by oblique projections. The
resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design
is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and
recent stochastic gradient descent techniques, as well as with the APSM’s solution where sparsification is performed by a closed
ball constraint on the norm of the classifiers.
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1. INTRODUCTION

Kernel methods play a central role in modern classification
and nonlinear regression tasks and they can be viewed
as the nonlinear counterparts of linear supervised and
unsupervised learning algorithms [1–3]. They are used in
a wide variety of applications from pattern analysis [1–3],
equalization or identification in communication systems
[4, 5], to time series analysis and probability density estima-
tion [6–8].

A positive-definite kernel function defines a high- or even
infinite-dimensional reproducing kernel Hilbert space (RKHS)
H , widely called feature space [1–3, 9, 10]. It also gives a way
to map data, collected from the Euclidean data space, to the
feature space H . In such a way, processing is transfered to the
high-dimensional feature space, and the classification task in
H is expected to be linearly separable according to Cover’s
theorem [1]. The inner product in H is given by a simple

evaluation of the kernel function on the data space, while
the explicit knowledge of the feature space H is unnecessary.
This is well known as the kernel trick [1–3].

We will focus on the two-class classification task, where
the goal is to classify an unknown feature vector x to one
of the two classes, based on the classifier value f (x). The
online setting will be considered here, where data arrive
sequentially. If these data are represented by the sequence
(xn)n≥0⊂Rm, where m is a positive integer, then the objective
of online kernel methods is to form an estimate of f in H
given by a kernel series expansion:

̂f :=
∞
∑

n=0

γnκ
(

xn, ·) ∈H , (1)

where κ stands for the kernel function, (xn)n≥0 parameterizes
the kernel function, (γn)n≥0 ⊂ R, and we assume, of course,
that the right-hand side of (1) converges.



2 EURASIP Journal on Advances in Signal Processing

A convex analytic viewpoint of the online classification
task in an RKHS was given in [11]. The standard classi-
fication problem was viewed as the problem of finding a
point in a closed half-space (a special closed convex set)
of H . Since data arrive sequentially in an online setting,
online classification was considered as the task of finding a
point in the nonempty intersection of an infinite sequence
of closed half-spaces. A solution to such a problem was
given by the recently developed adaptive projected subgradient
method (APSM), a convex analytic tool for the convexly
constrained asymptotic minimization of an infinite sequence
of nonsmooth, nonnegative convex, but not necessarily
differentiable objectives in real Hilbert spaces [12–14]. It was
discovered that many projection-based adaptive filtering [15]
algorithms like the classical normalized least mean squares
(NLMS) [16, 17], the more recently explored affine projection
algorithm (APA) [18, 19], as well as more recently developed
algorithms [20–28] become special cases of the APSM [13,
14]. In the same fashion, the present algorithm can be viewed
as a generalization of a kernel affine projection algorithm.

To form the functional representation in (1), the coeffi-
cients (γn)n≥0 must be kept in memory. Since the number of
incoming data increases, the memory requirements as well
as the necessary computations of the system increase linearly
with time [29], leading to a conflict with the limitations
and complexity issues as posed by any online setting [29,
30]. Recent research focuses on sparsification techniques,
that is, on introducing criteria that lead to an approximate
representation of (1) using a finite subset of (γn)n≥0. This
is equivalent to identifying those kernel functions whose
removal is expected to have a negligible effect, in some
predefined sense, or, equivalently, building dictionaries out
of the sequence (κ(xn, ·))n≥0 [31–36].

To introduce sparsification, the design in [30], apart from
the sequence of closed half-spaces, imposes an additional
constraint on the norm of the classifier. This leads to a
sparsified representation of the expansion of the solution
given in (1), with an effect similar to that of a forgetting
factor which is used in recursive-least-squares- (RLS-) [15]
type algorithms.

This paper follows a different path to the sparsification
in the line with the rationale adopted in [36]. A sequence
of linear subspaces (Mn)n≥0 of H is formed, by using
the incoming data together with an approximate linear
dependency/independency criterion. To satisfy the memory
requirements of the online system, and in order to provide
with tracking capabilities to our design, a bound on the
dimension of the generating subspaces (Mn)n≥0 is imposed.
This upper bound turns out to be equivalent to the length
of a memory buffer. Whenever the buffer becomes full and
each time a new data enters the system, an old observation
is discarded. Hence, an upper bound on dimension results
into a sliding window effect. The underlying principle of
the proposed design is the notion of projection mappings.
Indeed, classification is performed by metric projection map-
pings, sparsification is conducted by orthogonal projections
onto the generated linear subspaces (Mn)n≥0, and memory
limitations (which lead to enhanced tracking capabilities)
are established by employing oblique projections. Note that

although the classification problem is considered here, the
tools can readily be adopted for regression tasks, with
different cost functions that can be either differentiable or
nondifferentiable.

The paper is organized as follows. Mathematical pre-
liminaries and elementary facts on projection mappings
are given in Section 2. A short description of the convex
analytic perspective introduced in [11, 30] is presented in
Sections 3 and 4, respectively. A byproduct of this approach,
a kernel affine projection algorithm (APA), is introduced
in Section 4.2. The sparsification procedure based on the
generation of a sequence of linear subspaces is given in
Section 5. To validate the design, the adaptive equalization
problem of a nonlinear channel is chosen. We compare
the present scheme with the classical kernel perceptron
algorithm, its generalization, the NORMA method [29], as
well as the APSM’s solution but with the norm constraint
sparsification [30] in Section 7. In Section 8, we conclude
our discussion, and several clarifications as well as a table
of the main symbols, used in the paper, are gathered in the
appendices.

2. MATHEMATICAL PRELIMINARIES

Henceforth, the set of all integers, nonnegative integers,
positive integers, real and complex numbers will be denoted
by Z, Z≥0, Z>0, R and C, respectively. Moreover, the symbol
card(J) will stand for the cardinality of a set J, and j1, j2 :=
{ j1, j1 + 1, . . . , j2}, for any integers j1 ≤ j2.

2.1. Reproducing kernel Hilbert space

We provide here with a few elementary facts about reproduc-
ing kernel Hilbert spaces (RKHS). The symbol H will stand
for an infinite-dimensional, in general, real Hilbert space
[37, 38] equipped with an inner product denoted by 〈·, ·〉.
The induced norm in H will be given by ‖ f ‖ := 〈 f , f 〉1/2, for
all f ∈ H . An example of a finite-dimensional real Hilbert
space is the well-known Euclidean space Rm of dimension
m ∈ Z>0. In this space, the inner product is nothing but the
vector dot product 〈x1, x2〉 := xt1x2, for all x1, x2 ∈ Rm, where
the superscript (·)t stands for vector transposition.

Assume a real Hilbert space H which consists of
functions defined on Rm, that is, f : Rm → R. The function
κ(·, ·) : Rm ×Rm → R is called a reproducing kernel of H if

(1) for every x ∈ Rm, the function κ(x, ·) : Rm → R
belongs to H ,

(2) the reproducing property holds, that is,

f (x) = 〈 f , κ(x, ·)〉, ∀x ∈ Rm, ∀ f ∈H . (2)

In this case, H is called a reproducing kernel Hilbert space
(RKHS) [2, 3, 9]. If such a function κ(·, ·) exists, it is unique
[9]. A reproducing kernel is positive definite and symmetric
in its arguments [9]. (A kernel κ is called positive definite
if
∑N

l, j=1ξlξ jκ(xl, x j) ≥ 0, for all ξl, ξj ∈ R, for all xl, x j ∈
Rm, and for any N ∈ Z>0 [9]. This property underlies the
kernel functions firstly studied by Mercer [10].) In addition,
the Moore-Aronszajn theorem [9] guarantees that to every
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positive definite function κ(·, ·) : Rm × Rm → R there
corresponds a unique RKHS H whose reproducing kernel
is κ itself [9]. Such an RKHS is generated by taking first the
space of all finite combinations

∑

jγ jκ(x j , ·), where γj ∈ R,
x j ∈ Rm, and then completing this space by considering
also all its limit points [9]. Notice here that, by (2), the
inner product of H is realized by a simple evaluation of the
kernel function, which is well known as the kernel trick [1, 2];
〈κ(xi, ·), κ(x j , ·)〉 = κ(xi, x j), for all i, j ∈ Z≥0.

There are numerous kernel functions and associated
RKHS H , which have extensively been used in pattern
analysis and nonlinear regression tasks [1–3]. Celebrated
examples are (i) the linear kernel κ(x, y) := xty, for all x, y ∈
Rm (here the RKHS H is the data space Rm itself), and (ii)
the Gaussian or radial basis function (RBF) kernel κ(x, y) :=
exp(−((x− y)t(x − y))/2σ2), for all x, y ∈ Rm, where σ > 0
(here the associated RKHS is of infinite dimension [2, 3]).
For more examples and systematic ways of generating more
involved kernel functions by using fundamental ones, the
reader is referred to [2, 3]. Hence, an RKHS offers a unifying
framework for treating several types of nonlinearities in
classification and regression tasks.

2.2. Closed convex sets, metric, orthogonal, and
oblique projectionmappings

A subset C of H will be called convex if for all ̂f1, ̂f2 ∈ C

the segment {λ ̂f1 + (1− λ) ̂f2 : λ ∈ [0, 1]} with endpoints ̂f1
and ̂f2 lies in C. A function Θ : H → R∪ {∞} will be called
convex if for all f1, f2 ∈ H and for all λ ∈ (0, 1) we have
Θ(λ f1 + (1− λ) f2) ≤ λΘ( f1) + (1− λ)Θ( f2).

Given any point f ∈ H , we can quantify its distance
from a nonempty closed convex set C by the metric distance
function d(·,C) : H → R : f 
→ d( f ,C) := inf{‖ f −
̂f ‖ : ̂f ∈ C} [37, 38], where inf denotes the infimum.
The function d(·,C) is nonnegative, continuous, and convex

[37, 38]. Note that any point ̂f ∈ C is of zero distance from

C, that is, d( ̂f ,C) = 0, and that the set of all minimizers of
d(·,C) over H is C itself.

Given a point f ∈ H and a closed convex set C ⊂ H ,
an efficient way to move from f to a point in C, that is, to
a minimizer of d(·,C), is by means of the metric projection
mapping PC onto C, which is defined as the mapping that
takes f to the uniquely existing point PC( f ) ofC that achieves
the infimum value ‖ f − PC( f )‖ = d( f ,C) [37, 38]. For a
geometric interpretation refer to Figure 1. Clearly, if f ∈ C
then PC( f ) = f .

A well-known example of a closed convex set is a closed
linear subspaceM [37, 38] of a real Hilbert space H . The met-
ric projection mapping PM is called now orthogonal projection

since the following property holds: 〈 f − PM( f ), ̂f 〉 = 0, for

all ̂f ∈M, for all f ∈H [37, 38]. Given an f ′ ∈H , the shift
of a closed linear subspace M by f ′, that is, V := f ′ + M :=
{ f ′ + f : f ∈M}, is called an (affine) linear variety [38].

Given a /= 0 in H and ξ ∈ R, let a closed half-space be

the closed convex set Π+ := { ̂f ∈ H : 〈a, ̂f 〉 ≥ ξ}, that is,
Π+ is the set of all points that lie on the “positive” side of

0

MPM,M′ ( f )

PM( f )

f0 PB[ f0 ,δ]( f )

B[ f0, δ]

PC( f )
M′

H

f

C

Figure 1: An illustration of the metric projection mapping PC onto
the closed convex subset C of H , the projection PB[ f0,δ] onto the
closed ball B[ f0, δ], the orthogonal projection PM onto the closed
linear subspace M, and the oblique projection PM,M′ on M along
the closed linear subspace M′.

the hyperplane Π := { ̂f ∈ H : 〈a, ̂f 〉 = ξ}, which defines
the boundary of Π+ [37]. The vector a is usually called the
normal vector of Π+. The metric projection operator PΠ+ can
easily be obtained by simple geometric arguments, and it is
shown to have the closed-form expression [37, 39]:

PΠ+ ( f ) = f +

(

ξ − 〈a, f 〉)+

‖a‖2 a, ∀ f ∈H , (3)

where τ+ := max{0, τ} denotes the positive part of a τ ∈ R.

Given the center ̂f0 ∈ H and the radius δ > 0, we define

the closed ball B[ ̂f0, δ] := { ̂f ∈ H : ‖ ̂f0 − ̂f ‖ ≤ δ} [37].

The closed ball B[ ̂f0, δ] is clearly a closed convex set, and its
metric projection mapping is given by the simple formula:
for all f ∈H ,

PB[ ̂f0,δ]( f ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f , if
∥

∥ f − ̂f0
∥

∥ ≤ δ,

̂f0 +
δ

∥

∥ f − ̂f0
∥

∥

(

f − ̂f0
)

, if
∥

∥ f − ̂f0
∥

∥ > δ,

(4)

which is the point of intersection of the sphere and the
segment joining f and the center of the sphere in the case

where f /∈B[ ̂f0, δ] (see Figure 1).
Let, now, M and M′ be linear subspaces of a finite-

dimensional linear subspace V ⊂ H . Then, let M + M′ be
defined as the subspace M+M′ := {h+h′ : h ∈M,h′ ∈M′}.
If also M ∩ M′ = {0}, then M + M′ is called the direct
sum of M and M′ and is denoted by M ⊕ M′ [40, 41]. In
the case where V = M ⊕ M′, then every f ∈ V can be
expressed uniquely as a sum f = h + h′, where h ∈ M
and h′ ∈ M′ [40, 41]. Then, we define here a mapping
PM,M′ : V = M ⊕M′ → M which takes any f ∈ V to that
unique h ∈M that appears in the decomposition f = h+ h′.
We will call h the (oblique) projection of f onM alongM′ [40]
(see Figure 1).
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3. CONVEX ANALYTIC VIEWPOINT OF
KERNEL-BASED CLASSIFICATION

In pattern analysis [1, 2], data are usually given by a sequence
of vectors (xn)n∈Z≥0

⊂ X ⊂ Rm, for some m ∈ Z>0. We will
assume that each vector in X is drawn from two classes and is
thus associated to a label yn ∈ Y := {±1}, n ∈ Z≥0. As such,
a sequence of (training) pairs D := ((xn, yn))n∈Z≥0

⊂ X×Y
is formed.

To benefit from a larger than m or even infinite-
dimensional space, modern pattern analysis reformulates the
classification problem in an RKHS H (implicitly defined by
a predefined kernel function κ), which is widely known as
the feature space [1–3]. A mapping φ : Rm → H which
takes (xn)n∈Z≥0

⊂ Rm onto (φ(xn))n∈Z≥0
⊂ H is given by

the kernel function associated to the RKHS feature space H :
φ(x) := κ(x, ·) ∈ H , for all x ∈ Rm. Then, the classification
problem is defined in the feature space H as selecting a point
̂f ∈H and an offset ̂b ∈ R such that y( ̂f (x) + ̂b) ≥ ρ, for all
(x, y) ∈D , and for some margin ρ ≥ 0 [1, 2].

For convenience, we merge f ∈ H and b ∈ R into a
single vector u := ( f , b) ∈ H × R, where H × R stands
for the product space [37, 38] of H and R. Henceforth, we
will call a point u ∈ H × R a classifier, and H × R the
space of all classifiers. The space H × R of all classifiers
can be endowed with an inner product as follows: for any
u1 := ( f1, b1), u2 := ( f2, b2) ∈ H × R, let 〈u1,u2〉H×R :=
〈 f1, f2〉H + b1b2. The space H × R of all classifiers becomes
then a Hilbert space. The notation 〈·, ·〉will be used for both
〈·, ·〉H×R and 〈·, ·〉H .

A standard penalty function to be minimized in classifi-
cation problems is the soft margin loss function [1, 29] defined
on the space of all classifiers H × R as follows: given a pair
(x, y) ∈D and the margin parameter ρ ≥ 0,

lx,y,ρ(u) : H ×R −→ R : ( f , b)
︸ ︷︷ ︸

u


−→ (

ρ − y
(

f (x) + b
))+

= (ρ− yg f ,b(x)
)+

,
(5)

where the function g f ,b is defined by

g f ,b(x) := f (x) + b, ∀x ∈ Rm, ∀( f , b) ∈H ×R. (6)

If the classifier û := ( ̂f , ̂b) is such that yg
̂f ,̂b(x) < ρ, then this

classifier fails to achieve the margin ρ at (x, y) and (5) scores a
penalty. In such a case, we say that the classifier committed a
margin error. A misclassification occurs at (x, y) if yg

̂f ,̂b(x) <
0.

The studies in [11, 30] approached the classification
task from a convex analytic perspective. By the definition of
the classification problem, our goal is to look for classifiers

(points in H × R) that belong to the set Π+
x,y,ρ := {( ̂f , ̂b) ∈

H × R : y( ̂f (x) + ̂b) ≥ ρ}. If we recall the reproducing

property (2), a desirable classifier satisfies y(〈 ̂f , κ(x, ·)〉 +
̂b) ≥ ρ or 〈 ̂f , yκ(x, ·)〉H + ŷb ≥ ρ. Thus, for a given
pair (x, y) and a margin ρ, by the definition of the inner

product 〈·, ·〉H×R, the set of all desirable classifiers (that do
not commit a margin error at (x, y)) is

Π+
x,y,ρ =

{

û ∈H ×R :
〈

û, ax,y
〉

H×R ≥ ρ
}

, (7)

where ax,y := (yκ(x, ·), y) = y(κ(x, ·), 1) ∈ H × R. The
vector (κ(x, ·), 1) ∈H×R is an extended (to account for the
constant factor ̂b) vector that is completely specified by the
point x and the adopted kernel function. By (7), we notice
that Π+

x,y,ρ is a closed half-space of H × R (see Section 2.2).
That is, all classifiers that do not commit a margin error at
(x, y) belong in the closed half-space Π+

x,y,ρ specified by the
chosen kernel function.

The following proposition builds the bridge between the
standard loss function lx,y,ρ and the closed convex set Π+

x,y,ρ.

Proposition 1 (see [11, 30]). Given the parameters (x, y, ρ),
the closed half-spaceΠ+

x,y,ρ coincides with the set of all minimiz-
ers of the soft margin loss function, that is, arg min{lx,y,ρ(u) :
u ∈H ×R} = Π+

x,y,ρ.

Starting from this viewpoint, the following section
describes shortly a convex analytic tool [11, 30] which tackles
the online classification task, where a sequence of parameters
(xn, yn, ρn)n∈Z≥0

, and thus a sequence of closed half-spaces
(Π+

xn,yn,ρn)n∈Z≥0
, is assumed.

4. THE ONLINE KERNEL-BASED CLASSIFICATION
TASK AND THE ADAPTIVE PROJECTED
SUBGRADIENTMETHOD

At every time instant n ∈ Z≥0, a pair (xn, yn) ∈ D becomes
available. If we also assume a nonnegative margin parameter
ρn, then we can define the set of all classifiers that achieve this

margin by the closed half-space Π+
xn,yn,ρn := {û = ( ̂f , ̂b) ∈

H ×R : yn( ̂f (xn) + ̂b) ≥ ρn}. Clearly, in an online setting, we
deal with a sequence of closed half-spaces (Π+

xn,yn,ρn)n∈Z≥0
⊂

H × R and since each one of them contains the set of all
desirable classifiers, our objective is to find a classifier that
belongs to or satisfies most of these half-spaces or, more
precisely, to find a classifier that belongs to all but a finite
number of Π+

xn,yn,ρns, that is, a û ∈ ∩n≥N0Π
+
xn,yn,ρn ⊂ H × R,

for some N0 ∈ Z≥0. In other words, we look for a classifier in
the intersection of these half-spaces.

The studies in [11, 30] propose a solution to the
above problem by the recently developed adaptive projected
subgradient method (APSM) [12–14]. The APSM approaches
the above problem as an asymptotic minimization of a
sequence of not necessarily differentiable nonnegative convex
functions over a closed convex set in a real Hilbert space.

Instead of processing a single pair (xn, yn) at each n,
APSM offers the freedom to process concurrently a set
{(x j , yj)} j∈Jn

, where the index set Jn ⊂ 0,n for every n ∈ Z,
and where j1, j2 := { j1, j1 + 1, . . . , j2} for every integers
j1 ≤ j2. Intuitively, concurrent processing is expected to
increase the speed of an algorithm. Indeed, in adaptive
filtering [15], it is the motivation behind the leap from NLMS
[16, 17], where no concurrent processing is available, to the
potentially faster APA [18, 19].
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To keep the discussion simple, we assume that n ∈ Jn,
for all n ∈ Z≥0. An example of such an index set Jn is given
in (13). In other words, (13) treats the case where at time
instant n, the pairs {(x j , yj)} j∈n−q+1,n, for some q ∈ Z>0,
are considered. This is in line with the basic rationale of
the celebrated affine projection algorithm (APA), which has
extremely been used in adaptive filtering [15].

Each pair (x j , yj), and thus each index j, defines a
half-space Π+

x j ,yj ,ρ
(n)
j

by (7). In order to point out explicitly

the dependence of such a half-space on the index set Jn,
we slightly modify the notation for Πx j ,yj ,ρ

(n)
j

and use Π+
j,n

for any j ∈ Jn, and for any n ∈ Z≥0. The metric
projection mapping PΠ+

j,n
is analytically given by (3). To

assign different importance to each one of the projections
corresponding to Jn, we associate to each half-space, that

is, to each j ∈ Jn, a weight ω(n)
j such that ω(n)

j ≥ 0, for

all j ∈ Jn, and
∑

j∈Jn
ω(n)

j = 1, for all n ∈ Z≥0. This
is in line with the adaptive filtering literature that tends
to assign higher importance in the most recent samples.
For the less familiar reader, we point out that if Jn :=
{n}, for all n ∈ Z≥0, the algorithm breaks down to the
NLMS. Regarding the APA, a discussion can be found
below.

As it is also pointed out in [29, 30], the major drawback
of online kernel methods is the linear increase of complexity
with time. To deal with this problem, it was proposed in [30]
to further constrain the norm of the desirable classifiers by a
closed ball. To be more precise, one constrains the desirable
classifiers in [30] by K := B[0, δ] × R ⊂ H × R, for some
predefined δ > 0. As a result, one seeks for classifiers that
belong to K ∩ (

⋂

j∈Jn, n≥N0
Π+

j,n), for ∃N0 ∈ Z≥0. By the

definition of the closed ball B[0, δ] in Section 2.2, we easily
see that the addition of K imposes a constraint on the norm

of ̂f in the vector û = ( ̂f , ̂b) by ‖ ̂f ‖ ≤ δ. The associated
metric projection mapping is analytically given by the simple
computation PK(u) = (PB[0,δ]( f ), b), for all u := ( f , b) ∈
H ×R, where PB[0,δ] is obtained by (4). It was observed that
constraining the norm results into a sequence of classifiers
with a fading memory, where old data can be eliminated
[30].

For the sake of completeness, we give a summary of the
sparsified algorithm proposed in [30].

Algorithm 1 (see [30]). For any n ∈ Z≥0, consider the index
set Jn ⊂ 0,n, such that n ∈ Jn. An example of Jn can be
found in (13). For any j ∈ Jn and for any n ∈ Z≥0, let the

closed half-space Π+
j,n := {û = ( ̂f , ̂b) ∈ H × R : yj( ̂f (x j) +

̂b) ≥ ρ(n)
j }, and the weight ω(n)

j ≥ 0 such that
∑

j∈Jn
ω(n)

j = 1,
for all n ∈ Z≥0. For an arbitrary initial offset b0 ∈ R, consider
as an initial classifier the point u0 := (0, b0) ∈ H × R and
generate the following point (classifier) sequence in H × R
by

un+1 :=PK

⎛

⎝un+μn

⎛

⎝

∑

j∈Jn

ω(n)
j PΠ+

j,n

(

un
)−un

⎞

⎠

⎞

⎠ , ∀n∈Z≥0,

(8a)

where the extrapolation coefficient μn ∈ [0, 2Mn] with

Mn :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

j∈Jn
ω(n)

j

∥

∥PΠ+
j,n

(

un
)− un

∥

∥

2

∥

∥

∑

j∈Jn
ω(n)

j PΠ+
j,n

(

un
)− un

∥

∥

2 , if un /∈ ⋂

j∈Jn

Π+
j,n,

1, otherwise.
(8b)

Due to the convexity of ‖·‖2, the parameter Mn ≥ 1,
for all n ∈ Z≥0, so that μn can take values larger than
or equal to 2. The parameters that can be preset by the
designer are the concurrency index set Jn and μn. The bigger
the cardinality of Jn, the more closed half-spaces to be
concurrently processed at the time instant n, which results
into a potentially increased convergence speed. An example
of Jn, which will be followed in the numerical examples,
can be found in (13). In the same fashion, for extrapolation
parameter values μn close to 2Mn (μn ≤ 2Mn), increased
convergence speed can be also observed (see Figure 6).

If we define

β(n)
j := ω(n)

j y j

(

ρ(n)
j − yjgn

(

x j
))+

1 + κ
(

x j , x j
) , ∀ j ∈ Jn, ∀n ∈ Z≥0,

(8c)

where gn := g fn,bn by (6), then the algorithmic process (8a)
can be written equivalently as follows:
(

fn+1, bn+1
)

=
⎛

⎝PB[0,δ]

⎛

⎝ fn + μn
∑

j∈Jn

β(n)
j κ

(

x j , ·
)

⎞

⎠ , bn + μn
∑

j∈Jn

β(n)
j

⎞

⎠ ,

∀n ∈ Z≥0.
(8d)

The parameter Mn takes the following form after the proper
algebraic manipulations:

Mn :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

j∈Jn
ω(n)

j

([(

ρ(n)
j −yjgn

(

x j
))+]2

/
(

1+κ
(

x j , x j
)))

∑

i, j∈Jn
β(n)
i β(n)

j

(

1 + κ
(

xi, x j
))

,

if un /∈ ⋂

j∈Jn

Π+
j,n,

1, otherwise.
(8e)

As explained in [30], the introduction of the closed
ball constraint B[0, δ] on the norm of the estimates ( fn)n
results into a potential elimination of the coefficients γn
that correspond to time instants close to index 0 in (1),
so that a buffer with length Nb can be introduced to keep
only the most recent Nb data (xl)

n
l=n−Nb+1. This introduces

sparsification to the design. Since the complexity of all
the metric projections in Algorithm 1 is linear, the overall
complexity is linear on the number of the kernel function, or
after inserting the buffer with length Nb, it is of order O(Nb).

4.1. Computation of themargin levels

We will now discuss in short the dynamic adjustment
strategy of the margin parameters, introduced in [11, 30].
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For simplicity, all the concurrently processed margins are

assumed to be equal to each other, that is, ρn := ρ(n)
j , for all

j ∈ Jn, for all n ∈ Z≥0. Of course, more elaborate schemes
can be adopted.

Whenever (ρn − yjgn(x j))+ = 0, the soft margin loss
function lx j ,yj ,ρn in (5) attains a global minimum, which
means by Proposition 1 that un := ( fn, bn) belongs to
Π+

j,n. In this case, we say that we have feasibility for j ∈
Jn. Otherwise, that is, if un /∈Π+

j,n, infeasibility occurs. To
describe such situations, let us denote the feasibility cases by
the index set J′n := { j ∈ Jn : (ρn − yjgn(x j))+ = 0}. The
infeasibility cases are obviously Jn \ J′n.

If we set card(∅) := 0, then we define the feasibility rate as

the quantity R(n)
feas := card(J′n)/card(Jn), for all n ∈ Z≥0. For

example, R(n)
feas = 1/2 denotes that the number of feasibility

cases is equal to the number of infeasibility ones at the time
instant n ∈ Z≥0.

If, at time n, R(n)
feas is larger than or equal to some

predefined R, we assume that this will also happen for the
next time instant n+1, provided we work in a slowly changing

environment. More than that, we expect R(n+1)
feas ≥ R to hold

for a margin ρn+1 slightly larger than ρn. Hence, at time n, if

R(n)
feas ≥ R, we set ρn+1 > ρn under some rule to be discussed

below. On the contrary, if R(n)
feas < R, then we assume that if

the margin parameter value is slightly decreased to ρn+1 < ρn,

it may be possible to have R(n+1)
feas ≥ R. For example, if we

set R := 1/2, this scheme aims at keeping the number of
feasibility cases larger than or equal to those of infeasibilities,
while at the same time it tries to push the margin parameter
to larger values for better classification at the test phase.

In the design of [11, 30], the small variations of the
parameters (ρn)n∈Z≥0

are controlled by the linear parametric
model νAPSM(θ − θ0) + ρ0, θ ∈ R, where θ0, ρ0 ∈ R, ρ0 ≥ 0,
are predefined parameters and νAPSM is a sufficiently small
positive slope (e.g., see Section 7). For example, in [30],
ρn := (νAPSM(θn − θ0) + ρ0)+, where θn+1 := θn ± δθ, for all
n, and where the ± symbol refers to the dichotomy of either

R(n+1)
feas ≥ R or R(n+1)

feas < R. In this way, an increase of θ by
δθ > 0 will increase ρ, whereas a decrease of θ by −δθ will
force ρ to take smaller values. Of course, other models, other
than this simple linear one, can also be adopted.

4.2. Kernel affine projection algorithm

Here we introduce a byproduct of Algorithm 1, namely, a
kernelized version of the standard affine projection algo-
rithm [15, 18, 19].

Motivated by the discussion in Section 3, Algorithm 1
was devised in order to find at each time instant n a point
in the set of all desirable classifiers

⋂

j∈JnΠ
+
j,n /= ∅. Since any

point in this intersection is suitable for the classification task
at time n, any nonempty subset of

⋂

j∈Jn
Π+

j,n can be used for
the problem at hand. In what follows we see that if we limit
the set of desirable classifiers and deal with the boundaries
{Π j,n} j∈Jn

, that is, hyperplanes (Section 2.2), of the closed
half-spaces {Π+

j,n} j∈Jn
, we end up with a kernelized version

of the classical affine projection algorithm [18, 19].

Π1,n

Π+
1,n

Π+
1,n ∩Π+

2,n

un + μn(
∑2

j=1 ω
(n)
j PΠ+

j,n
(un)− un)

PΠ+
1,n

(un)

Vn
PVn (un) PΠ+

2,n
(un)

un

Π2,n

Π+
2,n

Figure 2: For simplicity, we assume that at some time instant n ∈
Z≥0, the cardinality card(Jn) = 2. This figure illustrates the closed
half-spaces {Π+

j,n}2
j=1 and their boundaries, that is, the hyperplanes

{Π j,n}2
j=1. In the case where

⋂2
j=1Π j,n /= ∅, the defined in (11)

linear variety becomes Vn =
⋂2

j=1Π j,n, which is a subset of
⋂2

j=1Π
+
j,n.

The kernel APA aims at finding a point in the linear variety Vn,
while Algorithm 1 and the APSM consider the more general setting
of finding a point in

⋂2
j=1Π

+
j,n. Due to the range of the extrapolation

parameter μn ∈ [0, 2Mn] and Mn ≥ 1, the APSM can rapidly
furnish solutions close to the large intersection of the closed half-
spaces (see also Figure 6), without suffering from instabilities in the
calculation of a Moore-Penrose pseudoinverse matrix necessary for
finding the projection PVn .

Definition 1 (kernel affine projection algorithm). Fix n ∈
Z≥0 and let qn := card(Jn). Define the set of hyperplanes
{Π j,n} j∈Jn

by

Π j,n :=
{

( ̂f , ̂b)∈H×R :
〈

( ̂f , ̂b),
(

yjκ
(

x j , ·
)

, yj
)〉

H×R=ρ(n)
j

}

=
{

û ∈H ×R :
〈

û, aj,n
〉

H×R = ρ(n)
j

}

, ∀ j ∈ Jn,

(9)

where aj,n := yj(κ(x j , ·), 1), for all j ∈ Jn. These hyper-
planes are the boundaries of the closed half-spaces {Π+

j,n} j∈Jn

(see Figure 2). Note that such hyperplane constraints as in
(9) are often met in regression problems with the difference

that there the coefficients {ρ(n)
j } j∈Jn

are part of the given data
and not parameters as in the present classification task.

Since we will be looking for classifiers in the assumed
nonempty intersection

⋂

j∈Jn
Π j,n, we define the function

en : H ×R→ Rqn by

en(u) :=

⎡

⎢

⎢

⎢

⎣

ρ(n)
1 − 〈a1,n,u

〉

...

ρ(n)
qn −

〈

aqn,n,u
〉

⎤

⎥

⎥

⎥

⎦

, ∀u ∈H ×R, (10)

and let the set (see Figure 2)

Vn := arg min
u∈H×R

qn
∑

j=1

∣

∣ρ(n)
j − 〈u, aj,n

〉∣

∣

2 = arg min
u∈H×R

∥

∥en(u)
∥

∥

2
Rqn .

(11)

This set is a linear variety (for a proof see Appendix A).
Clearly, if

⋂

j∈Jn
Π j,n /= ∅, then Vn =

⋂

j∈Jn
Π j,n. Now, given
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an arbitrary initial u0, the kernel affine projection algorithm is
defined by the following point sequence:

un+1 := un + μn
(

PVn

(

un
)− un

)

= un + μn
(

a1,n, . . . , aqn,n
)

G†nen
(

un
)

, ∀n ∈ Z≥0,
(12)

where the extrapolation parameter μn ∈ [0, 2], Gn is a matrix
of dimension qn × qn, where its (i, j)th element is defined by
yi y j(κ(xi, x j) + 1), for all i, j ∈ 1, qn, the symbol † stands for
the (Moore-Penrose) pseudoinverse operator [40], and the
notation (a1,n, . . . , aqn,n)λ := ∑qn

j=1λjaj,n, for all λ ∈ Rqn . For
the proof of the equality in (12), refer to Appendix A.

Remark 1. The fact that the classical (linear kernel) APA
[18, 19] can be seen as a projection algorithm onto a
sequence of linear varieties was also demonstrated in
[26, Appendix B]. The proof in Appendix A extends the
defining formula of the APA, and thus the proof given in [26,
Appendix B], to infinite-dimensional Hilbert spaces. Extend-
ing [26], the APSM [12–14] devised a convexly constrained
asymptotic minimization framework which contains APA,
the NLMS, as well as a variety of recently developed
projection-based algorithms [20–25, 27, 28].

By Definition 1 and Appendix A, at each time instant
n, the kernel APA produces its estimate by projecting onto
the linear variety Vn. In the special case where qn := 1,
that is, Jn = {n}, for all n, then (12) gives the kernel
NLMS [42]. Note also that in this case, the pseudoinverse
is simplified to G†n = an/‖an‖2, for all n. Since Vn is a
closed convex set, the kernel APA can be included in the
wide frame of the APSM (see also the remarks just after
Lemma 3.3 or Example 4.3 in [14]). Under the APSM frame,
more directions become available for the kernel APA, not
only in terms of theoretical properties, but also in devising
variations and extensions of the kernel APA by considering
more general convex constraints than Vn as in [26], and by
incorporating a priori information about the model under
study [14].

Note that in the case where
⋂

j∈Jn
Π j,n /= ∅, then Vn =

⋂

j∈Jn
Π j,n. Since Π j,n is the boundary and thus a subset

of the closed half-space Π+
j,n, it is clear that looking for

points in
⋂

j∈Jn
Π j,n, in the kernel APA and not in the larger

⋂

j∈Jn
Π+

j,n as in Algorithm 1, limits our view of the online
classification task (see Figure 2). Under mild conditions,
Algorithm 1 produces a point sequence that enjoys prop-
erties like monotone approximation, strong convergence to
a point in the intersection K ∩ (

⋂

j∈Jn
Π+

j,n), asymptotic
optimality, as well as a characterization of the limit point.

To speed up convergence, Algorithm 1 offers the extrapo-
lation parameter μn which has a range of μn ∈ [0, 2Mn] with
Mn ≥ 1. The calculation of the upper bound Mn is given by
simple operations that do not suffer by instabilities as in the
computation of the (Moore-Penrose) pseudoinverses (G†n)n
in (12) [40]. A usual practice for the efficient computation of
the pseudoinverse matrix is to diagonally load some matrix
with positive values prior inversion, leading thus to solutions

towards an approximation of the original problem at hand
[15, 40].

The above-introduced kernel APA is based on the
fundamental notion of metric projection mapping on linear
varieties in a Hilbert space, and it can thus be straightfor-
wardly extended to regression problems. In the sequel, we
will focus on the more general view offered to classification
by Algorithm 1 and not pursue further the kernel APA
approach.

5. SPARSIFICATION BY A SEQUENCE OF
FINITE-DIMENSIONAL SUBSPACES

In this section, sparsification is achieved by the construction
of a sequence of linear subspaces (Mn)n∈Z≥0

, together with
their bases (Bn)n∈Z≥0

, in the space H . The present approach
is in line with the rationale presented in [36], where a
monotonically increasing sequence of subspaces (Mn)n∈Z≥0

was constructed, that is, Mn ⊆ Mn+1, for all n ∈ Z≥0.
Such a monotonic increase of the subspaces’ dimension
undoubtedly raises memory resources issues. In this paper,
such a monotonicity restriction is not followed.

To accomodate memory limitations and tracking
requirements, two parameters, namely Lb and α, will be
of central importance in our design. The parameter Lb
establishes a bound on the dimensions of (Mn)n∈Z≥0

, that is,
if we define Ln := dim(Mn), then Ln ≤ Lb, for all n ∈ Z≥0.
Given a basis Bn, a buffer is needed in order to keep track
of the Ln basis elements. The larger the dimension for the
subspace Mn, the larger the buffer necessary for saving the
basis elements. Here, Lb gives the designer the freedom
to preset an upper bound for the dimensions (Ln)n, and
thus upper-bound the size of the buffer according to the
available computational resources. Note that this introduces
a tradeoff between memory savings and representation
accuracy; the larger the buffer, the more basis elements
to be used in the kernel expansion, and thus the larger
the accuracy of the functional representation, or, in other
words, the larger the span of the basis, which gives us more
candidates for our classifier. We will see below that such
a bound Lb results into a sliding window effect. Note also
that if the data {xn}n∈Z≥0 are drawn from a compact set
in Rm, then the algorithmic procedure introduced in [36]
produces a sequence of monotonically increasing subspaces
with dimensions upper-bounded by some bound not known
a priori.

The parameter α is a measure of approximate lin-
ear dependency or independency. Every time a new ele-
ment κ(xn+1, ·) becomes available, we compare its dis-
tance from the available finite-dimensional linear sub-
space Mn = span(Bn) with α, where span stands
for the linear span operation. If the distance is larger
than α, then we say that κ(xn+1, ·) is sufficiently linearly
independent of the basis elements of Bn, we decide that it
carries enough “new information,” and we add this element
to the basis, creating a new Bn+1 which clearly contains
Bn. However, if the above distance is smaller than or equal
to α, then we say that κ(xn+1, ·) is approximately linearly
dependent on the elements of Bn, so that augmenting Bn
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is not needed. In other words, α controls the frequency by
which new elements enter the basis. Obviously, the larger the
α, the more “difficult” for a new element to contribute to the
basis. Again, a tradeoff between the cardinality of the basis
and the functional representation accuracy is introduced, as
also seen above for the parameter Lb.

To increase the speed of convergence of the proposed
algorithm, concurrent processing is introduced by means of
the index set Jn, which indicates which closed half-spaces
will be processed at the time instant n. Note once again that
such a processing is behind the increase of the convergence
speed met in APA [18, 19] when compared to that of the
NLMS [16, 17], in classical adaptive filtering [15]. Without
any loss of generality, and in order to keep the discussion
simple, we consider here the following simple case for Jn:

Jn :=
{

0,n, if n < q − 1,

n− q + 1,n, if n ≥ q − 1,
∀n ∈ Z≥0, (13)

where q ∈ Z>0 is a predefined constant denoting the number
of closed half-spaces to be processed at each time instant n ≥
q − 1. In other words, for n ≥ q − 1, at each time instant n,
we consider concurrent projections on the closed half-spaces
associated with the q most recent samples. We state now a
definition whose motivation is the geometrical framework of
the oblique projection mapping given in Figure 1.

Definition 2. Given n ∈ Z≥0, assume the finite-dimensional
linear subspaces Mn,Mn+1 ⊂ H with dimensions Ln and
Ln+1, respectively. Then it is well known that there exists a
linear subspace Wn, such that Mn+Mn+1 =Wn⊕Mn+1, where
the symbol ⊕ stands for the direct sum [40, 41]. Then, the
following mapping is defined:

πn : Mn + Mn+1 −→Mn+1

: f 
−→ πn( f ) :=
{

f , if Mn ⊆Mn+1

PMn+1,Wn( f ), if Mn /⊆Mn+1,

(14)

where PMn+1,Wn denotes the oblique projection mapping on
Mn+1 along Wn. To visualize this in the case when Mn /⊆Mn+1,
refer to Figure 1, where M becomes Mn+1, and M′ becomes
Wn.

To exhibit the sparsification method, the constructive
approach of mathematical induction on n ∈ Z≥0 is used as
follows.

5.1. Initialization

Let us begin, now, with the construction of the bases
(Bn)n∈Z≥0

and the linear subspaces (Mn)n∈Z≥0
. At the starting

time 0, our basis B0 consists of only one vector ψ(0)
1 :=

κ(x0, ·) ∈ H , that is, B0 := {ψ(0)
1 }. This basis defines the

linear subspace M0 := span(B0). The characterization of the
element κ(x0, ·) by the basis B0 is obvious here: κ(x0, ·) =
1·ψ(0)

1 . Hence, we can associate to κ(x0, ·) the one-dimen-
sional vector θ(0)

x0
:= 1, which completely describes κ(x0, ·) by

the basis B0. Let also K0 := κ(x0, x0) > 0, which guarantees
the existence of the inverse K−1

0 = 1/κ(x0, x0).

5.2. At the time instant n ∈ Z>0

We assume, now, that at time n ∈ Z>0 the basis Bn =
{ψ(n)

1 , . . . ,ψ(n)
Ln } is available, where Ln ∈ Z>0. Define also the

linear subspace Mn := span(Bn), which is of dimension Ln.
Without loss of generality, we assume that n ≥ q − 1, so

that the index set Jn := n− q + 1,n is available. Available are
also the kernel functions {κ(x j , ·)} j∈Jn

. Our sparsification
method is built on the sequence of closed linear subspaces
(Mn)n. At every time instant n, all the information needed for
the realization of the sparsification method will be contained
within Mn. As such, each κ(x j , ·), for j ∈ Jn, must be
associated or approximated by a vector in Mn. Thus, we
associate to each κ(x j , ·), j ∈ Jn, a set of vectors {θ(n)

x j
} j∈Jn

,
as follows

κ
(

x j , ·
) 
−→ k(n)

x j
:=

Ln
∑

l=1

θ(n)
x j ,l ψ

(n)
l ∈Mn, ∀ j ∈ Jn. (15)

For example, at time 0, κ(x0, ·) 
→ k(0)
x0 := ψ(0)

1 . Since we
follow the constructive approach of mathematical induction,
the above set of vectors is assumed to be known.

Available is also the matrix Kn ∈ RLn×Ln whose (i, j)th

component is (Kn)i, j := 〈ψ(n)
i ,ψ(n)

j 〉, for all i, j ∈ 1,Ln. It can
be readily verified that Kn is a Gram matrix which, by the

assumption that {ψ(n)
l }Lnl=1 are linearly independent, is also

positive definite [40, 41]. Hence, the existence of its inverse
K−1
n is guaranteed. We assume here that K−1

n is also available.

5.3. At time n + 1, the new data xn+1 becomes available

At time n + 1, a new element κ(xn+1, ·) of H becomes
available. Since Mn is a closed linear subspace of H , the
orthogonal projection of κ(xn+1, ·) onto Mn is well defined
and given by

PMn

(

κ
(

xn+1, ·)) =
Ln
∑

l=1

ζ (n+1)
xn+1,l ψ

(n)
l ∈Mn, (16)

where the vector ζ (n+1)
xn+1

:= [ζ (n+1)
xn+1,1 , . . . , ζ (n+1)

xn+1,Ln]t ∈ RLn satisfies

the normal equations Knζ
(n+1)
xn+1

= c(n+1)
xn+1 with c(n+1)

xn+1 given by
[37, 38]

c(n+1)
xn+1

:=

⎡

⎢

⎢

⎢

⎣

〈

κ
(

xn+1, ·),ψ(n)
1

〉

...
〈

κ
(

xn+1, ·),ψ(n)
Ln

〉

⎤

⎥

⎥

⎥

⎦

∈ RLn . (17)

Since K−1
n was assumed available, we can compute ζ (n+1)

xn+1
by

ζ (n+1)
xn+1

= K−1
n c(n+1)

xn+1
. (18)

Now, the distance dn+1 of κ(xn+1, ·) from Mn (in Figure 1
this is the quantity ‖ f −PM( f )‖) can be calculated as follows:

0 ≤ d2
n+1 := ∥∥κ(xn+1, ·)− PMn

(

κ
(

xn+1, ·))∥∥2

= κ
(

xn+1, xn+1
)− (c(n+1)

xn+1

)t
ζ (n+1)
xn+1

.
(19)

In order to derive (19), we used the fact that the linear oper-
ator PMn is selfadjoint and the linearity of the inner product

〈·, ·〉 [37, 38]. Let us define now Bn+1 := {ψ(n+1)
l }Ln+1

l=1 .
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5.3.1. Approximate linear dependency (dn+1 ≤ α)

If the metric distance of κ(xn+1, ·) from Mn satisfies dn+1 ≤ α,
then we say that κ(xn+1, ·) is approximately linearly dependent

on Bn := {ψ(n)
l }Lnl=1, and that it is not necessary to insert

κ(xn+1, ·) into the new basis Bn+1. That is, we keep Bn+1 :=
Bn, which clearly implies that Ln+1 := Ln, and ψ(n+1)

l := ψ(n)
l ,

for all l ∈ 1,Ln. Moreover, Mn+1 := span(Bn+1) = Mn. Also,
we let Kn+1 := Kn, and K−1

n+1 := K−1
n .

Notice here that Jn+1 := n− q + 2,n + 1. The approxi-
mations given by (15) have to be transfered now to the new
linear subspace Mn+1. To do so, we employ the mapping πn
given in Definition 2: for all j ∈ Jn+1 \ {n + 1}, k(n+1)

x j :=
πn(k(n)

x j ). Since, Mn+1 =Mn, then by (14),

k(n+1)
x j

:= πn
(

k(n)
x j

) = k(n)
x j
. (20)

As a result, θ(n+1)
x j

:= θ(n)
x j

, for all j ∈ Jn \ {n + 1}. As

for k(n+1)
xn+1 , we use (16) and let k(n+1)

xn+1 := PMn(κ(xn+1, ·)). In
other words, κ(xn+1, ·) is approximated by its orthogonal
projection PMn(κ(xn+1, ·)) onto Mn, and this information is
kept in memory by the coefficient vector θ(n+1)

xn+1
:= ζ (n+1)

xn+1
.

5.3.2. Approximate linear independency (dn+1 > α)

On the other hand, if dn+1 > α, then κ(xn+1, ·) becomes
approximately linearly independent on Bn, and we add it
to our new basis. If we also have Ln ≤ Lb − 1, then we
can increase the dimension of the basis without exceeding
the memory of the buffer: Ln+1 := Ln + 1 and Bn+1 :=
Bn∪{κ(xn+1, ·)}, such that the elements {ψ(n+1)

l }Ln+1
l=1 of Bn+1

become ψ(n+1)
l := ψ(n)

l , for all l ∈ 1,Ln, and ψ(n+1)
Ln+1

:=
κ(xn+1, ·). We also update the Gram matrix by

Kn+1 :=
⎡

⎣

Kn c(n+1)
xn+1

(

c(n+1)
xn+1

)t
κ
(

xn+1, xn+1
)

⎤

⎦ =:

⎡

⎣

rn+1 htn+1

hn+1 Hn+1

⎤

⎦ .

(21)

The fact dn+1 > α ≥ 0 guarantees that the vectors in Bn+1

are linearly independent. In this way the Gram matrix Kn+1

is positive definite. It can be verified by simple algebraic
manipulations that

K−1
n+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

K−1
n +

ζ (n+1)
xn+1

(

ζ (n+1)
xn+1

)t

d2
n+1

− ζ (n+1)
xn+1

d2
n+1

−
(

ζ (n+1)
xn+1

)t

d2
n+1

1
d2
n+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=:

[

sn+1 ptn+1

pn+1 Pn+1

]

.

(22)

Since Bn � Bn+1, we immediately obtain that Mn �

Mn+1. All the information given by (15) has to be translated
now to the new linear subspace Mn+1 by the mapping πn as

we did above in (20): k(n+1)
x j := πn(k(n)

x j ) = k(n)
x j . Since the

cardinality of Bn+1 is larger than the cardinality of Bn by
one, then θ(n+1)

x j
= [(θ(n)

x j
)t , 0]t, for all j ∈ Jn+1 \ {n + 1}.

The new vector κ(xn+1, ·), being a basis vector itself, satisfies

κ(xn+1, ·) ∈ Mn+1, so that k(n+1)
xn+1 := κ(xn+1, ·). Hence, it has

the following representation with respect to the new basis
Bn+1: θ(n+1)

xn+1
:= [0t , 1]t ∈ RLn+1 .

5.3.3. Approximate linear independency (dn+1 > α)
and buffer overflow (Ln + 1 > Lb); the sliding
window effect

Now, assume that dn+1 > α and that Ln = Lb. According
to the above methodology, we still need to add κ(xn+1, ·) to
our new basis, but if we do so the cardinality Ln + 1 of this
new basis will exceed our buffer’s memory Lb. We choose

here to discard the oldest element ψ(n)
1 in order to make

space for κ(xn+1, ·): Bn+1 := (Bn \ {ψ(n)
1 }) ∪ {κ(xn+1, ·)}.

This discard of ψ(n)
1 and the addition of κ(xn+1, ·) results

in the sliding window effect. We stress here that instead of

discarding ψ(n)
1 , other elements of Bn can be removed, if we

use different criteria than the present ones. Here, we choose
ψ(n)

1 for simplicity, and for allowing the algorithm to focus
on recent system changes by making its dependence on the
remote past diminishing as time moves on.

We define here Ln+1 := Lb, such that the elements of Bn+1

become ψ(n+1)
l := ψ(n)

l+1, l ∈ 1,Lb − 1, and ψ(n+1)
Lb := κ(xn+1, ·).

In this way, the update for the Gram matrix becomes Kn+1 :=
Hn+1 by (21), where it can be verified that

K−1
n+1 = H−1

n+1 = Pn+1 − 1
sn+1

pn+1ptn+1, (23)

where Pn+1 is defined by (22) (the proof of (23) is given in
Appendix B).

Upon defining Mn+1 := span(Bn+1), it is easy to see that
Mn /⊆Mn+1. By the definition of the oblique projection, of the

mapping πn, and by k(n)
x j := ∑Ln

l=1θ
(n)
x j ,lψ

(n)
l , for all j ∈ Jn+1 \

{n + 1}, we obtain

k(n+1)
x j

:= πn
(

k(n)
x j

) =
Ln
∑

l=2

θ(n)
x j ,lψ

(n)
l + 0·κ(xn+1, ·)

=
Ln+1
∑

l=1

θ(n+1)
x j ,l ψ(n+1)

l , ∀ j ∈ Jn+1 \ {n + 1},
(24)

where θ(n+1)
x j ,l := θ(n)

x j ,l+1, for all l ∈ 1,Lb − 1, and θ(n+1)
x j ,Lb := 0,

for all j ∈ Jn+1 \ {n + 1}. Since κ(xn+1, ·) ∈ Mn+1, we set

k(n+1)
xn+1 := κ(xn+1, ·) with the following representation with

respect to the new basis Bn+1: θ(n+1)
xn+1

:= [0t , 1]t ∈ RLb . The
sparsification scheme can be found in pseudocode format in
Algorithm 2.

6. THE APSMWITH THE SUBSPACE-BASED
SPARSIFICATION

In this section, we embed the sparsification strategy of
Section 5 in the APSM. As a result, the following algorithmic
procedure is obtained.
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Subalgorithm

1. Initialization. Let B0 := {κ(x0, ·)}, K0 := κ(x0, x0) > 0,
and K−1

0 := 1/κ(x0, x0). Also, J0 := {0}, θ(0)
x0

:= 1, and

γ̃(0)
1 := 0. Fix α ≥ 0, and Lb ∈ Z>0.

2. Assume n ∈ Z>0. Available are Bn, {θ(n)
x j } j∈Jn , where

Jn := n− q + 1,n, as well as Kn ∈ RLn×Ln , K−1
n ∈ RLn×Ln ,

and the coefficients {γ̃(n+1)
l }Lnl=1 for the estimate in (26).

3. Time becomes n + 1, and κ(xn+1, ·) arrives. Notice that
Jn+1 := n− q + 2,n + 1.

4. Calculate c(n+1)
xn+1

and ζ (n+1)
xn+1

by (17) and (18), respectively,
and the distance dn+1 by (19).

5. if dn+1 ≤ α then
6. Ln+1 := Ln.

7. Set Bn+1 :=Bn.

8. Let θ(n+1)
x j := θ(n)

x j , for all j ∈ Jn+1 \ {n + 1}, and

θ(n+1)
xn+1

:= ζ (n+1)
xn+1

.

9. Kn+1 := Kn, and K−1
n+1 := K−1

n .

10. Let {γ̃(n+2)
l }Ln+1

l=1 := {γ̃(n+1)
l }Lnl=1.

11. else

12. if Ln ≤ Lb − 1 then

13. Ln+1 := Ln + 1.

14. Set Bn+1 :=Bn ∪ {κ(xn+1, ·)}.
15. Let θ(n+1)

x j := [(θ(n)
x j )t , 0]t , for all j ∈ Jn+1 \ {n + 1},

and θ(n+1)
xn+1

:= [0t , 1]t ∈ RLn+1.

16. Define Kn+1 and its inverse K−1
n+1 by (21) and (22),

respectively.

17. γ̃(n+2)
l := γ̃(n+1)

l + μ̃n+1
∑

j∈Jn+1
˜β(n+1)
j θ(n+1)

x j ,l , for all

l ∈ 1,Ln+1 − 1, and γ̃(n+2)
Ln+1

:= μ̃n+1
˜β(n+1)
n+1 θ(n+1)

xn+1,Ln+1
.

18. else if Ln = Lb then

19. Ln+1 := Lb.

20. Let Bn+1 := (Bn \ {ψ(n)
1 })∪ {κ(xn+1, ·)}.

21. Set θ(n+1)
x j ,l = θ(n)

x j ,l+1, for all l ∈ 1,Lb − 1, and

θ(n+1)
x j ,Lb := 0, for all j ∈ Jn+1 \ {n + 1}. Moreover,

θ(n+1)
xn+1

:= [0t , 1]t ∈ RLb .

22. Set Kn+1 := Hn+1 by (21). Then, K−1
n+1 is given by

(23).

23. γ̃(n+2)
l := γ̃(n+1)

l+1 + μ̃n+1
∑

j∈Jn+1
˜β(n+1)
j θ(n+1)

x j ,l , for all

l ∈ 1,Ln+1 − 1, and γ̃(n+2)
Ln+1

:= μ̃n+1
˜β(n+1)
n+1 θ(n+1)

xn+1,Ln+1
.

24. end

25. Increase n by one, that is, n← n + 1 and go to line 2.

Algorithm 2: Sparsification scheme by a sequence of finite-dimen-
sional linear subspaces.

Algorithm 3. For any n ∈ Z≥0, consider the index set Jn

defined by (13). For any j ∈ Jn and for any n ∈ Z≥0,

let the closed half-space Π+
j,n := {û = ( ̂f , ̂b) ∈ H × R :

yj( ̂f (x j) + ̂b) ≥ ρ(n)
j } and the weight ω(n)

j ≥ 0 such that
∑

j∈Jn
ω(n)

j = 1. For an arbitrary initial offset ˜b0 ∈ R, consider

as an initial classifier the point ũ0 := (0, ˜b0) ∈ H × R and
generate the following sequences by

˜fn+1 := πn−1
(

˜fn
)

+ μ̃n
∑

j∈Jn

˜β(n)
j k(n)

x j (25a)

= πn−1
(

˜fn
)

+
Ln
∑

l=1

(

μ̃n
∑

j∈Jn

˜β(n)
j θ(n)

x j ,l

)

ψ(n)
l , ∀n ∈ Z≥0,

(25b)

where π−1( ˜f0) := 0, the vectors {θ(n)
x j
} j∈Jn

, for all n ∈ Z≥0,
are given by Algorithm 2, and

˜bn+1 := ˜bn + μ̃n
∑

j∈Jn

˜β(n)
j , ∀n ∈ Z≥0, (25c)

where

˜β(n)
j := ω(n)

j y j

(

ρn − yj g̃n
(

x j
))+

1 + κ
(

x j , x j
) , ∀n ∈ Z≥0. (25d)

The function g̃n := g
˜fn,˜bn

, and g is defined by (6). Moreover
ρn is given by the procedure described in Section 4.1. Also,
μ̃n ∈ [0, 2˜Mn], where

˜Mn :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

j∈Jn
ω(n)

j

([(

ρn−yj g̃n
(

x j
))+]2

/
(

1+κ
(

x j , x j
)))

∑

i, j∈Jn
˜β(n)
i
˜β(n)
j

(

1 + κ
(

x j , x j
))

,

if ũn := ( ˜fn, ˜bn
)

/∈ ⋂

j∈Jn

Π+
j,n,

1, otherwise,
∀n ∈ Z≥0.

(25e)

The following proposition holds.

Proposition 2. Let the sequence of estimates ( ˜fn)n∈Z≥0
obtain-

ed by Algorithm 3. Then, for all n ∈ Z≥0, there exists

(γ̃(n)
l )Ln−1

l=1 ⊂ R such that

˜fn =
Ln−1
∑

l=1

γ̃(n)
l ψ(n−1)

l ∈Mn−1, ∀n ∈ Z≥0, (26)

whereB−1 := {0},M−1 := {0}, and L−1 := 1.

Proof. See Appendix C.

Now that we have a kernel series expression for the

estimate ˜fn by (26), we can give also an expression for the

quantity πn−1( ˜fn) in (25b), by using also the definition (14):

πn−1
(

˜fn
) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

˜fn, if Mn−1 ⊆Mn,
Ln−1
∑

l=2

γ̃(n)
l ψ(n−1)

l , if Mn−1 /⊆Mn.
(27)

That is, whenever Mn−1 /⊆Mn, we remove from the kernel
series expansion (26) the term corresponding to the basis

element ψ(n−1)
1 . This is due to the sliding window effect and
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1. Initialization. Let B0 := {κ(x0, ·)}, θ(0)
x0

:= 1, γ̃(0)
1 := 0,

J0 := {0},and choose for the initial offset ˜b0 any value
in R. Fix α ≥ 0 and Lb ∈ Z>0.

2. Assume the time instant n ∈ Z>0.Now, the index set Jn

becomes Jn := n− q + 1,n by (13). We already know

Bn−1, {θ(n−1)
x j } j∈Jn−1 ,as well as {γ̃(n)

l }Ln−1
l=1 and ˜bn.

3. Calculate the new basis Bn,and the vectors {θ(n)
x j } j∈Jn by

Algorithm 2.

4. Compute {˜β(n)
j } j∈Jn by (25d).

5. Choose an extrapolation parameter value μ̃n from the
interval [0, 2˜Mn],where ˜Mn is computed by (25e).

6. Calculate the coefficients {γ̃(n+1)
l }Lnl=1 by (28).

7. The classifier ( ˜fn+1, ˜bn+1) is given by (26) and (25c).

8. Increase n by one, that is, n← n + 1 and go to line 2.

Algorithm 3: Proposed algorithm.

refers to the case of Section 5.3.3. According to our strategy,
the case Mn−1 /⊆Mn happens only when approximate linear
independency dn > α and a buffer overflow Ln−1 + 1 > Lb
occurs. To prevent this buffer overflow, we have to cut off the
term corresponding to ψ(n−1)

1 , and keep an empty position in
the buffer in order for the new element κ(xn, ·) to contribute
to the basis. Having the knowledge of (27), the coefficients

{γ̃(n)
l }Ln−1

l=1 , for all n ∈ Z≥0, will be given by the following

iterative formula: let γ̃(0)
1 := 0, and for all n ∈ Z≥0,

{

γ̃(n+1)
l

}Ln
l=1 :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γ̃(n)
l + μ̃n

∑

j∈Jn

˜β(n)
j θ(n)

x j ,l, ∀l ∈ 1,Ln,

if dn ≤ α,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ̃(n)
l + μ̃n

∑

j∈Jn

˜β(n)
j θ(n)

x j ,l, ∀l ∈ 1,Ln − 1,

μ̃n ˜β
(n)
n θ(n)

xn,Ln , l = Ln,

if dn > α, Ln−1 + 1 ≤ Lb,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ̃(n)
l+1 + μ̃n

∑

j∈Jn

˜β(n)
j θ(n)

x j ,l, ∀l ∈ 1,Ln − 1,

μ̃n ˜β
(n)
n θ(n)

xn,Ln , l = Ln,

if dn > α, Ln−1 + 1 > Lb.

(28)

Our proposed algorithm is summarized as shown in
Algorithm 3.

Notice that the calculation of all the metric and oblique
projections is of linear complexity with respect to the
dimension Ln. The main computational load of the proposed
algorithm comes from the calculation of the orthogonal
projection onto the subspace Mn by (18) which is of order
O(L2

n) where Ln is the dimension of Mn. Since, however, we
have upper bounded Ln ≤ Lb, for all n ∈ Z≥0, it follows that
the computational load of our method is upper bounded by
O(L2

b).

Source
Nonlinearity

Noise nn

Received signal

sn

wn pn
xn

LTI channel
Hl(z), l = 1, 2

Figure 3: The model of the nonlinear channel for which adaptive
equalization is needed.
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Figure 4: Tracking performance for the channel in Figure 3 where
the LTI system is set to H1. To allow concurrent processing, we let
q := card(Jn) := 4, for all n. The variance of the Gaussian kernel
takes the value of σ2 := 0.5. The buffer length Lb := 500, and α :=
0.5. The average number of basis elements is 110.

7. NUMERICAL EXAMPLES

An adaptive equalization problem for the nonlinear channel
depicted in Figure 3 is chosen to validate the proposed
design. The same model was chosen also in [11, 30]. The
sparsification scheme of Section 5 was applied also to the
stochastic gradient descent methods of NORMA and kernel
perceptron [29].

The source signal (sn)n is a sequence of numbers taking
values from {±1} with equal probability. A linear time-
invariant (LTI) [43] channel follows in order to produce the
signal (wn)n. Available are two transfer functions for the LTI
system:Hl(z) := sin(θl)/

√
2+cos(θl)z−1+(sin(θl)/

√
2)z−2, for

all z ∈ C, l = 1, 2, where θ1:= 29.5◦ and θ2 := −35◦. In such
a way, we can test our design under a sudden system change.
The transfer functions Hl(z) := ∑2

i=0hliz
−i, z ∈ C, l = 1, 2,

were chosen as above in order to simplify computations,
since

∑2
i=0h

2
li = 1, l = 1, 2. This choice comes from [5,

equation (28)]. The nonlinearity in Figure 3 is given by pn :=
wn+0.2w2

n−0.1w3
n, for all n, as in [5, equation (29)]. Gaussian

i.i.d. noise (nn)n, with zero mean and SNR = 10 dB with
respect to (pn)n, is added to give the received signal (xn)n.
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Figure 5: Tracking performance for the channel in Figure 3 when
the LTI system is H1. We let card(Jn) := 16, for all n. The variance of
the Gaussian kernel takes the value of σ2 := 0.5. The APSM(a) refers
to Algorithm 1 while APSM(b) refers to Algorithm 3. The radius of
the closed ball is set to δ := 2. The buffer length Lb := 500, and
α := 0.5.

As in [11, 30], the data space is the Euclidean R4, and the
data are formed as xn := (xn, xn−1, xn−2, xn−3)t ∈ R4, for all
n ∈ Z≥0. The label yn, at time instant n, is defined by the
transmitted training symbol sn−τ , for all n ∈ Z≥0, where τ :=
1 [5]. The dimension of the data space and the parameter
τ are the equalizer order and delay, respectively [5]. The
Gaussian (RBF) kernel was used (cf. Section 2.1) in order
to perform the classification task in an infinite dimensional
RKHS H [1–3].

We compared the proposed methodology with the
stochastic gradient descent method NORMA [29, Section
III.A], which is a soft margin generalization of the classical
kernel perceptron algorithm [29, Section VI.A]. The results
are demonstrated in Figures 4, 5, 6, 7, and 8. The misclassifi-
cation rate is defined as the ratio of the misclassifications (cf.
Section 3) to the number of the test data, which are taken to
be 100. A number of 100 experiments were performed and
uniformly averaged to produce each curve in the figures.

In Figure 4, the transfer function of the LTI system in
Figure 3 is set to H1(z), z ∈ C. The variance σ2 of the
Gaussian kernel is set to σ2 := 0.5. Recall here that the
value of Lb is closely related to the available computational
resources of our system (refer to Section 5). Here we choose
the value Lb = 500, which was set to coincide with the
time instant a sudden system change occurs in Figures 7
and 8. The same buffer with length Lb was also used for
the NORMA and the kernel perceptron methods, with a
learning rate of ηn := 1/

√
n, for all n ∈ Z>0, as suggested

in [29]. The physical meaning of the parameter α is given
in Section 5, where we have already seen that it defines a
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with extrapolation

Figure 6: Here, the LTI system is again H1, with card(Jn) := 8, for
all n. The variance of the Gaussian kernel takes the value of σ2 :=
0.2. The buffer length Lb := 500, and α := 0.5. The extrapolation
coefficient is μ̃n := 1.9 ˜Mn, for all n.
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Figure 7: A channel switch occurs at time n = 500, from H1 to H2,
for the LTI system in Figure 3. No sparsification for the APSMs, and
no regularization for NORMA is considered here. The variance of
the Gaussian kernel function is kept to the value of σ2 := 0.5.

threshold for the distance of a point from a closed linear
subspace. In the present numerical examples, we use RBF
kernels, for which the length of every element κ(xn, ·) is
equal to 1 since ‖κ(x, ·)‖2 = κ(x, x) = 1, for all x ∈ Rm.
As such, for the following numerical examples, we let α
take values less than or equal to 1. Here we set α := 0.5.



K. Slavakis and S. Theodoridis 13

Number of training samples

0 500 1000 1500

M
is

cl
as

si
fi

ca
ti

on
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Concurrent APSM(b1)
Concurrent APSM(b2)
Concurrent APSM(b3)
Concurrent APSM(b4)

Figure 8: A channel switch occurs at time n = 500, from H1 to
H2, for the LTI system in Figure 3. The variance of the Gaussian
kernel function is σ2 := 0.5. The parameter q = 16. These
curves correspond to different values of the pair (α,Lb), and more
specifically, “APSM(b1)” corresponds to (0.9, 150), “APSM(b2)”
to (0.75, 200), “APSM(b3)” to (0.5, 500), and “APSM(b4)” to
(0.1, 1000).

Depending on the application, and the sparsity the designer
wants to impose on the system, different ranges for α are
expected (see [36] and Figure 8). The parameter νNORMA

which controls the soft margin adjustments of NORMA
method is set to νNORMA := 0.01, since it produced the
best results after extensive experimentation. This value is also
suggested in [29]. The APSM with q = 1 (no concurrent
processing) and the APSM with q = 4 are employed
here. Both the simple and the concurrent APSMs use the
extrapolation parameter μ̃n := 1, for all n ∈ Z≥0. For the
parameters which control the margin (see Section 4.1), we
let ρ0 := 1, θ0 := 1. This choice of ρ0 and θ0 provides
for the initial value of 1 for the margin in Section 4.1,
which is also a typical initial value in online [29] and SVM
[1] settings. We have seen, by extensive experimentation,
that the best results were produced for a slowly changing
sequence (ρn)n. To guarantee such a behaviour, we assign
small values to the step size δθ:= 10−3 and to the slope
νAPSM:= 10−1. We also let the threshold for the feasibility rate
of Section 4.1 be R := 1/2. It can be verified by Figure 4
that both of the APSMs, that is, the nonconcurrent (q =
1) and the concurrent (q = 4), show faster convergence
than the stochastic gradient descent methods of NORMA
and kernel perceptron. Moreover, the concurrent APSM
(q = 4) exhibits also a lower misclassification error level
but with a computational cost of q = 4 times the cost of
NORMA and of the kernel perceptron methods. Notice that
the extrapolation parameter μ̃n was set to the value 1, that
is, we did not take advantage of the freedom of choosing

μ̃n ∈ [0, 2˜Mn] which necessitates, however, an additional
computational complexity of order O(q2) for the calculation
of the parameter ˜Mn in (25e). The average number of the
basis elements was found to be 110.

In Figure 5, we compare two different sparsification
methods for the APSM: one presented in [30], that is,
Algorithm 1 and denoted by APSM(a), and the other
presented in Section 5 and denoted by APSM(b). The
parameters for both methods were fixed in order to produce
the same misclassification error level. For both realizations,
the concurrent APSM used a q = 16 for the index set Jn, n ∈
Z≥0. The variance of the Gaussian kernel is set to σ2 := 0.5,
the radius of the closed ball in (8a) to δ := 2, the parameter
α := 0.5, and the buffer length Lb := 500. The buffer length
Nb associated with the sparsification method APSM(a) (see
the comments below Algorithm 1) was set to Nb := 500. We
notice that the concurrent APSM(b) converges faster than
the APSM(a). This is achieved, however, with an additional
cost of order O(L2

n) due to the operation (18). Even slower,
the concurrent APSM(a) achieves the same misclassification
error level as the concurrent APSM(b). Moreover, we do
not notice such big differences between the nonconcurrent
versions of the APSMs for both types of sparsification.

To exploit the extrapolation parameter μ̃n and its range
[0, 2˜Mn], we conducted the experiment depicted in Figure 6.
The cardinality of the index set Jn was set to q := 8, and all
the parameters regarding the APSMs, as well as the NORMA
and the kernel perceptron method, are the same as in the
previous figures, but the variance of the Gaussian kernel
function was set to σ2 := 0.2. The extrapolated version of the
APSM uses a parameter value μ̃n := 1.9 ˜Mn, for all n ∈ Z≥0.
We observe that extrapolation indeed speeds up convergence,
with an increased cost of order O(q2) due to the necessary
calculation of ˜Mn in (25e). It is also worth mentioning that
the NORMA performs poorly, even compared to the kernel
perceptron method for this RKHS H .

To study the effect of the coefficient α together with the
length Lb of the buffer, we refer to Figures 7 and 8, where
a sudden channel change occurs, from the H1 LTI system
to the H2 one, at the time instant 500. The coefficient α, in
Figure 7, was set to 0, while we assume that the buffer length
is infinite, that is, Lb := ∞. In both figures the variance of
the Gaussian kernel is set to 0.5, and the parameter q := 16
for the concurrents APSMs, that is, for the cardinality of
Jn, for all n ≥ 16 (see (13)). It is clear that the concurrent
processing offered by the APSM remains by far the more
robust approach since it achieves fast convergence as well
as low misclassification rate level. In Figure 8, we examine
the performance of the proposed sparsification scheme for
various values of (α,Lb) and only for the concurrent version
of the APSM. First, we notice that the introduction of
sparsification in Figure 8 raises the misclassification rate level
when compared with the design of unlimited computational
resources, that is, (α,Lb) := (0,∞) of Figure 7. In Figure 8,
the pair (α,Lb) takes various values, so that “APSM(b1)”
associates to the pair (0.9, 150), “APSM(b2)” to (0.75, 200),
“APSM(b3)” to (0.5, 500), and “APSM(b4)” to (0.1, 1000).
These values were chosen in order to produce the same
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misclassification rate level for all the curves. This experiment
shows a way to choose the values of (α,Lb), whenever a
constraint is imposed on the length Lb of the buffer to be
used. The more the buffer length is decreased, or in other
words, the less the cardinality of the basis we want to build,
and in order to keep the same misclassification rate level, the
more the parameter α has to be increased in order for the
new elements in the sequence (κ(xn, ·))n to enter the basis
less frequently.

8. CONCLUSIONS

This paper presents a sparsification method to the online
classification task, based on a sequence of linear subspaces
and combined with the convex analytic approach of the
adaptive projected subgradient method (APSM). Limitations
on memory and computational resources, which are inherent
in online systems, are accommodated by inserting an upper
bound on the dimension of the sequence of the subspaces.
The design obtains a geometric perspective by means of
projection mappings. To validate the design, an adaptive
equalization problem for a nonlinear channel is considered,
and the proposed method was compared not only with
classical and recent stochastic gradient descent methods, but
also with a sparsified version of the APSM with a norm
constraint.

APPENDICES

A. PROOF (I) OFVn IS A LINEAR VARIETY
AND (II) OF (12)

Fix n ∈ Z≥0 and define the mapping A : H ×R→ Rqn by

A(u) :=

⎡

⎢

⎣

〈

a1,n,u
〉

. . .
〈

aqn,n,u
〉

⎤

⎥

⎦ , ∀u ∈H ×R. (A.1)

The mapping A is clearly linear and also bounded [37,
38] since if we recall that the norm of A is ‖A‖ :=
sup‖u‖≤1‖A(u)‖, we can easily verify that

∥

∥A(u)
∥

∥

2 =
qn
∑

j=1

∣

∣

〈

aj,n,u
〉∣

∣

2 ≤
qn
∑

j=1

∥

∥aj,n
∥

∥

2‖u‖2

≤
qn
∑

j=1

∥

∥aj,n
∥

∥

2
<∞,

(A.2)

for all u such that ‖u‖ ≤ 1. The adjoint operator A∗ : Rqn →
H ×R of A is then linear and bounded [38, Theorem 6.5.1].
To find its expression, we know by definition that λtA(u) =
〈u,A∗(λ)〉, for all u ∈H×R, for all λ ∈ Rqn . Now, by simple
algebraic manipulations, we obtain that

qn
∑

j=1

λj
〈

aj,n,u
〉 = 〈u,A∗(λ)

〉⇐⇒
〈

u,A∗(λ)−
qn
∑

j=1

λjaj,n

〉

= 0,

∀u ∈H ×R, ∀λ ∈ Rqn ,
(A.3)

which suggests that

A∗(λ) =
qn
∑

j=1

λjaj,n =:
(

a1,n, . . . , aqn,n
)

λ. (A.4)

The mapping AA∗ is given clearly by AA∗(λ) =
[ 〈a1,n,A∗(λ)〉

...
〈aqn ,n,A∗(λ)〉

]

, for all λ ∈ Rqn . Moreover, one can easily verify

that for all i ∈ 1, qn,

〈

ai,n,A∗(λ)
〉 =

〈

ai,n,
qn
∑

j=1

λjaj,n

〉

=
qn
∑

j=1

λj
〈

ai,n, aj,n
〉

, (A.5)

so that we have AA∗(λ) = Gnλ, for all λ ∈ Rqn , where
the (i, j)th element of Gn is defined as 〈ai,n, aj,n〉H×R, for all
i, j ∈ 1, qn. Since aj,n was defined as aj,n := yj(κ(x j , ·), 1),
it can be easily seen by the inner product in H × R that
〈ai,n, aj,n〉H×R = yi y jκ(xi, x j) + yi y j , for all i, j ∈ 1, qn. As
a result, AA∗ = Gn.

Now, by A the set Vn obtains an alternative expres-
sion; Vn = arg minu∈H×R‖ρ(n) − A(u)‖, where ρ(n) :=
[ρ(n)

1 , . . . , ρ(n)
qn ]t. By this new expression of Vn, we see by [38,

Theorem 6.9.1] that Vn is the set of all those elements that
satisfy the equations Vn = {A∗A(u) = A∗(ρ(n))}. Hence, Vn

is a linear variety, that is, a closed convex set. Define, now,
the translation of Vn by −un, that is, V ′

n := Vn − un :=
{u − un : u ∈ Vn}. Clearly, V ′

n is also a linear variety. By the
linearity of A∗, we obtain V ′

n = {u′ ∈ H × R : A∗A(u′) =
A∗(ρ(n) − A(un)) = A∗(en(un))}. Thus, by [38, Theorem
6.9.1], V ′

n = arg minu′∈H×R‖en(un)− A(u′)‖.
By the definition of the pseudoinverse operator [38,

Section 6.11], the unique element of V ′
n with the smallest

norm is given by u′∗ := A†(en(un)), where A† is the
pseudoinverse operator of A [38]. Thus,

∥

∥PVn

(

un
)− un

∥

∥ = min
u∈Vn

∥

∥u− un
∥

∥ = min
u′∈V ′

n

‖u′‖ = ∥∥u′∗
∥

∥,

(A.6)

and by the uniqueness of PVn(un), we obtain PVn(un)− un =
u′∗ = A†(en(un)).

Now, by [38, Proposition 6.11.1.9], A† = A∗(AA∗)† =
A∗G†n . Thus, by (A.4), u′∗ = A†(en(un)) = A∗G†n(en(un)) =
(a1,n, . . . , aqn,n)G†n(en(un)), which completes the proof of
(12).

B. PROOF OF (23)

Since Kn+1K
−1
n+1 = ILn+1 , by multiplying (21) with (22) we

obtain the following two equations:

hn+1ptn+1 + Hn+1Pn+1 = ILn+1−1, (B.1)

sn+1hn+1 + Hn+1pn+1 = 0, (B.2)

where Im stands for the identity matrix of dimension m ∈
Z>0. Notice that since both Kn+1 and K−1

n+1 are positive
definite, we obtain that sn+1 > 0 and that Hn+1 is positive
definite [41]. Hence, H−1

n+1 exists. If we multiply (B.1) on



K. Slavakis and S. Theodoridis 15

the left-hand side by H−1
n+1, we obtain H−1

n+1 = Pn+1 +
H−1

n+1hn+1ptn+1. Moreover, a multiplication of (B.2) by H−1
n+1

on the left-hand side results in H−1
n+1hn+1 = −(1/sn+1)pn+1. By

combining the last two results, the desired (23) is obtained.

C. PROOF OF PROPOSITION 2

We will prove Proposition 2 by mathematical induction on

n ∈ Z≥0. Since by definition ˜f0 := 0, we have ˜f0 =
∑L−1=1

l=1 0·ψ(−1)
l = 0 ∈ M−1. Assume, now, that ˜fn =

∑Ln−1
l=1 γ̃

(n)
l ψ(n−1)

l ∈ Mn−1. By the definition of the mapping

πn in (14), we see that πn−1( ˜fn) ∈ Mn, which means that

there exists a set of real numbers {η(n)
1 , . . . ,η(n)

Ln } such that

πn−1( ˜fn) =∑Ln
l=1η

(n)
l ψ(n)

l . Now, by (25b) define

γ̃(n+1)
l := η(n)

l + μ̃n
∑

j∈Jn

˜β(n)
j θ(n)

x j ,l, (C.1)

to establish the relation given in Proposition 2. Since

{ψ(n)
l }Lnl=1 ⊂ Mn, we easily have by ˜fn+1 =

∑Ln
l=1γ̃

(n+1)
l ψ(n)

l that

˜fn ∈Mn. This completes the proof of Proposition 2.

MAIN NOTATIONS

H , 〈·, ·〉, and ‖·‖: The reproducing kernel Hilbert space
(RKHS), its inner product, and its
norm

f : An element of H
κ(·, ·): The kernel function
(xn, yn)n∈Z≥0

: Sequence of data and labels
PC : Metric projection mapping onto the

closed convex set C
PM,M′ : Oblique projection on the subspace

M along the subspace M′

g(·) = f (·) + b: The classifier given by means of
f ∈H and the offset b

j1, j2 :=
{ j1, j1 + 1, . . . , j2}:

An index set of consecutive integers

Jn: The index set which shows which
closed half-spaces are concurrently
processed at each time instant n

Π+
j,n: The closed half-spaces to be

concurrently processed

(x j , yj , ρ
(n)
j ): The triplet of data, labels, and

margin parameters that define Π+
j,n

μn and μ̃n: Extrapolation parameters with
ranges μn ∈ [0, 2Mn] and
μ̃n ∈ [0, 2˜Mn], where Mn and ˜Mn are
given by (8e) and (25e), respectively

νAPSM, θ0, δθ, ρ0: Parameters that control the margins
in Section 4.1

Mn, Bn, and Ln: A subspace, its base, and its
dimension, used for sparsification

Bn = {ψ(n)
l }Lnl=1: The basis elements of the basis Bn

πn: The mapping defined by (14)

k(n)
x j and θ(n)

x j
: An element of Mn and its coefficient

vector, which approximate the point
κ(x j , ·) by (15)

Kn: The Gram matrix formed by the
elements of the basis Bn

ζ (n+1)
xn+1

and c(n+1)
xn+1 : The coefficient vector of the

projection PMn(κ(xn+1, ·)) onto Mn

and the coefficient vector in the
normal equations of (18)

dn+1: The distance of κ(xn+1, ·) from Mn

defined in (19)
α and Lb: The threshold of approximate linear

dependency/independency and the
length of the buffer (upper bound for
Ln) used for the kernel expansion in
(26)

rn+1, hn+1, Hn+1,
and sn+1, pn+1, Pn+1:

Auxiliary quantities defined in (21)
and (22), respectively

{γ̃(n)
l }Ln−1

l=1 : Coefficients for the kernel expansion
in (26)
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