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We present a system that simultaneously tracks eyes and detects eye blinks. Two interactive particle filters are used for this purpose,
one for the closed eyes and the other one for the open eyes. Each particle filter is used to track the eye locations as well as the scales
of the eye subjects. The set of particles that gives higher confidence is defined as the primary set and the other one is defined
as the secondary set. The eye location is estimated by the primary particle filter, and whether the eye status is open or closed
is also decided by the label of the primary particle filter. When a new frame comes, the secondary particle filter is reinitialized
according to the estimates from the primary particle filter. We use autoregression models for describing the state transition and a
classification-based model for measuring the observation. Tensor subspace analysis is used for feature extraction which is followed
by a logistic regression model to give the posterior estimation. The performance is carefully evaluated from two aspects: the
blink detection rate and the tracking accuracy. The blink detection rate is evaluated using videos from varying scenarios, and
the tracking accuracy is given by comparing with the benchmark data obtained using the Vicon motion capturing system. The
setup for obtaining benchmark data for tracking accuracy evaluation is presented and experimental results are shown. Extensive
experimental evaluations validate the capability of the algorithm.
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1. INTRODUCTION

Eye blink detection plays an important role in human-
computer interface (HCI) systems. It can also be used in
driver’s assistance systems. Studies show that eye blink du-
ration has a close relation to a subject’s drowsiness [1]. The
openness of eyes, as well as the frequency of eye blinks, shows
the level of the person’s consciousness, which has potential
applications in monitoring driver’s vigourous level for addi-
tional safety control [2]. Also, eye blinks can be used as a
method of communication for people with severe disabili-
ties, in which blink patterns can be interpreted as semiotic
messages [3–5]. This provides an alternate input modality to
control a computer: communication by “blink pattern.” The
duration of eye closure determines whether the blink is vol-
untary or involuntary. Blink patterns are used by interpreting
voluntary long blinks according to the predefined semiotics
dictionary, while ignoring involuntary short blinks.

Eye blink detection has attracted considerable research
interest from the computer vision community. In literature,

most existing techniques use two separate steps for eye track-
ing and blink detection [2, 3, 5–8]. For eye blink detection
systems, there are three types of dynamic information in-
volved: the global motion of eyes (which can be used to infer
the head motion), the local motion of eye pupils, and the
eye openness/closure. Accordingly, an effective eye tracking
algorithm for blink detection purposes needs to satisfy the
following constraints:

(i) track the global motion of eyes, which is confined by
the head motion;

(ii) maintain invariance to local motion of eye pupils;
(iii) classify the closed-eye frames from the open-eye

frames.

Once the eyes’ locations are estimated by the tracking al-
gorithm, the differences in image appearance between the
open eyes and the closed eyes can be used to find the frames
in which the subjects’ eyes are closed, such that eye blink-
ing can be determined. In [2], template matching is used to
track the eyes and color features are used to determine the
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openness of eyes. Detected blinks are then used together with
pose and gaze estimates to monitor the driver’s alertness. In
[6, 9], blink detection is implemented as part of a large fa-
cial expression classification system. Differences in intensity
values between the upper eye and lower eye are used for eye
openness/closure classification, such that closed-eye frames
can be detected. The use of low-level features makes the real-
time implementation of the blink detection systems feasible.
However, for videos with large variations, such as the typi-
cal videos collected from in-car cameras, the acquired images
are usually noisy and with low-resolution. In such scenarios,
simple low-level features, like color and image differences,
are not sufficient. Temporal information is also used by some
other researchers for blinking detection purposes. For exam-
ple, in [3, 5, 7], the image difference between neighboring
frames is used to locate the eyes, and the temporal image cor-
relation is used thereafter to determine whether the eyes are
open or closed. This system provides a possible new solu-
tion for a human-computer interaction system that can be
used for highly disabled people. Besides that, motion infor-
mation has been exploited as well. The estimate of the dense
motion field describes the motion patterns, in which the eye
lid movements can be separated to detect eye blinks. In [8],
dense optical flow is used for this purpose. The ability to dif-
ferentiate the motion related to blinks from the global head
motion is essential. Since face subjects are nonrigid and non-
planar, it is not a trivial work.

Such two-step-based blink detection system requires that
the tracking algorithms are capable of handling the appear-
ance change between the open eyes and the closed eyes. In
this work, we propose an alternative way that simultaneously
tracks eyes and detects eye blinks. We use two interactive
particle filters, one tracks the open eyes and the other one
tracks the closed eyes. Eye detection algorithms can be used
to give the initial position of the eyes [10–12], and after that
the interactive particle filters are used for eye tracking and
blink detection. The set of particles that gives higher con-
fidence is defined as the primary particle set and the other
one is defined as the secondary particle set. Estimates of the
eyes’ location, as well as the eye class labels (open-eye ver-
sus closed-eye), are determined by the primary particle filter,
which is also used to reinitialize the secondary particle fil-
ter for the new observation. For each particle filter, the state
variables characterize the location and size of the eyes. We use
autoregression (AR) models to describe the state transitions,
where the location is modeled by a second-order AR and the
scale is modeled by a separate first-order AR. The observa-
tion model is a classification-based model, which tracks eyes
according to the knowledge learned from examples instead
of the templates adapted from previous frames. Therefore, it
can avoid accumulation of the tracking errors. In our work,
we use a regression model in tensor subspace to measure the
posterior probabilities of the observations. Other classifica-
tion/regression models can be used as well. Experimental re-
sults show the capability of the algorithm.

The remaining part of the paper is organized as follows.
In Section 2, the theoretical foundation of the particle filter
is reviewed. In Section 3, the details of the proposed algo-
rithm are presented. The system flowchart in Figure 1 gives

an overview of the algorithm. In Section 4, a systematic ex-
perimental evaluation of the performance is described. The
performance is evaluated from two aspects: the blink detec-
tion rate and the tracking accuracy. The blink detection rate
is evaluated using videos collected under varying scenarios,
and the tracking accuracy is evaluated using benchmark data
collected with the Vicon motion capturing system. Section 5
gives some discussion and concludes the paper.

2. DYNAMIC SYSTEMS AND PARTICLE FILTERS

The fundamental prerequisite of a simultaneous eye tracking
and blink detection system is to accurately recover the dy-
namics of eyes, which can be modeled by a dynamic system.
Open eyes and closed eyes appear to have significantly dif-
ferent appearances. A straightforward way is to model the
dynamics of open-eye and closed-eye individually. We use
two interactive particle filters for this purpose. The poste-
rior probabilities learned by the particle filters are used to
determine which particle filter gives the correct tracks, and
this particle filter is thus labeled as the primary one. Figure 1
gives the diagram of the system. Since the particle filters are
the key part of this blink detection system, in this section,
we present a detailed overview of the dynamic system and its
particle filtering solutions, such that the proposed system for
simultaneous eye tracking and blink detection can be better
understood.

2.1. Dynamic systems

A dynamic system can be described by two mathematical
models. One is the state-transition model, which describes
the system evolution rules, represented by the stochastic pro-
cess {St} ∈Rns×1 (t = 0, 1, . . . ), where

St = Ft
(

St−1, Vt
)
. (1)

Vt ∈ Rnv×1 is the state transition noise with known proba-
bility density function (PDF) p(Vt). The other one is the ob-
servation model, which shows the relationship between the
observable measurement of the system and the underlying
hidden state variables. The dynamic system is observed at
discrete times t via realization of the stochastic process, mod-
eled as follows:

Yt = Ht
(

St, Wt
)
. (2)

Yt (t = 0, 1, . . . ) is the discrete observation obtained at time t.
Wt ∈ Rnw is the observation noise with known PDF p(Wt),
which is independent from Vt. For simplicity, we use capital
letters to refer to the random processes and lowercase letters
to denote the realization of the random processes.

Given that these two system models are known, the prob-
lem is to estimate any function of the state f (St) using the
expectation E[ f (St) | Y0:t]. If Ft and Ht are linear, and the
two noise PDFs, p(Vt) and p(Wt), are Gaussian, the sys-
tem can be characterized by a Kalman filter [13]. Unfortu-
nately, Kalman filters only provide the first-order approxi-
mations for general systems. Extended Kalman Filter (EKF)
[13] is one way to handle the nonlinearity. A more general



J. Wu and M. M. Trivedi 3

Predicting/regenerating the
open-eye particles according

to previous eye tracking

Regenerating/predicting the
closed-eye particles according

to previous eye tracking

Generating initial
particles

One set for open-eye
tracking

One set for closed-eye
tracking

Each particle: consider
a binary classification

Each particle: consider
a binary classification

Tensor PCA for feature
extraction

Tensor PCA for feature
extraction

Open-eye/non-eye: posterior
for open-eye

Use logistic regression

Closed-eye/non-eye: posterior
for closed-eye

Use logistic regression

Posterior: open-eye Posterior: closed-eye

Popen > Pclosed

NoYes

Estimation of the open eye
location

Estimation of the closed eye
location

Output of logistic regression:
weight of each particle

Output of logistic regression:
weight of each particle

Figure 1: Flow-chart for eye blink detection system. For every new frame observation, new particles are first predicted from the known
important distribution, and then updated accordingly based on the posterior estimated by logistic regressor in the tensor subspaces. The
best estimation gives the class label (open-eye/closed-eye) as well as the eye location.

framework is provided by particle filtering techniques. Par-
ticle filtering is a Monte Carlo solution for general form dy-
namic systems. As an alternative to the EKF, particle filters
have the advantage that with sufficient samples, the solutions
approach the Bayesian estimate.

2.2. Review of a basic particle filter

Particle filters are sequential analogues of Markov chain
Monte Carlo (MCMC) batch methods. They are also known
as sequential Monte Carlo (SMC) methods. Particle filters
are widely used in positioning, navigation, and tracking for
modeling dynamic systems [14–20]. The basic idea of par-
ticle filtering is to use point mass, or particles, to represent
the probability densities. The tracking problem can be ex-
pressed as a Bayes filtering problem, in which the posterior

distribution of the target state is updated recursively as a new
observation comes in

p
(

St | Y0 : t
)∝ p

(
Yt | St; Y0 : t−1

)
∫

St−1

p
(

St | St−1; Y0 : t−1
)

× p
(

St−1 | Y0 : t−1
)
dSt−1.

(3)

The likelihood p(Yt | St ; Y0 : t−1) is the observation model,
and p(St | St−1; Y0 : t−1) is the state transition model.

There are several versions of the particle filters, such
as sequential importance sampling (SIS) [21, 22]/sampling-
importance resampling (SIR) [22–24], auxiliary particle fil-
ters [22, 25], and Rao-Blackwellized particle filters [20, 22,
26, 27], and so forth. All particle filters are derived based on
the following two assumptions. The first assumption is that
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the state-transition is a first-order Markov process, which
simplifies the state transition model in (3) to

p
(

St | St−1; Y0 : t−1
) = p

(
St | St−1

)
. (4)

The second assumption is that the observations Y1 : t are con-
ditionally independent given known states S1 : t, which im-
plies that each observation only relies on the current state;
then we have

p
(

Yt | St; Y0 : t−1
) = p

(
Yt | St

)
. (5)

These two assumptions simplify the Bayes filter in (3) to

p
(

St |Y0 : t
)∝ p

(
Yt |St

)
∫

St−1

p
(

St |St−1
)
p
(

St−1 |Y0 : t−1
)
dSt−1.

(6)

Exploiting this, particle filter uses a number of particles

(ω(i), s(i)
t ) to sequentially compute the expectation of any

function of the state, which is E[ f (St) | y0:t], by

E
[
f
(

St
) | y0 : t

] =
∫

f
(

st
)
p
(

st | y0 : t
)
dst =

∑

i

ω(i)
t f
(

s(i)
t

)
.

(7)

In our work, we use the combination of SIS and SIR.
Equation (6) tells us that the estimation is achieved by a pre-
diction step,

∫
st−1

p(st | st−1)p(st−1 | y0 : t−1)dst−1, followed by
an update step, p(yt | st). At the prediction step, the new state

ŝ
i
t is sampled from the state evolution process Ft−1(s(i)

t−1, ·) to
generate a new cloud of particle filters. With the predicted
state ŝ

i
t, an estimate of the observation is obtained, which is

used in the update step to correct the posterior estimate. Each
particle is then reweighted in proportion to the likelihood of
the observation at time t. We adopt the idea of “resampling
when necessary” as suggested by [21, 28, 29], which suggests
that resampling is only necessary when the effective number
of particles is sufficiently low. The SIS/SIR algorithm can be
summarized as in Algorithm 1.

π(s(i)
t | s(i)

0 : t−1, y0 : t) = π(s(i)
t | s(i)

t−1, y0 : t) is also called
the proposal distribution. A common and simple choice is to
use the prior distribution [30] as the proposal distribution,
which is also known as a bootstrap filter. We use the boot-
strap filter in our work, and by this way the weight update
can be simplified to

ω̂(i)
t = ω(i)

t−1p
(

yt | s(i)
t

)
. (12)

This indicates that the weight update is directly related to the
observational model.

3. PARTICLE FILTERS FOR EYE TRACKING AND
BLINK DETECTION

The appearance of eyes is presented to have significant
changes when blinks occur. To effectively handle such ap-
pearance changes, we use two interactive particle filters, one
for open eyes and the other one for closed eyes. These two
particle filters are only different in the observation measure-
ment. In the following sections, we present the three ele-
ments of the proposed particle filters: state transition model,
observation model, and prediction/update scheme.

(1) For i = 1, . . . ,N , draw samples from the importance dis-
tributions (prediction step):

s(i)
t ∼π

(
st | s0 : t−1, y0 : t

)
; (8)

(2) Evaluate the importance weights for every particle up to a
normalized constant (update step):

ω̂
(i)
t = ω(i)

t−1

p
(

yt | s(i)
t

)
p
(

s(i)
t | s(i)

t−1

)

π
(

s(i)
t | s(i)

0 : t−1, y0 : t

) ; (9)

(3) Normalize the importance weights:

ω(i)
t = ω̂

(i)
t

∑N
j=1ω̂

( j)
t

, i = 1, . . . ,N ; (10)

(4) Compute an estimate of the effective number of the parti-
cles:

Neff = 1
∑N

i=1

(
ω(i)
t

) ; (11)

(5) If Neff < θ, where θ is a given threshold, we perform resam-
pling. N particles are drawn from the current particle set
with probabilities proportional to their weights. Replace
the current particle set with this new one, and reset each
new particle’s weight to 1/N .

Algorithm 1: SIS/SIR particle filter.

3.1. State transitionmodel

The system dynamics, which are described by the state vari-
ables, are defined by the location of the eye and the size of
the eye image patches. The state vector is St = (ut, vt; ρt),
where (ut, vt) defines the location and ρt is used to define
the size of eye image patches and normalize them to a fixed
size. In other words, the state vector (ut, vt; ρt) means that the
image patch under study is centered at (ut, vt) and its size is
40ρt × 60ρt , where 40× 60 is the fixed size of the eye patches
we use in our study.

A second-order autoregressive (AR) model is used for es-
timating the eyes’ movement. The AR model has been widely
used in particle filter tracking literature for modeling the mo-
tion. It can be written as

ut = u + A
(

ut−1 − u
)

+ Bµt,

vt = v + A
(

vt−1 − v
)

+ Bµt,
(13)

where

ut =
(

ut
ut−1

)

, vt =
(

vt
vt−1

)

. (14)

u and v are the corresponding mean values for u and v. As
pointed out by [31], this dynamic model is actually a tem-
poral Markov chain. It is capable of capturing complicated
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object motion. A and B are matrices representing the deter-
ministic and the stochastic components, respectively. A and
B can be either obtained by a maximum-likelihood estima-
tion or set manually from prior knowledge. µt is the i.i.d.
Gaussian noise.

We use a first-order AR model to model the scale transi-
tion, which is

ρt − ρ = C
(
ρt−1 − ρ

)
+ Dηt. (15)

Similar to the motion model, C is the parameter describing
the system deterministic component, and D is the parameter
describing the system stochastic component. ρ is the mean
value of the scales, and ηt is the i.i.d. measurement noise.
We assume ηt is uniformly distributed. The scale is crucial
for many image appearance-based classifiers. An incorrect
scale causes a significant difference in the image appearance.
Therefore, the scale transition model is one of the most im-
portant prerequisites for obtaining an effective particle fil-
ter for measuring the observation. Experimental evaluation
shows that the AR model with uniform i.i.d. noise is appro-
priate for tracking the scale changes.

3.2. Classification-based observationmodel

In literature, many efforts have been done to address the
problem of selecting the proposal distribution [15, 32–35]. A
carefully selected proposal distribution can alleviate the sam-
ple depletion problem, which refers to the problem that the
particle-based posterior approximation collapses over time
to a few particles. For example, in [35], AdaBoost is incor-
porated into the proposal distribution to form a mixture
proposal. This is crucial in some typical occlusion scenarios,
since “cross over” targets can be represented by the mixture-
model. However, the introduction of complicated proposal
distributions greatly increases the computational complex-
ity. Also, since blink detection is usually a single-target track-
ing problem, the proposal distribution is more likely to be
single-mode. Therefore, we only use bootstrap particle filter-
ing approach, and avoid the nontrivial proposal distribution
estimation problem.

In this work, we focus on a better observation model
p(yt | st). The rationale is based on the observation that
combined with the resampling step, a more accurate likeli-
hood learning from a better observation model can move
the particles to areas of high likelihood. This will in turn
mitigate the sample depletion problem, leading to a signif-
icant increase in performance. In literatures, many existing
approaches use simple online template matching [16, 18,
19, 36] to get the observation model, where the templates
are constructed from low-level features, such as color, edges,
contour, and so forth, from previous observations. The like-
lihood is usually estimated based on a Gaussian distribution
assumption [26, 34]. However, such approaches in a large ex-
tent rely on a reasonably stable feature detection algorithm.
Also, usually a large number of the single low-level feature
points are needed. For example, the contour-based method
requires that the state vector be able to describe the evolution
of all contour points. This results in a high-dimensional state

space. Correspondingly, the computational cost is expensive.
One solution is to use abstracted statistics of these single fea-
ture points, such as using color histogram instead of direct
color measurement. However, this causes a loss in the spatial
layout information, which implies a sacrifice in the localiza-
tion accuracy. Instead we use a subspace-based classification
model for measuring the observation such that a more accu-
rate probability evaluation can be obtained. Statistics learned
from a set of training samples are used for classification in-
stead of simple template matching and online updating. This
can greatly alleviate the problem of error accumulation. The

likelihood estimation problem, p(y(i)
t | s(i)

t ), becomes a prob-
lem of estimating the distribution of a Bernoulli variable,

which is p(y(i)
t = 1 | s(i)

t ). y(i)
t = 1 means that the current

state generates a positive example. In our eye tracking and
blink detection problem, it represents that an eye patch is lo-
cated, including both open eye and closed eye. Logistic re-
gression is a straightforward solution for this purpose. Obvi-
ously, other existing classification/regression techniques can
be used as well.

Such classification-based particle filtering framework
makes simultaneous tracking and recognition feasible and
straightforward. There are two different ways to embed the
recognition problem. The first approach is to use a single par-
ticle filter, whose observation model is a multiclass classifier.
The second approach is to use multiple particle filters, where
for each particle filter its observation model uses a binary
classifier designed for a specific object class. The particle filter
who gets the highest posterior is used to determine the class
label as well as the object location, and at the next frame t+1,
the other particle filters are reinitialized accordingly. We use
the second approach for simultaneous eye tracking and blink
detection. Individual observation models are built for open
eye and closed eye separately, such that two interactive sets
of particles can be obtained. The observation models contain
two parts: tensor subspace analysis for feature extraction, and
logistic regression for class posterior learning. The two parts
are individually discussed in Sections 3.2.1 and 3.2.2. Poste-
rior probabilities measured by particles from these two par-
ticle filters are individually denoted as po = p(yt= 1oe | st)
and pc = p(yt= 1ce | st), respectively, where yt= 1oe refers to
the presence of an open eye and yt= 1ce refers to the presence
of a closed eye.

3.2.1. Subspace analysis for feature extraction

Most existing applications of using particle filters for visual
tracking involve high-dimensional observations. With the in-
crease of the dimensionality in observations, the number of
particles required increases exponentially. Therefore, lower
dimensional feature extraction is necessary. Sparse low-level
features, such as the abstracted statistics of the low-level
features, have been proposed for this purpose. Examples
of the most commonly used features are color histogram
[35, 37], edge density [15, 38], salient points [39], con-
tour points [18, 19], and so forth. The use of such features
makes the system capable of easily accommodating the scale
changes and handling occlusions; however, performance of
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such approaches rely on the robustness of the feature detec-
tion algorithms. For example, color histogram is widely used
for pedestrian and human face tracking; however, its perfor-
mance suffers from the illumination changes. Also, the spa-
tial information and the texture information are discarded,
which may cause the degradation of the localization accu-
racy and in turn deteriorate the performance of the succes-
sive recognition algorithms.

Instead of these variants of low-level features, we use
eigen-subspace for feature extraction and dimensionality re-
duction. Eigenspace projection provides a holistic feature
representation that preserves spatial and textural informa-
tion. It has been widely exploited in computer vision applica-
tions. For example, eigenface has been an effective face recog-
nition technique for decades. Eigenface focuses on finding
the most representative lower-dimensional space in which
the pattern of the input can be best described. It tries to find
a set of “standardized face ingredients” learned from a set of
given face samples. Any face image can be decomposed as the
combination of these standard faces. However, this principal
component analysis- (PCA-) based technique treats each im-
age input as a vector, which causes the ambiguity in image
local structure.

Instead of PCA, in [40], a natural alternative for PCA in
image domain is proposed, which is the multilinear analy-
sis. Multilinear analysis offers a potent mathematical frame-
work for analyzing the multifactor structure of the image en-
semble. For example, a face image ensemble can be analyzed
from the following perspectives: identities, head poses, illu-
mination variations, and facial expressions. Multilinear anal-
ysis uses tensor algebra to tackle the problem of disentangling
these constituent factors. By this way, the sample structures
can be better explored and a more informative data represen-
tation can be achieved. Under different optimization crite-
rion, variants of the multilinear analysis technique have been
proposed. One solution is the direct expansion of the PCA al-
gorithm, TensorPCA from [41], which is obtained under the
criteria of the least reconstruction error. Both PCA and ten-
sorPCA are unsupervised techniques, where the class labels
are not incorporated in such representations. Here we use a
supervised version of the tensor analysis algorithm, which is
called tensor subspace analysis (TSA) [42]. Extended from
locality preservation projections (LPP) [43], TSA detects the
intrinsic geometric structure of the tensor space by learning a
lower-dimensional tensor subspace. We compare both obser-
vation models of using tensorPCA and TSA. TSA preserves
the local structure in the tensor space manifold, hence a bet-
ter performance should be obtained. Experimental evalua-
tion validates this conjecture. In the following paragraphs,
a brief review of the theoretical fundamentals of tensorPCA
and TSA are presented.

PCA is a widely used method for dimensionality reduc-
tion. PCA offers a well-defined model, which aims to find
the subspace that describes the direction of the most vari-
ance and at the same time suppress known noise as well as
possible. Tensor space analysis is used as a natural alterna-
tive for PCA in image domain for efficient computation as
well as avoiding ambiguities in image local spatial structure.
Tensor space analysis handles images using its natural 2D

matrix representation. TensorPCA subspace analysis projects
a high-dimensional rank-2 tensor onto a low-dimensional
rank-2 tensor space, where the tensor subspace projection
minimizes the reconstruction error. Different from the tra-
ditional PCA, tensor space analysis provides techniques for
decomposing the ensemble in order to disentangle the con-
stituent factors or modes. Since the spatial location is deter-
mined by two modes: horizontal position and vertical posi-
tion, tensor space analysis has the ability to preserve the spa-
tial location, while the dimension of the parameter space is
much smaller.

Similarly as the traditional PCA, the tensorPCA projec-
tion finds a set of orthogonal bases that information is best
preserved. Also, tensorPCA subspace projection decreases
the correlation between pixels while the projected coefficient
indicates the information preserved on the corresponding
tensor basis. However, for tensorPCA, the set of bases are
composed by second-order tensors instead of vectors. If we
use matrix Xi ∈ RM1×M2 to denote the original image sam-
ples, and use matrix Zi ∈ RP1×P2 as the tensorPCA projec-
tion result, tensorPCA can be simply computed by [41]

Zi = Ǔ
T

XiV̌ . (16)

The column vectors of the left and right projection matrices
Ǔ and V̌ are the eigenvectors of matrix

SU =
N∑

i=1

((
Xi −Xm

)(
Xi −Xm

)T
)

(17)

and matrix

SV =
N∑

i=1

((
Xi −Xm

)T(
Xi −Xm

))
, (18)

respectively; while Xm = (1/N)
∑N

i=1Xi. The dimensionality
of Zi reflects the information preserved, which can be con-
trolled by a parameter α. For example, assume the left pro-

jection matrix is computed from SU = ǓCǓ
T

, then the rank
of the left projection matrix Ǔ is determined by

P1 = arg min
q

{∑q
i=1Ci

∑M1
i=1Ci

> α

}

, (19)

where Ci is the ith diagonal element of the diagonal eigen-
value matrix C (Ci > Cj if i > j). The rank of the right pro-
jection matrix V̌, P2 can be decided similarly.

TensorPCA is an unsupervised technique. It is not clear
whether the information preserved is optimal for classifica-
tion. Also, only the Euclidean structure is explored instead of
the possible underlying nonlinear local structure of the man-
ifold. The Laplacian-based dimensionality reduction tech-
nique is an alternate way which focuses on discovering the
nonlinear structure of the manifold [44]. It considers pre-
serving the manifold nature while extracting the subspaces.
By introducing this idea into tensor space analysis, the fol-
lowing objective function can be obtained [42]:

min
U,V

∑

i, j

∥
∥UTXiV−UTX jV

∥
∥Di, j , (20)
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where Di, j is the weight matrix of a nearest neighbor graph
similar to the one used in LPP [43]:

Di, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp

{

−
(

Xi/
∥
∥Xi

∥
∥−X j /

∥
∥X j

∥
∥)2

2

}

if Xi and X j are from the same class,

0 if Xi and X j are from different classes.
(21)

We use the iterative approach provided in [42] to compute
the left and right projection matrices Ǔ and V̌. The same as
tensorPCA, for a given example X, TSA gives

Zi = Ǔ
T

XiV̌ . (22)

At each frame t, the ith particle determines an observa-
tion X(i)

t from its state (u(i)
t , v(i)

t ; ρ(i)
t ). Tensor analysis extracts

the corresponding features Z(i)
t . Now the observation model

becomes computing the posterior p(y(i)
t = 1 | Z(i)

t ). For sim-
plicity, in the following section, we omit the time index t and
denote the problem as p(y(i) = 1 | Z(i)). Logistic regression
is a natural solution for this purpose, which is a generalized
linear model for describing the probability of a Bernoulli dis-
tributed variable.

3.2.2. Logistic regression for modeling probability

Regression is the problem of modeling the conditional ex-
pected value of one random variable based on the obser-
vations of some other random variables, which are usually
referred to as dependent variables. The variable to model
is called the response variable. In the proposed algorithm,
the dependent variables are the coefficients from the ten-
sor subspace projection: Z(i) = (z(i)

1 , . . . , z(i)
k , . . . ), and the

response variable to model is the class label y(i), which is a
Bernoulli variable that defines the presence of an eye subject.
For closed-eye particle filter, this Bernoulli variable defines
the presence of a closed eye; while for open-eye particle filter,
this variable defines the presence of an open eye.

The relationship between the class label y(i) and its de-
pendent variables, which is the tensor subspace coefficients
(z(i)

1 , . . . , z(i)
k , . . . ) here, can be written as

y(i) = g

(

β0 +
∑

k

βk z
(i)
k

)

+ e, (23)

where e is the error and g−1(•) is called the link function. The
variable y(i) can be estimated by

E
(
y(i)
)
= g

(

β0 +
∑

k

βkz
(i)
k

)

. (24)

Logistic regression uses the logit as the link function,
which is logit(p) = log (p/(1−p)). Therefore, the probability
of the presence of an eye subject can be modeled as

p
(
y(i) = 1 | Z(i)

)
= exp β0+

∑
kβkz

(i)
k

1 + exp β0+
∑

kβkz
(i)
k

, (25)

where y(i) = 1 means that an eye subject is present.

3.3. State update

The observation models for open eye and closed eye are
individually trained. We have one TSA subspace learned
from open eye/noneye training samples, and another TSA
subspace learned from closed eye/noneye training samples.
Each TSA projection determines a set of transformed fea-

tures, which are denoted as {Z(i)
oe} and {Z(i)

ce }. Z(i)
oe is the

trans-formed TSA coefficients for the open eyes and Z(i)
ce is

the transformed TSA coefficients for the closed eyes. Corre-
spondingly, for open eye and closed eye, individual logistic
regression models are used separately for modeling pc and
po as follows:

p(i)
o = poe

(
y(i) = 1 | Z(i)

oe

)
, p(i)

c = pce

(
y(i) = 1 | Z(i)

ce

)
.

(26)

The posteriors are used to update the weights of the corre-
sponding particles, as indicated in (12). The updated weights

are ω(i)
c and ω(i)

o .
If we have

max
i

p(i)
o > max

i
p(i)
c , (27)

it indicates the presence of open eyes, and the particle filter
for tracking the open eye is the primary particle filter. Oth-
erwise the eyes of the human subject in the current frame
are closed, which indicates the presence of a blink, and the
particle filter for the closed eye is determined as the primary
particle filter. The use of the max function indicates that our
criteria is to trust the most reliable particle. Other criteria can
also be used, such as the mean or product of the posteriors
from the best K (K > 1) particles. The guideline to select the
suitable criteria is that only the good particles, which are the
particles that reliably indicate the presence of eyes, should
be considered. At frame t, assume the particles for the pri-
mary particle filter are {(u(i)

t , v(i)
t ; ρ(i)

t ;ω(i)
t )}, then the location

(ut, vt) of the detected eye is determined by

ut =
∑

i

ω(i)
t u(i)

t−1; vt =
∑

i

ω(i)
t v(i)

t−1; (28)

and the scale ρt of the eye image patch is

ρt =
∑

i

ω(i)
t ρ(i)

t−1. (29)

We compute the effective number of particles Neff. If
Neff < θ, we perform resampling for the primary particle
filter. The particles with high posteriors are multiplied in
proposition to their posteriors. The secondary particle fil-
ter is reinitialized by setting the particles’ previous states to

(ut, vt, ρt) and the importance weights ω(i)
t to uniform.

4. EXPERIMENTAL EVALUATION

The performance is evaluated from two aspects: the blink de-
tection accuracy and the tracking accuracy. There are two
factors that explain the blink detection rate: first, how many
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(a) Frame 94 (miss)

Eye close

(b) Frame 379 (c) Frame 392

Eye close

(d) Frame 407 (e) Frame 475

Figure 2: Examples of the blink detection results for indoor videos. Red boxes are tracked eyes, and the blue dots are the center of the eye
locations. The red bar on the top-left indicates the presence of closed eyes.

(a) Frame 2

Eye close

(b) Frame 18 (c) Frame 38

Eye close

(d) Frame 45 (false) (e) Frame 135

Figure 3: Examples of the blink detection results for indoor videos. Red boxes are tracked eyes, and the blue dots are the center of the eye
locations. The red bar on the top-left indicates the presence of closed eyes.

blinks are correctly detected; second, the detection accuracy
of the blink duration. Videos collected under different sce-
narios are studied, including indoor videos, in-car videos,
and news report videos. A quantitative comparison is listed.
To evaluate the tracking accuracy, a benchmark data is re-
quired to provide the ground-truth of the eye locations. We
use a marker-based motion capturing system to collect the
ground-truth data. The experimental setup for obtaining the
benchmark data is explained, and the tracking accuracy is
presented. Two hundred particles are used for each parti-
cle filter if not stated otherwise. For training the tensor sub-
spaces and the logistic regression-based posterior estimators,
we use eye samples from FERET gray database to collect
open-eye samples. Closed-eye samples are from these three
sources: (1) FERET database; (2) Cohn-Kanade AU-coded
facial expression database; and (3) online images with closed
eye. Noneye samples are from both the FERET database and
the online images. We have 273 open-eye images; 149 closed-
eye images, and 1879 noneye images. All open-eye, closed-
eye, and noneye samples are resized to 40×60 for computing
the tensor subspaces and then getting the logistic regressors.
With the information-preservation threshold set as α = 0.9,
the sizes of the tensorPCA subspaces used for modeling the
open-eye/noneye and closed-eye/noneye samples are 17× 23
and 15× 21, respectively; and the sizes of the TSA subspaces
for open eye/noneye and closed eye/noneye are 18 × 22 and
17× 22, respectively.

4.1. Blink detection accuracy

We use videos collected under different scenarios for evalu-
ating the blink detection accuracy. In the first set of experi-
ments, we use the videos collected from an indoor lab setting.
The subjects are asked to make voluntary long blinks or in-
voluntary short blinks. In the second set of experiments, the
videos collected for drivers in outdoor driving scenarios are
used. In the third set of experiments, we collect videos for

Table 1

No. of
videos

No. of
blinks

No. of correct
detections

No. of false
positives

Indoor
videos

8 133 113 12

In-car
videos

4 48 38 11

News
report
videos

20 456 407 11

Total 32 637 558 34

different archormen/women from news reports. In the sec-
ond and the third experiments, the subjects make natural ac-
tions, such as speaking, so only involuntary short blinks are
present. We have 8 videos from indoor lab settings; 4 videos
of the drivers from an in-car camera; and 20 news report
videos, altogether 637 blinks are present. For in-door videos,
the frame rate is around 25 frames per second, and each vol-
untary blink may last 5-6 frames. For in-car videos, the image
quality is low, and there are significant illumination changes.
Also, the frame rate is fairly low (around 10 frames per sec-
ond). The voluntary blinks may last around 2-3 frames. For
the news report videos, the frame rate is around 15 frames
per second. The videos are compressed and the voluntary
blinks last for about 3-4 frames. In Table 1. the comparison
results are summarized. The true number of blinks, the de-
tected number of blinks, and the number of false positives
are shown. Images in Figures 2–8 give some examples of the
detection results, which also show the typical video frames
we used for studying. Red boxes show the tracked eye loca-
tion, while blue dots show the center of the tracking results.
If there is a red bar on the top right corner, it means that the
eyes are closed in the current frame. Examples of the typical
false detections or misdetections are also shown.



J. Wu and M. M. Trivedi 9

Eye close

(a) Frame 4

Eye close

(b) Frame 35

Eye close

(c) Frame 108 (false) (d) Frame 127

Eye close

(e) Frame 210

Figure 4: Examples of the blink detection results for in-car videos. Red boxes are tracked eyes, and the blue dots are the center of the eye
locations. The red bar on the top-left indicates the presence of closed eyes.

Eye close

(a) Frame 42

Eye close

(b) Frame 302 (false) (c) Frame 349

Eye close

(d) Frame 489

Eye close

(e) Frame 769

Figure 5: Examples of the blink detection results for in-car videos. Red boxes are tracked eyes, and the blue dots are the center of the eye
locations. The red bar on the top-left indicates the presence of closed eyes.

Blink duration time plays an important role in HCI sys-
tems. Involuntary blinks are usually fast while voluntary
blinks usually last longer [45]. Therefore, it is also necessary
to compare the detected blink duration with the manually la-
beled true blink duration (in terms of the frame numbers).
In Figure 9, we show the detected blink duration in compari-
son with the manually labeled blink duration. The horizontal
axis is the blink index, and the vertical axis shows the dura-
tion time in terms of the frame numbers. Experimental eval-
uation shows that the proposed algorithm is capable of cap-
turing short blinks as well as the long voluntary blinks accu-
rately.

As indicated in (27), the ratio of the posterior maxima,
which is (max i p

(i)
o /max i p

(i)
c ), determines the presence of an

open eye or close eye. Figure 10(a) shows an example of
the obtained ratios for one sequence. Log-scale is used. Let

po = max i p
(i)
o and pc = max i p

(i)
c , the presence of the closed-

eye frame is determined when po < pc, which corresponds
to log (po/pc) < 0 in the log-scale. Examples of the corre-
sponding frames are also shown in Figures 10(b)–10(d) for
illustration.

4.2. Comparison of using tensorPCA subspace
and TSA subspace

As stated above, by introducing multilinear analysis, the im-
ages can better preserve the local spatial structure. However,
variants of the tensor subspace basis can be obtained based
on different objective functions. TensorPCA is a straightfor-
ward extension of the 1D PCA analysis. Both are unsuper-
vised approaches. TSA extends LPP that preserves the non-
linear locality in the manifold, which also incorporates the
class information. It is believed that by introducing the lo-
cal manifold structure and the class information, TSA can
obtain a better performance. Experimental evaluations veri-
fied this claim. Particle filters that individually use tensorPCA

subspace and TSA subspace for observation models are com-
pared for eye tracking and blink detection purpose. Examples
of the comparison are shown in Figure 11. As suggested, TSA
presents a more accurate tracking result. In Figure 11, exam-
ples of the tracking results from both the tensorPCA obser-
vation model and the TSA observation model are shown. In
each subfigure, the left image shows result from the use of
TSA subspace, and the right image shows result from the use
of tensorPCA subspace. Just as above, red bounding boxes
show the tracked eyes, the blue dots show the center of the
detection, and the red bar at the top-right corner indicates
the presence of a detected closed-eye frame. For subspace-
based analysis, image alignment is critical for classification
accuracy. An inaccurate observation model causes errors in
the posterior probability computation, which in turn results
in inaccurate tracking and poor blink detection.

4.3. Comparison of different scale transitionmodels

It is worth noting that for subspace-based observation
model, the scale for normalizing the size of the images is cru-
cial. A bad scale transition model can severely deteriorate the
performance. Two different popular models have been used
to model the scale transition, and the performance is com-
pared. The first one is the AR model as in (15), and the other
one is a Gaussian transition model in which the transition
is controlled by a Gaussian distributed random noise, as fol-
lows:

ρt∼N
(
ρt−1, σ2), (30)

where N (ρ, σ2) is a Gaussian distribution with ρ as the mean
and σ2 as the variance. Examples are shown in Figure 12.
The parameters of the Gaussian transition model is obtained
by the MAP criteria according to a manually labeled train-
ing sequence. In each subfigure, the left image shows the re-
sult from using the AR model for scale transition, and the
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(a) Frame 10 (b) Frame 141 (c) Frame 230

(d) Frame 269 (e) Frame 300

Eye close

(f) Frame 370

Figure 6: Examples of the blink detection results for news report videos. Red boxes are tracked eyes, and the blue dots are the center of the
eye locations. The red bar on the top-left indicates the presence of closed eyes.

Eye close

(a) Frame 10 (b) Frame 100 (c) Frame 129

Eye close

(d) Frame 195

Eye close

(e) Frame 221 (f) Frame 234 (miss)

Figure 7: Examples of the blink detection results for news report videos. Red boxes are tracked eyes, and the blue dots are the center of the
eye locations. The red bar on the top-left indicates the presence of closed eyes.

right one shows the result from using the Gaussian transition
model. Experimental results show that AR model performs
better. It is because AR model has certain “memory” of the
past system dynamics, while Gaussian transition model can
only remember the history of its immediate past. Therefore,
the “short-memory” of Gaussian transition model uses less
information to predict the scale transition trajectory, which
is not effective and in turn causes the failure of the tracking.

4.4. Eye tracking accuracy

Benchmark data is required for evaluating the tracking ac-
curacy. We use the marker-based Vicon motion capture and
analysis system for providing the groundtruth. Vicon system
has both hardware and software components. The hardware
includes a set of infrared cameras (usually at least 4), con-
trolling hardware modules and a host computer to run the
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(a) Frame 10

Eye close

(b) Frame 27 (c) Frame 69

(d) Frame 189

Eye close

(e) Frame 192

Eye close

(f) Frame 201

(g) Frame 246 (h) Frame 367

Figure 8: Examples of the blink detection results for news report videos. Red boxes are tracked eyes, and the blue dots are the center of the
eye locations. The red bar on the top-left indicates the presence of closed eyes.
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(d)

Figure 9: Examples of the duration time of each blink: true blink duration versus detected blink duration. The heights of the bars show the
blink duration (in terms of frame numbers). In each pair of bars, the left (blue) bar shows the duration of the detected blink, and the right
bar (magenta) shows that of the true blink.
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Frame index
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1
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−1

−2

−3

lo
g(
p o
/p

c)

Example a
Example b

Example c

(a) Log ratio of the posteriors of being open-eye (po) versus being
closed-eye (pc). Red crosses indicate the open-eye frames, and the blue
crosses indicate the detected closed-eye frames

Eye close

Eye close probability

Eye open probability

Example a

0 0.2 0.4 0.6 0.8 1

(b)

Eye close

Eye close probability

Eye open probability

Example b

0 0.2 0.4 0.6 0.8 1

(c)

Eye close probability

Eye open probability

Example c

0 0.2 0.4 0.6 0.8 1

(d)

Figure 10: (a) The log ratio of posteriors log (po/pc) for each frame in Seq. 5. (b)–(d) The frames corresponding to examples a, b, and c
in Figure 10(a). The tracked eyes and the posteriors pc and po are also shown. In each figure, the top red line shows the posterior of being
closed eye, and the bottom red line shows the posterior of being open eye.

software. The software includes Vicon IQ that manages, sets
up, captures, and processes the motion data, the database
manager for keeping records of the data files, their calibra-
tion files and the models. We use four Vicon MCAM cam-
eras to track four reflective markers. The setup is shown as
in Figure 13. Vicon system tracks the markers’ position in
Vicon’s reference coordinate system, and the video camera

collects the video we need for evaluating the proposed algo-
rithm.

Before collecting data, Vicon system requires prepro-
cesses including camera calibration, data acquisition, and
model building. With the included calibration tool for the
motion capture system, a reflectance marker’s 3D position
can be obtained in either the Vicon camera coordinate system
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(a) Frame 17 (b) Frame 100

Eye close

(c) Frame 200

Eye closeEye close

(d) Frame 300

(e) Frame 400

Eye close

(f) Frame 417

Figure 11: Comparison of using TSA subspace versus using tensorPCA subspace in observation models. In each subfigure, the left image
shows the result from using TSA subspace, and the right one shows the result from using tensorPCA subspace.

(a) Frame 100

(b) Frame 200

(c) Frame 380

Figure 12: Comparison of using AR versus using Gaussian tran-
sition model in the scale model. In each subfigure, the left image
shows the result from AR scale transition model, and the right one
shows the result from the Gaussian scale transition model.

or an assigned world coordinate system. Since the Vicon
camera coordinate system is different from the video cam-
era coordinate system, a calibration between these two cam-
era systems is also required. We use a checker-board pattern
with reflectance markers on specified location for this pur-
pose, as shown in Figure 14. Intrinsic parameters KK and
extrinsic parameters Re and Te are computed. Intrinsic pa-
rameters give the transform from the 3D coordinates in the
camera reference frame to the 2D coordinates in the image

Video camera

Motion capture
system camera

Figure 13: Setup for collecting groundtruth data with Vicon sys-
tem. Cameras in red circles are Vicon infrared cameras, and the
camera in green circle is the video camera for collecting testing se-
quences.

domain, while extrinsic parameters define the transform be-
tween the grid reference frame (as shown in Figure 15) and
the camera reference frame. From intrinsic parameters, the
3D coordinates in the camera coordinate system (Xc,Yc,Zc)

T

can be related with the 2D coordinates in the image plane
(xp, yp)T by

[
xp
yp

]

= KKφ

([
Xc/Zc

Yc/Zc

])

, (31)

where φ(•) is a nonlinear function describing the lens dis-
tortion. Extrinsic parameters describe the relation between
the 3D coordinate in the camera system Mc = (Xc,Yc,Zc)

T
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Marker used by the
motion capturing system
for calibration with the

video system

Checker board used for video camera calibration

Figure 14: Checker board pattern for calibration between video
camera coordinate system and Vicon camera coordinate system. Re-
flectance markers are put at specific locations.
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Figure 15: Example of the grid reference frame.

and the 3D coordinate in a given grid reference frame Me =
(Xe,Ye,Ze)

T, as follows:

Mc = Re ×Me + Te. (32)

Figure 15 gives an example of the grid reference frame.
Each pose of the checker-board defines one grid reference
frame, hence an individual set of extrinsic parameters can
be determined. The reflectance markers are assumed to be
infinitely thin, such that their depth can be neglected. There-
fore, the reflectance markers’ coordinates in current grid ref-
erence frame are known, denoted as Mi

e. Mi
e can be trans-

formed back to the video camera reference frame, which
gives the 3D coordinates in the video camera reference frame
Mi

c, using the corresponding extrinsic parameters Ri
e and Ti

e.
These markers are also visible by the Vicon system, as shown
in Figure 16. Calibrated Vicon system gives the 3D positions
of the markers, which are denoted as Mi

v, in the Vicon cam-

Camera 4 Camera 6

Camera 7 Camera 8

Marker observations
in Vicon system

Figure 16: Reflectance markers observed by Vicon IQ system.

era system reference frame. Hence, Mi
c and Mi

v can be related
by an affine transform:

Mi
c = Rvc ×Mi

v + Tvc. (33)

This relation keeps unchanged when the pose of the check-
board changes. A set of {(Mi

c, Mi
e)} (i = 1, . . . , q) can be used

to determine this transform. We use the approach proposed
by Goryn and Hein in [49] to estimate Rvc and Tvc. The rota-
tion matrix Rvc can be determined by least-square approach
as follows:

Rvc = WQT, (34)

where W and Q are unitary matrices obtained from SVD de-
composition of the matrices

c = 1
N

q∑

i=1

(
Mi

c −Mc
)(

Mi
v −Mv

)T
,

Mc = 1
q

q∑

i=1

Mi
c, Mv = 1

q

q∑

i=1

Mi
v.

(35)

The translation vector Tvc can be obtained accordingly by

Tvc =Mc − Rvc ×Mv. (36)

Equation (36) together with (31) determines the mapping
from the markers’ 3D position given by Vicon system to the
2D pixel position in the image plane. Therefore, with the Vi-
conIQ system providing the markers’ 3D positions in Vicon
camera systems, we can get our ground-truth data. For reli-
able tracking, four markers are used, as shown in Figure 17.
We use the Vicon system to track the right-eye location as
well as providing the scale of the image, and apply the pro-
posed algorithm on tracking and blink detection of left eye.
After normalization with the scale, the distance between the
right eye and left eye is constant, so that the benchmark data
can be used for evaluating the tracking accuracy. The fixed
size for computing the subspace is 40× 60. We use the center
of the markers as the groundtruth for eyes’ location.

Figure 18 gives an example of the tracking accuracy. The
horizontal axis shows the frame number, and the vertical axis
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Reflection markers

Figure 17: Marker deployment for tracking accuracy benchmark
data collection.
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Figure 18: Tracking error after normalization using the scales. The
horizontal axis is the frame index, and the vertical axis is the track-
ing error in pixels after normalization with the scales.

shows the error in pixels after normalization with the scales.
The error is the distance between the center of detection to
the groundtruth. Experimental results show that in certain
frames, the tracking error is bigger. This is because the pro-
posed algorithm tries to center at the pupil, instead of the
center of the eyes.

5. DISCUSSION AND CONCLUDING REMARKS

A simultaneous eye tracking and blink detection system is
presented in this paper. We used two interactive particle fil-
ters for this purpose, each particle filter serves to track the
eye localization by exploiting AR models for describing the
state transition and a classification-based model in tensor
subspace for measuring the observation. One particle filter
tracks the closed eyes and the other one tracks the open eyes.
The set of particles that gives higher confidence is used to de-
termine the estimated eye location as well as the eye’s status
(open versus closed); also the other set of particles is reini-
tialized accordingly. The system dynamics are described by
two types of hidden state variables: the position and the scale.
We use a second-order autoregression model for describing
the eye’s movement and a first-order autoregression model

for describing the scale transition. Tensor subspace analysis
is used for feature extraction and logistic regression is used
to evaluate the posterior probabilities. The algorithm is eval-
uated using videos collected under different scenarios, in-
cluding both indoor and outdoor data. We evaluated the per-
formance from both the blink detection rate and the track-
ing accuracy perspective. Experimental setup for acquiring
benchmark data to evaluate the accuracy is presented; and
the experimental results are shown, which show that the
proposed algorithm is able to accurately track eye locations
and detect both voluntary long blinks and involuntary short
blinks.
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