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1. Introduction

Time-frequency analyses have been used in many appli-
cations with nonstationary signals, such as speech, radar,
seismic, biomedical, and communication signals, and so
forth. Various time-frequency distributions have been intro-
duced to provide optimal representation in the time-
frequency domain. For instance, an ideal representation for
linear frequency modulated signals is obtained by using
the quadratic distributions [1–4]. However, they cannot
provide satisfying distribution concentration for signals
with higher nonstationarity, since the inner interferences
appear. In order to improve concentration, various higher-
order distributions are used: L-Wigner distribution [5],
Polynomial distributions [6, 7], as well as the distributions
with complex-lag argument [8–12]. Recently, the Nth order
general form of complex-lag time-frequency distribution
for multicomponent signals has been proposed [13]. This
form can provide a cross-terms free representation with an
arbitrary high concentration even for signals with significant
phase variations within a few samples. Although it produces
very efficient results, MATLAB simulation of the Nth order
complex-lag distribution requires significant computational
time, inappropriate for real-time processing. Also, the soft-
ware simulation has a significant latency and low throughput
rate. These drawbacks of the software simulation could be

solved by a suitable hardware realization. Consequently, the
favorable properties of the complex-lag distribution could be
available in various real-time applications.

A flexible architecture of an arbitrary (Nth) order
complex-lag distribution for multicomponent signals is
proposed in this paper. Although it seems that the Nth
order complex-lag distribution is difficult for realization, an
efficient parallel configuration is provided, suitable for VLSI
implementation that allows high-speed real-time processing.
The serial realization that reduces number of components is
considered as well. The proposed hardware overcomes the
errors in the numerical calculations caused by the limited
MATLAB software precision, which is an additional advan-
tage. Namely, this problem appears in the calculation of
analytic extension of the signal with complex-lag argument
[9, 13].

The proposed system consists of two main parts: real-
ization of the S-method (proposed in [14]) and realization
of the concentration function (system of order N-2). The
realization of the concentration function is performed
throughout several subsystems providing calculation of the
signal with complex-lag argument, concentration function
calculation, and its time-frequency domain version. The
parallel architecture is implemented on the FPGAs chips
in order to verify the results. A simple solution for some
intermediate functions (based on logarithmic and sine and
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cosine functions) that do not exist as standard components,
is given as well.

The paper is organized as follows. The review of
generalized time-frequency distribution with complex-lag
argument is given in Section 2. Section 3 presents the
parallel hardware realization of generalized time-frequency
distribution with complex-lag argument, while in Section 4
the serial realization is proposed. Section 5 presents the
analysis and comparison of the proposed system. The
FPGA implementation and simulation results are given in
Section 6. Concluding remarks are given in Section 7. The
realizations of intermediate calculations are given in the
appendix.

2. Theoretical Background

A general discrete form of the Nth order time-frequency
distribution with complex-lag argument can be written as
[13]

GCDN (n, k) =
Ns/2−1∑

m=−Ns/2

x(n + m)x(n−m)c(n,m)e− j(2π/Ns)Nmk,

(1)

where (·) denotes complex conjugation, n and k are discrete
time and frequency variables, respectively, Ns is the number
of samples, while c(n,m) represents the concentration func-
tion:

c(n,m) =
N/2−1∏

p=1

xwN ,p

(
n + m

wN ,p

N

)
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(
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(2)

where wN ,p = e j2πp/N = wrp + jwip . Observe that the
GCDN (n, k) can be expressed as

GCDN (n, k) = N

2
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(
n,

N

2
k
)
∗kFTm(c(n,m))

= N

2
WD

(
n,

N

2
k
)
∗kC(n, k).

(3)

The convolution in frequency domain is denoted by ∗k,
while FTm denotes the Fourier transform with respect to
variable m. The concentration function (of order N-2)
acts as a correction term that can arbitrarily improve the
concentration of the Wigner distribution (WD) by increasing
the order N. In order to provide a suitable representation
for multicomponent signals, the Nth order complex-lag
distribution has been modified [13]. The modifications are
introduced in the calculation of the concentration function

(for the qth signal component): c(n,m)q = cr(n,m)q ·
ci(n,m)q, where

cr(n,m)q =
N/2−1∏

p=1

crp(n,m)q

=
N/2−1∏

p=1

e jwrp angle(xap (n+m(wN ,p/N))q·xap (n−m(wN ,p/N))q),

ci(n,m)q =
N/2−1∏

p=1

cip(n,m)q

=
N/2−1∏

p=1

e− jwip ln |xap (n+m(wN ,p/N))q·xap (n−m(wN ,p/N))q|.

(4)

More details could be found in [13]. Calculation of
signal with complex-lag argument xap(n ± m(wN ,p/N))q is
considered later in this section.

The time-frequency representations of the resulting
functions cr(n,m) and ci(n,m) (for all signal components)
are obtained as

Cr(n, k) = FTm

⎧
⎨
⎩

Q∑

q=1

cr(n,m)q

⎫
⎬
⎭ ,

Ci(n, k) = FTm

⎧
⎨
⎩

Q∑

q=1

ci(n,m)q

⎫
⎬
⎭,

(5)

where Q is the number of signal components.
The final form of the concentration function in the time-

frequency domain is the convolution of Cr(n, k) and Ci(n, k):

C(n, k) =
Ld∑

i=−Ld
P(i)Cr(n, k + i)Ci(n, k − i). (6)

Note that P(i) is a frequency domain window of the size
2Ld + 1. The cross-terms free representation is obtained if the
size of window is less than the minimal distance between the
autoterms.

Finally, a general form of modified complex-lag time-
frequency distribution is defined as

MGCDN (n, k) =
Ld∑

i=−Ld
P(i)SM(n, k + i)C(n, k − i), (7)

where, instead of the WD, the S-method (cross-terms free
WD), SM(n, k) =∑Ld

i=−Ld P(i)STFT(n, k + i)STFT(n, k− i), is
used. The acronym STFT is used for the short time Fourier
transform.

Calculation of signal with complex-lag argument. In order
to calculate the signal with complex-lag argument, the signal
components should be first separated by using the STFT
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[9]. Then the qth component of the signal with complex-
lag argument is calculated by using the analytic extension as
follows [13]:

xap

(
n±m

wN ,p

N

)

q
=

kq+Wq∑

k=kq−Wq

STFT
(
n, k + kq(n)

)

× e j2π(n±m(wN ,p/N))k/Ns .

(8)

It is assumed that the qth signal component is within
the region [kq(n) − Wq, kq(n) + Wq] where kq(n) =
arg{maxkSTFT(n, k)} is the position of its maximum. The
parameter Wq is used to define the width (2Wq + 1) of the q-
th signal component in the time-frequency plane. The cross-
terms will be avoided if 2Wq + 1 is smaller than the distance
between autoterms. The width 2Wq + 1 could be adjusted for
each signal component [14].

Note that the real part of exponential function
exp( jmkwN ,p/N), for large values of mk, can exceed the
computer (software) precision range, and it may cause errors
in the numerical realization.

3. Parallel Architecture for
Implementation of theNth Order
Complex-Lag Time-Frequency Distribution

A system for implementation of the Nth order complex-
lag time-frequency distribution for multicomponent signals
is proposed in this section. The block scheme is given in
Figure 1. The starting block is the calculation of the STFT
that is used to obtain the S-method (SM(n,k)). According to
(8), the STFT is also used to obtain the signal with complex-
lag argument for the computation of C(n,k) (by using (4),
(5), and (6)). The S-method is obtained at the output of
the SM block, while the C(n,k) is obtained at the output
of the BLOCK 4 in Figure 1. The complex-lag distribution
(MGCD(n,k)) is produced at the output of the BLOCK 5, as
a convolution of the SM(n,k) and C(n,k).

3.1. Hardware Solutions for the STFT and the SM. The
architectures for the STFT and the SM implementation have
been proposed in [14]. They are shown in Figures 2(a) and
2(b), respectively. Namely, by using the rectangular window,
the STFT is realized as [15, 16]

STFTRe(n, k) = (−1)k
[
x
(
n +

Ns

2

)
− x
(
n− Ns

2

)]

+ c(k)STFTRe(n− 1, k)

− s(k)STFTIm(n− 1, k),

STFTIm(n, k) = c(k)STFTIm(n− 1, k)

+ s(k)STFTRe(n− 1, k),

(9)

where, for a given k, the quantities c(k) = cos(2πk/Ns) and
s(k) = sin(2πk/Ns) are constants. The STFT(n,k) represents
the input for the SM realization. Thus, the SM is obtained
according to the form presented in [14]:

SM(n, k) = |STFT(n, k)|2

+ 2
Ld∑

i=1

STFTRe(n, k + i)STFTRe(n, k − i)

+ 2
Ld∑

i=1

STFTIm(n, k + i)STFTIm(n, k − i).

(10)

3.2. Hardware Solution for the Concentration Function in
Time-Frequency Domain C(n, k). The parallel architecture
for concentration function in the time-frequency domain
is realized through several blocks in Figure 1: STFT block,
BLOCK 1, BLOCK 2, BLOCK 3, and BLOCK 4. The outputs
of the STFT block used in the calculation of the concen-
tration function are STFTc(n, k) = (N/2)STFT(n, (N/2)k).
The separation of signal components is performed within
the BLOCK 1, while the BLOCK 2 is used for cr(n,m)
and ci(n,m) calculation. The Fourier transforms of these
functions (Cr(n, k) and Ci(n, k)) are performed in BLOCK 3.
The final form of the concentration function C(n, k) (in the
time-frequency domain) is obtained at the output of BLOCK
4.

In the sequel, each block will be analyzed and presented
separately.

3.2.1. BLOCK 1: Separation of Signal Components. The
regions that contain signal components are separated within
BLOCK 1, based on the outputs of the STFT block. In
this sense, it is necessary first to allocate components of
|STFTc(n, k)| that are higher than the reference value R.
For instance, if the signal amplitudes are normalized, the
STFT values are in the range [−1, 1], and the reference value
should be set to R = 1/λ, where λ is a scaling constant and
λ ≥ 1 holds. Otherwise, if the signal range is unknown,
the reference value is defined as a portion of the STFT’s
maximum at a given instant n, R = maxk|STFTc(n, k)|/λ.
The regions of STFTc(n, k) that are higher than R contain
the signal components. Each of them is further processed to
find the position of its maximal component denoted by kq,
q = 1, . . . ,Q, where Q is the number of allocated regions,
that is, the number of signal components. The outputs
STFTc(n, k) for k ∈ [kq − Wq, kq + Wq] are passed to the
inputs of BLOCK 2.

3.2.2. BLOCK 2: Realization of the Concentration Func-
tions cr(n,m) and ci(n,m). Hardware solutions for xap(n+
wN ,pm/N)q and xap(n−wN ,pm/N)q represent an initial step
in the realization of BLOCK 2. They are shown in Figures
3(a) and 3(b), respectively. For the pth term in (4) and
the qth signal component, the two channels (real and
imaginary part) of the signal with complex-lag argument
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xap(n + wN ,pm/N)q (Figure 3(a)) are obtained according to
(8):

Re
{
xap
(
n + wN ,pm/N

)
q

}

=
k+Wq∑

k=kq−Wq

(A(m, k)STFTcRe(n, k)− B(m, k)STFTcIm(n, k)),

Im
{
xap
(
n + wN ,pm/N

)
q

}

=
kq+Wq∑

k=kq−Wq

(A(m, k)STFTcIm(n, k) + B(m, k)STFTcRe(n, k)).

(11)

The constants A(m, k) and B(m, k) are defined as

A(m, k) = (−1)k cos
wrp2πkm

Ns
e−wip 2πkm/Ns ,

B(m, k) = (−1)k sin
wrp2πkm

Ns
e−wip 2πkm/Ns .

(12)

Similarly, real and imaginary parts of xap(n−wN ,pm/N)q
(Figure 3(b)) are obtained by using the constants:

A1(m, k) = (−1)k cos
wrp2πkm

Ns
ewip 2πkm/Ns ,

B1(m, k) = (−1)k+1 sin
wrp2πkm

Ns
ewip 2πkm/Ns ,

(13)

instead of A(m,k) and B(m,k).
Note that the hardware components should provide

satisfying precision even for large values of real exponential
term exp(wip2πmk/Ns) (for large m and k). The required
precision depends on the number of input samples Ns and
the distribution order N since −Ns/2 ≤ m ≤ Ns/2 − 1 and
−Ns/N ≤ k ≤ Ns/N hold. Thus, the miscalculation errors
will be avoided if registers are designed to store the value
log2(e2πNs/2). For example, if Ns = 128 and N = 4, the
extended single precision IEEE-754 format should be used,
while for Ns = 256, the extended double precision IEEE-754
format is required.

In the sequel, xap(n±wN ,pm/N)q is used to calculate

the concentration functions cr p(n,m)q and ci p(n,m)q (for
the pth term in (4) and the qth signal component). The

architecture for cr p(n,m)q and ci p(n,m)q is given in Figure 4.
The realization is done according to

Re
{
cr p(n,m)q

}
= Re

{
e jwrp angle((a+ jb)/(c+ jd))

}

= cos
(
wrp · atan

(
bc − ad

ac + bd

))
,

Im
{
cr p(n,m)q

}
= Im

{
e jwrp angle((a+ jb)/(c+ jd))

}

= sin
(
wrp · atan

(
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))
,

Re
{
ci p(n,m)q

}
= Re

{
e jwip ln |(c+ jd)/(a+ jb)|

}

= cos
(

1
2
wip

(
ln
(
c2 + d2)− ln

(
a2 + b2))

)
,

Im
{
ci p(n,m)q

}
= Im

{
e jwip ln |(c+ jd)/(a+ jb)|

}

= sin
(

1
2
wip

(
ln
(
c2 + d2)− ln

(
a2 + b2))

)
,

(14)

where, to simplify the expressions, the following notations
are used:

a = Re
{
xap
(
n + wN ,pm/N

)
q

}
,

b = Im
{
xap
(
n + wN ,pm/N

)
q

}
,

c = Re
{
xap
(
n−wN ,pm/N

)
q

}
,

d = Im
{
xap
(
n−wN ,pm/N

)
q

}
.

(15)

The outputs of architecture in Figure 4 (defined by (14)),
are further combined for all p : p = 1, . . . ,N/2− 1, as

cr(n,m)q =
N/2−1∏

p=1

(
Re
(
crp(n,m)q

)
+ j Im

(
crp(n,m)q

))
,

ci(n,m)q =
N/2−1∏

p=1

(
Re
{
cip(n,m)q

}
+ j Im

{
cip(n,m)q

})
.

(16)

The realizations of cr(n,m)q and ci(n,m)q are shown in
Figures 5(a) and 5(b), respectively.

By taking all signal components, the resulting concentra-
tion functions cr(n,m) and ci(n,m) (Figure 6) are obtained:

Re{cr(n,m)} =
Q∑

q=1

Re
{
cr(n,m)q

}
,

Im{cr(n,m)} =
Q∑

q=1

Im
{
cr(n,m)q

}
,



EURASIP Journal on Advances in Signal Processing 7

a = Re(xap (n + wN ,pm/N)q)

b = Im(xap (n + wN ,pm/N)q)

c = Re(xap (n−wN ,pm/N)q)

d = Im(xap (n−wN ,pm/N)q)

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

+

+

+

+
+

VCC

VCC

Cin

Cin

ln

ln

Div

cos

cos

sin

sin

atan

wr,p

1/2wi,p

Re(crp (n,m)q)

Im(crp (n,m)q)

Re(cip (n,m)q)

Im(cip (n,m)q)

Figure 4: Architecture for realization of concentration functions cr p (n,m)q and ci p (n,m)q.

Re(cr(p=1)(n,m)q)

Im(cr(p=1)(n,m)q)

Re(cr(p=2)(n,m)q)

Im(cr(p=2)(n,m)q)

Re(cr(p=N/2−1)(n,m)q)

Im(cr(p=N/2−1)(n,m)q)

Re(cr(n,m)q)

Im(cr(n,m)q)

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

+

+

+

+

+

+

VCC

VCC

VCC

Cin

Cin

Cin

...

...

(a)

Re(ci(p=1)(n,m)q)

Im(ci(p=1)(n,m)q)

Re(ci(p=2)(n,m)q)

Im(ci(p=2)(n,m)q)

Re(ci(p=N/2−1)(n,m)q)

Im(ci(p=N/2−1)(n,m)q)

Re(ci(n,m)q)

Im(ci(n,m)q)

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

+

+

+

+

+

+

VCC

VCC

VCC

Cin

Cin

Cin

...

...

(b)

Figure 5: Architecture for realization of concentration functions for the qth signal component: (a) cr(n,m)q and (b) ci(n,m)q.



8 EURASIP Journal on Advances in Signal Processing

Re(cr(n,m)q=1)

Re(cr(n,m)q=2)

Re(cr(n,m)q=Q)

Re(ci(n,m)q=1)

Re(ci(n,m)q=2)

Re(ci(n,m)q=Q)

Re(cr(n,m))

Re(ci(n,m))

Im(cr(n,m)q=1)

Im(cr(n,m)q=2)

Im(cr(n,m)q=Q)

Im(ci(n,m)q=1)

Im(ci(n,m)q=2)

Im(ci(n,m)q=Q)

Im(cr(n,m))

Im(ci(n,m))

+

+

+

+

+

+

+

+

+

+

+

+

...

...

...

...

Figure 6: Architecture for resulting concentration functions cr(n,m) and ci(n,m).

Re{ci(n,m)} =
Q∑

q=1

Re
{
ci(n,m)q

}
,

Im{ci(n,m)} =
Q∑

q=1

Im
{
ci(n,m)q

}
.

(17)

3.2.3. BLOCK 3: Realization of Functions Cr(n, k) and
Ci(n, k). The architecture in Figure 7 is used to obtain time-
frequency domain functions: Cr(n, k) = FFT{cr(n,m)}, and
Ci(n, k) = FFT{ci(n,m)} (FFT denotes the fast Fourier
transform). Since the real and imaginary parts are treated
separately, the outputs of FFT circuits in Figure 7 are
obtained in the form:

F1(n, k) = Re{FFT(Re{cr(n,m)})},
F2(n, k) = Im{FFT(Re{cr(n,m)})},
F3(n, k) = Re{FFT(Im{cr(n,m)})},
F4(n, k) = Im{FFT(Im{cr(n,m)})},
F5(n, k) = Re{FFT(Re{ci(n,m)})},
F6(n, k) = Im{FFT(Re{ci(n,m)})},
F7(n, k) = Re{FFT(Im{ci(n,m)})},
F8(n, k) = Im{FFT(Im{ci(n,m)})}.

(18)

Therefore, the real and imaginary parts of functions
Cr(n, k) and Ci(n, k) (the outputs of adders in Figure 7)
follow as

Re{Cr(n, k)} = F1(n, k) + F3(n, k),

Im{Cr(n, k)} = F2(n, k) + F4(n, k),

Re{Ci(n, k)} = F5(n, k) + F7(n, k),

Im{Ci(n, k)} = F6(n, k) + F8(n, k).

(19)

3.2.4. BLOCK 4: The Final Form of the Concentration Function
in the Time-Frequency Domain. The concentration function
C(n, k) is obtained as a convolution of functions Cr(n, k) and
Ci(n, k):

Re{C(n, k)} =
Ld∑

l=−Ld
Re{Cr(n, k + l)Ci(n, k − l)},

Im{C(n, k)} =
Ld∑

l=−Ld
Im{Cr(n, k + l)Ci(n, k − l)}.

(20)

The architecture is shown in Figure 8(a) Note that, the
realization of the product term Cr(n, k+ l)Ci(n, k− l), shown
in Figure 8(b), is done according to

Re{Cr(n, k + l)Ci(n, k − l)}
= Re{Cr(n, k + l)}Re{Ci(n, k − l)}
− Im{Cr(n, k + l)} Im{Ci(n, k − l)},

Im{Cr(n, k + l)Ci(n, k − l)}
= Re{Cr(n, k + l)} Im{Ci(n, k − l)}

+ Im{Cr(n, k + l)}Re{Ci(n, k − l)}.

(21)

In the final step, a convolution of SM(n, k) and C(n, k) is
performed within BLOCK 5 (Figure 1) and the channels of
the Nth order complex-lag time-frequency distribution are
obtained as

Re{MGCD(n, k)} =
Ld∑

i=−Ld
Re{SM(n, k + i)C(n, k − i)},

Im{MGCD(n, k)} =
Ld∑

i=−Ld
Im{SM(n, k + i)C(n, k − i)}.

(22)

The corresponding architecture is given in Figure 9. Note
that the convolution of SM(n,k) and C(n,k) is realized in the
same way as the convolution of STFT(n,k) and STFT(n, k)
within the SM.
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Figure 7: Architecture for realization of Cr(n, k) and Ci(n, k)
functions.

4. Serial Architecture for
Implementation of theNth Order
Complex-Lag Time-Frequency Distribution

As an alternative to the proposed system with parallel
realization, a serial architecture for implementation of the N-
th order complex-lag distribution is considered. The block
scheme for serial architecture is given in Figure 10.

The STFT block is the same as in the parallel realization,
while the serial architecture for the S-method (SM block)
is given in [14]. The concentration function is obtained
throughout the following blocks (Figure 10): BLOCK1,
BLOCK2, BLOCK3, and BLOCK4. BLOCK1 (the separation
of signal components) and BLOCK3 (the FFT calculation)
are the same as in the parallel realization. Therefore, the
main modifications with respect to the parallel realization
are made within BLOCK2. It consists of Block21, Block22,
Block23, and Block24, that will be briefly discussed in the
sequel.

Block21. This block is used for the calculation of signal
with complex-lag argument, given by (11). The realization
is shown in Figure 11. The LUT (Look-Up Table) contains
the constants: A(m, k), B(m, k), A1(m, k), and B1(m, k),
defined by (12) and (13), respectively. Address 1 and
Address 3 are used to provide synchronization between
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+
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Mult
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Figure 8: Architecture for realization of (a) C(n, k) and (b)
realization of product Cr(n, k + l)Ci(n, k − l) for certain l.

the STFT samples and the LUT elements. One summation
term in (11) is obtained within one cycle of the clk6
clock, while the complete summation is performed within
one cycle of clk1. The terms Re{xap(n + wN ,pm/N)q},
Im{xap(n + wN ,pm/N)q}, Re{xap(n−wN ,pm/N)q}, and

Im{xap(n−wN ,pm/N)q} are obtained within the four cycles
of clk1. After each cycle of clk1, the RESET1 signal resets the
cumulative adder ADD.

Block22. The outputs of Block21 are fed to the input
of Block22 that is used to obtain concentration functions
cr p(n,m)q and ci p(n,m)q. The serial realization of these func-
tions is the same as in the parallel architecture (Figure 4).

Block23. It calculates the resulting concentration func-
tions cr(n,m)q and ci(n,m)q defined by (16). The realization
is given in Figure 12. The Address 4 and Address 5 determine
which pair of inputs should be multiplied within Mult
circuit. One cycle of clk7 is set to the time interval required
for one multiplication and one addition operation. After
two cycles of clk7, RESET2 signal resets the clock ADD.
The terms Re{cr(n,m)q}, Im{cr(n,m)q}, Re{ci(n,m)q}, and
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Figure 9: Architecture for realization of convolution between SM(n,k) and C(n,k).
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Figure 10: Serial architecture for realization of generalized complex-lag distribution for multicomponent signals.

Im{ci(n,m)q} are obtained after 4(N/2-1) cycles. The cumu-
lative multiplier Mult1 should be reset after eachN/2-1 cycles
of clk8.

Block24. The final concentration functions cr(n,m) and
ci(n,m) are obtained at the output of this block. One cycle
of the clk4 is set to the time interval that is necessary for
the calculations within the three previous blocks. Address 2
determines the order of inputs in BLOCK3, Figure 10. The
concentration functions Cr(n, k) and Ci(n, k) are obtained at
the output of BLOCK3.

BLOCK4 is used to perform the calculation of concen-
tration function C(n, k) defined by (20). The realization of
this block is given in Figure 13. One term in summation
is calculated within one cycle of the clk9, while complete
sum is obtained after 2Ld + 1 cycle. The clock cycles and
reset signals of this circuit are similar as in Block23. The
resulting complex-lag distribution is obtained at the output
of BLOCK5 in Figure 10. The realization of this block is
similar to the realization of BLOCK4. The only difference is
that only one cumulative adder is required.



EURASIP Journal on Advances in Signal Processing 11

STFTcRe(n, kq −Wq)

STFTcRe(n, kq −Wq)

STFTcRe(n, kq)
STFTcIm(n, kq)

STFTcRe(n, kq + Wq)
STFTcIm(n, kq + Wq)

Address1
Address3

clk6
Reset1

clk1

...

...

Mux

LUT

Mult
+

ADD

Re{xap (n + wN ,p m/N)q}
Im{xap (n + wN ,p m/N)q}
Re{xap (n−wN ,p m/N)q}
Im{xap (n−wN ,p m/N)q}

Figure 11: Serial architecture for producing of signal with complex-lag argument (Block21).
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Figure 13: Serial architecture for realization of C(n, k) (BLOCK 4).

5. Analysis of the Proposed System

In the sequel, some practical issues related to the realization
of the proposed hardware realizations are addressed. The
proposed system (either with parallel or serial architecture)
can be implemented by using the hardware components
with floating point format to provide satisfying precision
for the calculation of signal with complex-lag argument.
However, the floating point adders and multipliers introduce
the output latency of few clock cycles. Thus, in order
to decrease the output latency, the number of hardware
components with floating point format should be reduced.
The large values that require high precision appear only
in the realization of concentration functions cr p(n,m)q and
ci p(n,m)q (Figures 3 and 4 in parallel realization, Figure 11

Table 1: Number of circuits for parallel realization.

Adders Multipliers Other circuits

Figure 2 2(Ld + 2) 2(Ld + 3)

Figure 3 8Wq + 2 8Wq + 4

Figure 4 5(N/2− 1) 10(N/2− 1) 2ln, divide, atan, cos, sin

Figure 5 N − 4 4(N/2− 2)

Figure 6 4(Q − 1)

Figure 7 4(2 + log2Ns) 4 log2Ns

Figure 8 8Ld + 2 8Ld + 4

Figure 9 4Ld 2Ld + 2

in serial realization). The remaining part of the system can
be realized by using the fixed point format. Note that starting
from the output of the system shown in Figure 4 (the outputs
of cos and sin circuits), all values will be in the range
[−1, 1], and the fixed point notation could be used. Also, by
normalization of input signal, the STFT and the SM can be
calculated by using the fixed point format.

The floating point multipliers increment the exponent by
1, which should be corrected at the output. The fixed point
multipliers result in a two sign-bit. Thus, to correct the result,
the product has to be shifted left by one bit. This shifter can
be included as a part of multiplier.

The total number of circuits needed for one channel
of the proposed system for parallel realization is given in
Table 1. The longest path is given in Table 2. It connects
the register storing STFT(n − 1, k ± Wq) with the output
MGCD(n, k). The length of this path determines the fastest
sampling rate.

The number of required circuits and longest path for
serial realization are given in Tables 3 and 4, respectively.

In order to compare the parallel and serial realizations the
following values are considered: Ns = 128, N = 6, Wq = 2,
Ld = 2, and Q = 2. The number of hardware components
and the latency for parallel and serial realizations are given in
Table 5.

Note that the number of components required for serial
realization is reduced with respect to parallel realization.
However, the latency in serial realization is significantly
increased. Therefore, in order to provide higher processing
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Table 2: The longest path of parallel realization.

Adders Multipliers Other circuits

Figure 2 Ld + 3 2

Figure 3 2Wq 1

Figure 4 1 2
(cos or sin) and

((div+atan) or (ln+add))

Figure 5�log2(N/2− 1)� �log2(N/2− 1)�
Figure 6 �log2Q�
Figure 7 1 + log2Ns log2Ns

Figure 8 Ld + 2 1

Figure 9 Ld + 1 1

Table 3: Number of circuits for serial realization.

Adders Multipliers Other circuits

STFT 4 4

SM 1 1 Mux

Block21 1 1 Mux, LUT

Block22 5 10 2ln, divide, atan, cos, sin

Block23 1 2 2 Mux

Block24 1 Mux

BLOCK3 4(2 + log2Ns) 4 log2Ns

BLOCK4 4 4 Mux

BLOCK5 2 2 Mux

Table 4: The longest path of serial realization.

Adders Multipliers Other circuits

STFT 2 1

SM 2Ld+1 Ld+1

Block21 4(2Wq+1) 4(2Wq+1)

Block22 N/2-1 2(N/2-1)
((cos or sin) and

((div+atan) or (ln+add)))

Block23 (N/2-1) 2(N/2-1)

Block24 Q Q

BLOCK3 log2Ns log2Ns

BLOCK4 2(2Ld+1) 2Ld+1

BLOCK5 2Ld+1 2Ld+1

Table 5: Comparison between parallel and serial realization.

Parallel realization Serial realization

Adders Multipliers Adders Multipliers

No. of circuits 190 216 55 52

Latency 25 15 189 341

speed, we will consider parallel realization for the FPGA
implementation.

6. FPGA Implementation of
the Proposed Parallel Architecture

The proposed architecture can be implemented by using
various hardware devices. As one of the possible choices,

C function
chip

FFT
chip

Conv
chip

SM
chip

MGCD(n, k)

Figure 14: A block scheme for the FPGA implementation.

Table 6: Characteristics for the chip in Figure 16.

EP3C40F780C6
No. of Logic

Speed
Power

pins elements consumption

Available 535 39600 500 MHz 1.2 V

Utilized 474 (88%) 8284 (21%) 91 MHz 1.2 V

Table 7: Characteristics for the chip in Figure 17.

EP3C16F484C6
No. of Logic

Speed
Power

pins elements consumption

Available 347 15408 500 MHz 1.2 V

Utilized 220 (63%) 6836 (44%) 158 MHz 1.2 V

the digital signal processor could be used. However, it is
not suitable for real-time processing, especially at very high
speeds. Therefore, for high-speed processing, one might
consider the ASIC implementation (application specific
integrated circuit) or the FPGA implementation. Both of
them allow a high degree of parallelism, as well. ASIC
implementation can provide lower power consumption,
design size optimization, and design flexibility that enables
speed optimization. However, long production time and
significant costs do not recommend ASIC device for pro-
totype development. The main advantages of the FPGA
implementation are reconfigurability, lower producing time
and costs requirements, inbuilt special hardware such as
RAM, and so forth. Thus, we use the FPGA to develop the
prototype that, after testing and verifying the results, can be
implemented on an ASIC. The FPGA chips from Altera [17]
and the Quartus II v8.0 software are used in the proposed
implementation.

The fourth-order (N = 4) complex-lag distribution is
considered for FPGA implementation. A simplified block
scheme of the system is shown in Figure 14. The FPGA
implementation of the S-method (SM Chip), including the
chip parameters and performance, has been provided in [14].
Thus, we focus on designing the chip for the concentration
function c(n,m) (C function Chip). The output of this chip
is passed to the input of the FFT Chip (that produce C(n, k)).
Note that a solution for the FFT chip by using the FFT
MegaCore function has recently been proposed by Altera
[18]. For device EP3SE50F780C2 (Stratix III family) and
the 16-bit fixed point format, this FFT chip requires 4290
ALUTs, 5116 memory bits, 20 DSP 18 × 18 multipliers, and
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Figure 15: Architecture for concentration function calculation.

transform time 0.37 microseconds. The outputs from the SM
chip and the FFT chip are convolved in the final step, where
the convolution circuit (Conv Chip) is realized in the same
way as the SM chip.

Realization of the C function Chip. In the case N = 4,
wN ,p = wr + jwi = j holds. Consequently, the concentration
function is obtained as c(n,m) = ci(n,m), since cr(n,m) =
1. The calculation of signal with complex-lag argument is

reduced with respect to (11), since B(m) = 0, and the
corresponding architecture is shown in Figure 15 (the Block
1). The remaining components for the realization are given
in Block 2, Figure 15. The schematic diagram for FPGA
realization of signal Re{xap(n+ jm)} = a is given in Figure 16.
In order to avoid miscalculations of the analytic extension,
the extended single precision floating point arithmetic is
used (the number of samples is Ns = 128). The input pins
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Figure 16: FPGA realization of signal with complex-lag argument.
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Figure 17: FPGA realization of concentration function.
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Figure 19: FPGA realization of cosine and sine function (cos and sin function).

s1[42 . . . 0], s3[42 . . . 0],. . ., s9[42 . . . 0] represent STFT(m, k−
4), STFT(m, k − 2),. . ., STFT(m, k), respectively. The 43-bit
valuesA(m, k−4),A(m, k−2), . . . A(m, k) are fed to the input
pins s2[42 . . . 0], s4[42 . . . 0],. . ., s10[42 . . . 0], respectively.

The floating point multiplier altfp mult0 has the output
latency of five clock cycles, while the output latency of
floating point adder altfp add sub0 is seven clock cycles. The
output latency is determined by the number of summation
terms in (11). Here, one multiplier andWq+1 adder are used.
Note that the multiplier altfp mult0 produces the result that
is multiplied by two, which will be corrected in the circuit for
cosine function calculation.This architecture is realized in the
device EP3C40F780C6 from Cyclone III family fabricated in
DDR2-SDRAM technology. The available chip characteristic
and utilized resources are given in Table 6.

The schematic diagram for FPGA realization of the
second part (Block 2 from Figure 15) is given in Figure 17.
The input pins are a[42 . . . 0], b[42 . . . 0], c[42 . . . 0], and
d[42 . . . 0] representing the outputs of circuits that calculates
the signal with complex-lag argument. Note that input pin
const [20 . . . 0] represents a correction term used in the
calculation of cosine function (more details are given in the
appendix). The architecture in Figure 17 is realized in the

device EP3C16F484C6 from Cyclone III family fabricated in
DDR2-SDRAM technology. The available chip characteristic
and utilized resources are given in Table 7.

The circuits that calculate natural logarithm and cosine
and sine functions are not implemented in the Quartus
II v8.0 software. Thus, they could be calculated by using
polynomial approximations, CORDIC (COordiante Rota-
tion DIgital Computer) algorithm or LUT. The approach
that uses polynomial approximations requires floating point
arithmetic and iterative calculations. This method is com-
putationally very extensive, slow, and it is not suitable for
high-speed processing. CORDIC is a recursive algorithm
that uses small number of circuits to provide calculation
of trigonometric, logarithmic, and exponential functions
[18–21]. If very high precision is required, the CORDIC
approach will be more suitable and then the LUT. It has
been shown that for the precision up to 16-bits, the LUT
approach provides higher processing speeds [21]. The test
we performed shows that 16 bit precision is sufficient for the
calculation of the logarithmic and trigonometric functions
and higher precision does not provide further improvement
of results. Thus, for the calculation of logarithmic and
trigonometric functions we use the LUT approach. Simple
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solutions for these functions (log 2 circuit and cos and sin
function circuit in Figure 17) are given in the appendix.

Finally, we have compared the throughput rate and
latency for software simulation and proposed hardware
realization. The software simulation is performed by using
MATLAB 7 running on Pentium IV with 3.2 GHz and
1 GB RAM. The throughput rate obtained in the software
simulation is 4.6 Mbs, while the latency is 90 microseconds.
The proposed hardware realization provides throughput
rate 6.9 Gbs and latency of 180 nanoseconds. Therefore,
as expected, the proposed hardware realization provides
significant improvement for throughput rate and latency
compared to the software simulation.

7. Conclusion

The proposed hardware provides an efficient implementa-
tion of the Nth order complex-lag time-frequency distri-
bution for multicomponent signals. This flexible system is
realized in parallel and serial configurations and combines
fixed and floating point arithmetic. It provides satisfactory
calculation precision and solves the problem of errors that
could appear in numerical realizations of distributions with
complex-lag argument. Furthermore, the FPGA implemen-
tation of the proposed parallel hardware solution is provided,
including the parameters of FPGAs chips.

Appendix

Natural Logarithm. Since we deal with the binary arithmetic,
the natural logarithm of number X can be written in terms
of the logarithm with base 2: lnX = log2X/log2e. Let us
consider the floating-point number in the form X = x12x2 ,
where x1 and x2 are mantissa and exponent, respectively.
Thus, log2x12x2 = x2 + log2x1 holds. The schematic diagram
for the calculation of logarithm with base 2 is shown in
Figure 18. The exponent x2 has been incremented for the
value 1026 within the preceding circuits (1023 comes from
the extended single precision floating point format, while
3 is introduced by floating point multipliers). Thus, in
order to correct the result, the exponent is reduced for the
same value within the lpm add sub2 circuit in Figure 18.
The calculation of log2x1is performed by using the look-up
table (LUT) that contains 255 values (logarithm circuit in
Figure 18). The first 8 bits of mantissa are used as an input
of LUT. In order to obtain satisfying precision, it is created as
LUT(x1) = round(215log2x1). Consequently, we have

log2x12x2 = x2 +
LUT(x1)

215
= 215x2 + LUT(x1)

215
. (A.1)

Note that 215x 2 is obtained at the output of circuit
lpm mult2 in Figure 17. Thus, the final output log2 [27 . . . 0]
has the value (215 · x2 + LUT(x1)).

Cosine and sine functions. The input value in the
cos and sin function circuit, given in Figure 19, is first
corrected by scaling with constant value 1/(2 · 215log2e)
(const[20..0] in Figures 17 and 19) in the circuit lpm divide2.
Note that 1/2 results from (14), while 1/(215log2e) remains

from the calculation of natural logarithm. The input of this
circuit is additionally divided by the period of cosine func-
tion 2π. Then the remainder (remain [20..0] in Figure 19) is
used as an input of LUT that provides the values of cosine
and sine functions. Namely, in order to provide satisfying
precision, the remainder is quantized to 512 values. The ten
least significant bits, obtained by the quantization, are used
as an input in the LUT that provides 16-bit values for cosine
and sine functions.
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[4] LJ. Stanković, “A method for time-frequency analysis,” IEEE
Transactions on Signal Processing, vol. 42, no. 1, pp. 225–229,
1994.
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