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Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for
speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low
intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation
algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors
made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of “metamodels”
that incorporate a model of the speaker’s phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state
transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic
level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both
techniques outperform standard adaptation techniques.
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1. Introduction

“Dysarthria is a motor speech disorder that is often associ-
ated with irregular phonation and amplitude, incoordination
of articulators, and restricted movement of articulators” [1].
This condition can be caused by a stroke, cerebral palsy,
traumatic brain injury (TBI), or a degenerative neurological
disease such as Parkinson’s Disease, or Alzheimer’s Disease.
The affected muscles by this condition may include the
lungs, larynx, oropharynx and nasopharynx, soft palate, and
articulators (lips, tongue, teeth, and jaw), and the degree to
which these muscle groups are compromised determines the
particular pattern of speech impairment [1].

Based on the presentation of symptoms, dysarthria is
classified as flaccid, spastic, mixed spastic-flaccid, ataxic,
hyperkinetic, and hypokinetic [2—4]. In all types of dysarthria,
phonatory dysfunction is a frequent impairment and is
difficult to assess because it often occurs along with other
impairments affecting articulation, resonance, and respira-
tion [2—6]. Particularly, six impairment features are related to
phonatory dysfunction, reducing the speaker’s intelligibility
and altering naturalness of his/her speech [4, 7, 8].

(i) Monopitch: in all types of dysarthria.

(ii) Pitch level: in spastic and mixed spastic-flaccid.
(iii) Harsh voice: in all types of dysarthria.
(iv) Breathy voice: in flaccid and hypokinetic.

(v) Strained-strangled: in spastic and hyperkinetic.
(vi) Audible inspiration: in flaccid.

These features make the task of developing assistive Auto-
matic Speech Recognition (ASR) systems for people with
dysarthria very challenging. As a consequence of phonatory
dysfunction, dysarthric speech is typically characterized by
strained phonation, imprecise placement of the articula-
tors and incomplete consonants closure. Intelligibility is
affected when there is reduction or deletion of word-initial
consonants [9]. Because of these articulatory deficits, the
pronunciation of dysarthric speakers often deviates from that
of nondysarthric speakers in several aspects: rate of speech is
lower; segments are pronounced differently; pronunciation is
less consistent; for longer stretches of speech, pronunciation
can be even more varying due to fatigue [10]. Speaking rate,
which is important for ASR performance, is affected by slow



pronunciation that produces prolonged phonemes. This can
make a 1-syllable word to be interpreted as a 2-syllable word
(day — dial), and words with long voiceless stops can be
interpreted as two words because of the long silent occlusion
phase in the middle of the target word (before — be for) [11].

The design of ASR systems for dysarthric speakers
is difficult because they require different types of ASR
depending on their particular type and level of disabil-
ity [1]. Additionally, phonatory dysfunction and related
impairments cause dysarthric speech to be characterized
by phonetic distortions, substitutions, and omissions [12,
13] that decrease the speaker’s intelligibility [1] and thus
ASR performance. However it is important to develop ASR
systems for dysarthric speakers because of the advantages
they offer when compared with interfaces such as switches
or keyboards. These may be more physically demanding and
tiring [14-17] and as dysarthria is usually accompanied by
other physical handicaps, impossible for them to use. Even
with the speech production difficulties exhibited by many
of these speakers, speech communication requires less effort
and is faster than conventional typing methods [18], despite
the difficulty of achieving robust recognition performance.

Experiments with commercial ASR systems have shown
levels of recognition accuracy up to 90% for some dysarthric
speakers with high intelligibility after a certain number of
tests, although speakers with lower intelligibility did not
achieve comparable levels of recognition accuracy [11, 19—
22]. Most of the speakers involved in these studies presented
individual error patterns, and variability in recognition rates
was observed between test sessions and when trying different
ASR systems. Usually these commercial systems require some
speech samples from the speaker to adapt to his/her voice and
thus increase recognition performance. However the system,
which is trained on a normal speech corpus, is not expected
to work well on severely dysarthric speech as adaptation
techniques are insufficient to deal with gross abnormalities
[16]. Moreover, it has been reported that recognition perfor-
mance on such systems rapidly deteriorates for vocabulary
sizes greater than 30 words, even for speakers with mild to
moderate dysarthria [23].

Thus, research has concentrated on techniques to achieve
more robust ASR performance. In [22], a system based
on Artificial Neural Networks (ANNs) produced better
results when compared with a commercial system, and
outperformed the recognition of human listeners. In [10],
the performance of HMM-based speaker-dependent (SD)
and speaker-independent (SI) systems on dysarthric speech
was evaluated. SI systems are trained on nondysarthric
speech (as commercial systems above) and SD systems are
trained on a limited amount of speech of the dysarthric
speaker. The performance of the SD system was better than
the SI’s and the word error rates (WERs) obtained showed
that ASR of dysarthric speech is certainly possible for low-
perplexity tasks (with a highly constrained bigram language
model).

The Center of Spoken Language Understanding [1]
improved vowel intelligibility by the manipulation of a small
set of highly relevant speech features. Although they limited
themselves to studying consonant-vowel-consonant (CVC)
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contexts from a special purpose database, they significantly
improved the intelligibility of dysarthric vowels from 48%
to 54%, as evaluated by a vowel identification task using
64 CVC stimuli judged by 24 listeners. The ENABL Project
(“ENabler for Access to computer-Based vocational tasks
with Language and speech” [24, 25] was developed to provide
access by voice via speech recognition to an engineering
design system, ICAD. The baseline recognition engine was
trained on nondysarthric speech (speaker-independent), and
it was adapted to dysarthric speech using MLLR (Maximum
Likelihood Linear Regression, see Section2) [26]. This
reduced the action error rate of the ICAD from 24.1% to
8.3%. However these results varied from speaker to speaker,
and for some speakers the improvement was substantially
greater than for others.

The STARDUST Project (Speech Training And Recog-
nition for Dysarthric Users of Speech Technology) [16,
27-29] has developed speech technology for people with
severe dysarthria. Among the applications developed, an
ECS (Environmental Control System) was designed for
home control with a small vocabulary speaker-dependent
recognizer (10 words commands). The methodology for
building the recognizer was adapted to deal with scarcity of
training data and the increased variability of the material
which was available. This problem was addressed by closing
the loop between recognizer-training and user-training.
They started by recording a small amount of speech data
from the speaker, then they trained a recognizer using that
data, and later used it to drive a user-training application,
which allowed the speaker to practice to improve consistency
of articulation. The speech-controlled ECS was faster to
use than switch-scanning systems. Other applications from
STARDUST are the following.

(i) STRAPTk (Speech Training Application Toolkit)
[29], a system that integrates tools for speech analysis,
exercise tasks, design, and evaluation of recognizers.

(ii) VIVOCA (Voice Input Voice Output Communica-
tion Aid) [30], which is aimed to develop a portable
speech-in/speech-out communication aid for people
with disordered or unintelligible speech. Another
tool, the “Speech Enhancer” from Voicewave Tech-
nology Inc. [31], improves speech communication
in real time for people with unclear speech and
inaudible voice [32]. While VIVOCA recognizes
disordered speech and resynthesises it in a normal
voice, the Speech Enhancer does not recognize or
correct speech distortions due to dysarthria.

A project at the University of Illinois is aimed to provide
(1) a freely distributable multimicrophone, multicamera
audiovisual database of dysarthric speech [33], and (2)
programs and training scripts that could form the founda-
tion for an open-source speech recognition tool designed
to be useful for dysarthric speakers. In the University of
Delaware, research has been done by the Speech Research
Lab [34] to develop natural sounding software for speech
synthesis (ModelTalker) [35], tools for articulation training
for children (STAR), and a database of dysarthric speech
[36].
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As already mentioned, commercial “dictation” ASR sys-
tems have shown good performance for people with mild to
moderate dysarthria [20, 21, 37], although these systems fail
for speakers with more severe conditions [11, 22]. Variability
in recognition accuracy, the speaker’s inability to access the
system by him/herself, restricted vocabulary, and continuous
assistance and editing of words were evident in these studies.
Although isolated-words recognizers have performed better
than continuous speech recognizers, these are limited by
their small vocabulary (10-78 possible words or commands),
making them only suitable for “control” applications. For
communication purposes, a continuous speech recognizer
can be more suitable, and studies have shown that under
some conditions a continuous system can perform better
than a discrete system [37].

The motivation of our research is to develop techniques
that could lead to the development of large-vocabulary
ASR systems for speakers with different types of dysarthria,
particularly when speech data for adaptation or training
is small. In this paper, we describe two techniques that
incorporate a model of the speaker’s pattern of errors into
the ASR process in such a way as to increase word recognition
accuracy. Although these techniques have general application
to ASR, we believe that they are particularly suitable for use in
ASR of dysarthric speakers who have low intelligibility due,
in some degree, to a limited phonemic repertoire [13], and
the results presented here confirm this.

We continue in Section 1.1 by showing the pattern of
errors caused on ASR due to the effects of a limited phonemic
repertoire and thus expand on the effect of phonatory
dysfunction on dysarthric speech. The description of our
research starts in Section 2 with the details of the baseline
system used for our experiments, the adaptation technique
used for comparison, the database of dysarthric speech, and
some initial word recognition experiments. In Section 3 the
approach of incorporating information from the speaker’s
pattern of errors into the recognition process is explained.
In Section 4 we present the first technique (“metamodels”),
and in Section 5, results on word recognition accuracy when
it is applied on dysarthric speech. Section 6 comments on
the technique and motivates the introduction of a second
technique in Section 7, which is based on a network of Finite-
State Transducers (WFSTSs). The results of this technique are
presented in Section 8. Finally, conclusions and future work
are presented in Section 9.

1.1. Limited Phonemic Repertoire. Among the identified
factors that give rise to ASR errors in dysarthric speech [13],
the most important are decreased intelligibility (because of
substitutions, deletions, and insertions of phonemes) and
limited phonemic repertoire, the latter leading to phoneme
substitutions. To illustrate the effect of reduced phonemic
repertoire, Figure 1 shows an example phoneme confu-
sion matrix for a dysarthric speaker from the NEMOURS
Database of Dysarthric Speech (described in Section 2). This
confusion matrix is estimated by a speaker-independent ASR
system, and so it may show confusions that would not
actually be made by humans, and also spurious confusions
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FIGURE 1: Phoneme confusion matrix from a dysarthric speaker.
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FI1GURE 2: Phoneme confusion matrix from a normal speaker.

that are actually caused by poor transcription/output align-
ment (see Section 4.1). However, since we concerned with
machine rather than human recognition here, we can make
the following observations.

(i) A small set of phonemes (in this case the phonemes
[ual, law/, /m/, In/, Ing/, /t/, and /sil/) dominates the
speaker’s output speech.

(ii) Some vowel sounds and the consonants /g/, /zh/, and
/yl, are never recognized correctly. This suggests that
there are some phonemes that the speaker apparently
cannot enunciate at all, and for which he or she
substitutes a different phoneme, often one of the
dominant phonemes mentioned above.

These observations differ from the pattern of confusions seen
in a normal speaker from the Wall Street Journal (WSJ)
database [38], as shown in Figure 2. This confusion matrix
shows a clearer pattern of correct recognitions and few
confusions of vowels with consonants.



Most speaker adaptation algorithms are based on the
principle that it is possible to apply a set of transformations
to the parameters of a set of acoustic models of an “average”
voice to move them closer to the voice of an individual.
Whilst this has been shown to be successful for normal
speakers, it may be less successful in cases where the phoneme
uttered is not the one that was intended but is substituted
by a different phoneme or phonemes, as often happens in
dysarthric speech. In this situation, we argue that a more
effective approach is to combine a model of the substitutions
likely to have been made by the speaker with a language
model to infer what was said. So rather than attempting
to adapt the system, we model the insertion, deletion, and
substitution errors made by a speaker and attempt to correct
them.

2. Speech Data, Baseline Recognizer, and
Adaptation Technique

Our speaker-independent (SI) speech recognizer was built
with the HTK Toolkit [39] using the data from 92 speakers
in set si_tr of the Wall Street Journal (WSJ) database [38].
A Hamming window of 25 milliseconds moving at a frame
rate of 10 milliseconds was applied to the waveform data
to convert it to 12 MFCCs (using 26 filterbanks), and
energy, delta, and acceleration coefficients were added. The
resulting data was used to construct 45 monophone acoustic
models. The monophone models had a standard three state
left-to-right topology with eight mixture components per
state. They were trained using standard maximum-likelihood
techniques, using the routines provided in HTK.

The dysarthric speech data was provided by the
NEMOURS Database [36]. This database is a collection of
814 short sentences spoken by 11 speakers (74 sentences
per speaker) with varying degrees of dysarthria (data from
only 10 speakers was used as some data is missing for one
speaker). The sentences are nonsense phrases that have a
simple syntax of the form “the X is Y the Z”, where X and
Z are usually nouns and Y is a verb in present participle form
(for instance, the phrases “The shin is going the who”, “The
inn is heaping the shin”, etc.). Note that although each of
the 740 sentences is different, the vocabulary of 112 words
is shared.

Speech recognition experiments were implemented by
using the baseline recognizer on the dysarthric speech.
For these experiments, a word-bigram language model was
estimated from the (pooled) 74 sentences provided by each
speaker.

The technique used for the speaker adaptation experi-
ments was MLLR (Maximum Likelihood Linear Regression)
[26]. A two-pass MLLR adaptation was implemented as
described in [39], where a global adaptation is done first
by using only one class. This produces a global-input
transformation that can be used to define more specific
transforms to better adapt the baseline system to the
speaker’s voice. Dynamic adaptation is then implemented by
using a regression class tree with 32 terminal nodes or base
classes.
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models.

From the complete set of 74 sentences per speaker, 34
sentences were used for adaptation and the remaining 40 for
testing. The set of 34 was divided into sets to measure the
performance of the adapted baseline system when using a
different amount of adaptation data. Thus adaptation was
implemented using 4, 10, 16, 22, 28, and 34 sentences.
For future reference, the baseline system adapted with X
sentences will be termed as MLLR_X and the baseline
without any adaptation as BASE.

Table 1 shows the number of MLLR transform classes
(XFORMS) for the 10 dysarthric speakers used in these
experiments using different amounts of adaptation data. For
comparison purposes, Table 2 shows the same for ten speak-
ers selected randomly from the si_dt set of the WS]J database
using similar sets of adaptation data. In both cases, the
number of transforms increases as more data is available. The
mean number of transforms (Mean_XFORMYS) is similar for
both sets of speakers, but the standard deviation (STDEV)
is higher for dysarthric speakers. This shows that within
dysarthric speakers there are more differences and variability
than within normal speakers, which may be caused by
individual patterns of phonatory dysfunction.

An experiment was done to compare the performance
of the baseline and MLLR-adapted recognizer (using 16
utterances for adaptation) with a human assessment of
the dysarthric speakers used in this study. Recognition was
performed with a grammar scale factor and word insertion
penalty as described in [39].

Figure 3 shows the intelligibility of each of the dysarthric
speakers as measured using the Frenchay Dysarthria Assess-
ment (FDA) test in [36], and the recognition performance
(% word correct) when tested on the unadapted baseline
system (BASE) and the adapted models (MLLR_16). The cor-
relation between the FDA performance and the recognizer
performance is 0.67 (unadapted models) and 0.82 (adapted).
Both are significant at the 1% level, which gives some
confidence that the recognizer displays a similar performance
trend when exposed to different degrees of dysarthric speech
as humans.
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TaBLE 1: MLLR transforms for dysarthric speakers.
Adaptation data Dysarthric speakers Mean_XFORMS STDEV
BB BK BV FB JE LL MH RK RL SC
4 0 4 1 2 1 1 1 3 2 1.6
10 3 10 5 4 4 3 7 5 2.3
16 5 11 6 7 5 5 11 9 7 2.4
22 7 11 7 9 10 8 6 11 11 9 1.9
28 9 11 9 9 10 10 10 8 11 12 10 1.2
34 10 11 10 9 11 11 10 9 11 12 10 1.0
TaBLE 2: MLLR transforms for normal speakers.
Adaptation data Normal (WSJ) speakers Mean_ XFORMS ~ STDEV
C31 C34 C35 C38 C3C C40 C41 C42 C45 C49
5 5 4 6 5 3 3 5 5 4 3 1.1
10 8 7 8 6 7 8 6 6 7 6 0.9
15 11 10 9 9 9 11 9 8 10 9 10 1.0
20 12 12 12 11 10 12 11 9 12 11 11 1.0
30 13 13 13 12 11 13 13 11 13 12 12 0.8

3. Incorporating a Model of the Confusion
Matrix into the Recognizer

We suppose that a dysarthric speaker wishes to utter a word-
sequence W that can be transcribed as a phone sequence
P. In practice, he or she utters a different phone sequence
P. Hence the probability of the acoustic observations O
produced by the speaker given W can be written as

Pr(0 | W) =Pr(0 | P) = > Pr(0 | P,P)Pr(P| P). (1)
E

However, once P is known, there is no dependence of O on
P, so we can write

Pr(0 | W) = > Pr(0| P)Pr(P | P).
E

2

Hence the probability of a particular word sequence W* with
associated phone sequence P* is
Pr(O | P)Pr(P*)

Pr(P* | O) = Pr(0)

3)

Pr(P*)3Pr(0 | P)Pr(P | P)
- Pr(0)

In the usual way, we can drop the denominator of (4),
as it is common to all W sequences. Furthermore, we can
approximate

(4)

%Pr(O | P)Pe(PP) ~ m;xPr(O | P)pe(PIP)  (5)

which will be approximately correct when a single phone
sequence dominates. The observed phone sequence from the

dysarthric speaker, p* , 1s obtained as

p* = argmaxPr(O | 13) (6)
p

from a phone recognizer, which also provides the term Pr(O |
P*). Hence the most likely phone sequence is given as

P* = argmaXPr(P)Pr(O \ ﬁ*)Pr(ﬁ* | P),
p

(7)

where it is understood that P* ranges over all valid phone
sequences defined by the dictionary and the language model.
If we now make the assumption of conditional independence
of the individual phones in the sequences P* and P*, we can
write

W* = arg;naxl_'[Pr(pj)Pr(ﬁj< ij), (8)

J

where p; is the jth phoneme in the postulated phone
sequence P, and p; the jth phoneme in the decoded

sequence P* from the dysarthric speaker. Equation (8)
indicates that the most likely word sequence is the sequence
that is most likely given the observed phone sequence from
the dysarthric speaker. The term Pr( ﬁ]* | pj)is obtained from
a confusion matrix for the speaker.

The overall procedure to use the estimates of Pr( ﬁ]* |
pj) into the recognition process is presented in Figure 4.
A set of training sentences (as described in Section 2)
is used to estimate Pr(pf | p;) and identify patterns
of deletions/insertions of phonemes. This information is
modelled by our two techniques that will be presented
in Sections 4 and 7. Evaluation is performed when P*
(which now is obtained from test speech) is decoded by
using the “trained” techniques into sequences of words W*.
The correction process is done at the phonemic level, and
by incorporating a word language model a more accurate
estimate of W is obtained.
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FIGURE 4: Diagram of the correction process.

TABLE 3: Upper pair: alignment of transcription and recognized output using HResults; Lower pair: same, using the improved aligner.

O

FIGURE 5: Metamodel of a phoneme.

4, First Technique: Metamodels

In practice, it is too restrictive to use only the confusion
matrix to model Pr(p} | p;) as this cannot model insertions
well. Instead, a hidden Markov model (HMM) is constructed
for each of the phonemes in the phoneme inventory. We term
these HMMs metamodels [40]. The function of a metamodel
is best understood by comparison with a “standard” acoustic
HMM: a standard acoustic HMM estimates Pr(O’ | p;),
where O" is a subsequence of the complete sequence of
observed acoustic vectors in the utterance, O, and p; is a
postulated phoneme in P. A metamodel estimates Pr(P |
pj)> where Pisa subsequence of the complete sequence of
observed (decoded) phonemes in the utterance p.

The architecture of the metamodel of a phoneme is
shown in Figure 5. Each state of a metamodel has a discrete
probability distribution over the symbols for the set of
phonemes, plus an additional symbol labelled DELETION.
The central state (2) of a metamodel for a certain phoneme
models correct decodings, substitutions, and deletions of

P: dh ax sh uw ih z b ea r ih ng dh ax b ey dh
P*: dh ax ng dh ax y ua ng dh ax b 1 ih ng dh ax b uw
P: dh ax sh uw ih z b ea r ih ng dh ax b ey dh
P+ dh ax ng dh ax y ua ng dh ax b 1 ih ng dh ax b uw
this phoneme made by the phone recognizer. States 1 and
3 model (possibly multiple) insertions before and after
the phoneme. If the metamodel were used as a generator,
the output phone sequence produced could consist of, for
as4

example,

(i) a single phone which has the same label as the
metamodel (a correct decoding) or a different label
(a substitution);

(ii) a single phone labelled DELETION (a deletion);

(iii) two or more phones (one or more insertions).

As an example of the operation of a metamodel, consider
a hypothetical phoneme that is always decoded correctly
without substitutions, deletions, or insertions. In this case,
the discrete distribution associated with the central state
would consist of zeros except for the probability associated
with the symbol for the phoneme itself, which would be 1.0.
In addition, the transition probabilities ap; and a4 would be
set to 1.0 so that no insertions could be made. When used
as a generator, this model can produce only one possible
phoneme sequence: a single phoneme which has the same
label as the metamodel.

We use the reference transcription P of a training
set utterance to enable us to concatenate the appropriate
sequence of phoneme metamodels for this utterance. The
associated recognition output sequence P* for the utterance
is obtained from the phoneme transcription of the word
sequences decoded by a speech recognizer and is used to
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train the parameters of the metamodels in this utterance.
Note that the speech recognizer itself can be built using
unadapted or MLLR adapted phoneme models. By using
embedded reestimation over the {P,ﬁ*} pairs of all the
utterances, we can train the complete set of metamodels. In
practice, the parameters formed, especially the probability
distributions, are sensitive to the initial values to which
they are set, and it is essential to “seed” the probabilities
of the distributions using data obtained from an accurate
alignment of P and P* for each training-set sentence.
After the initial seeding is complete, the parameters of the
metamodels are reestimated using embedded reestimation
as described above. Before recognition, the language model
is used to compile a “metarecognizer” network, which is
identical to the network used in a standard word recognizer
except that the nodes of the network are the appropriate
metamodels rather than the acoustic models used by the
word recognizer. At recognition time, the output phoneme
sequence P+ is passed to the metarecognizer to produce a set
of word hypotheses.

4.1. Improving Alignment for Confusion Matrix Estimation.
Use of a standard dynamic programming (DP) tool to align
two symbol strings (such as the one available in the HResults
routine in the HTK package [39]) can lead to unsatisfactory
results when a precise alignment is required between P and
P* to estimate a confusion matrix, as is the case here. This
is because these alignment tools typically use a distance
measure which is “0” if a pair of symbols are the same, “1”
otherwise. In the case of HResults, a correct match has a score
of “0” an insertion and a deletion carry a score of “7”, and a
substitution a score of “10” [39]. To illustrate this, consider
the top alignment in Table 3, which was made using HResults.
It is not a plausible alignment, because

(i) the first three phones in the recognized output are
unaligned and so must be regarded as insertions;

(ii) the fricative /sh/ in the transcription has been aligned
to the vocalic /y/;

(iii) the sequence /b ea/ in the transcription has been
aligned to the sequence /ax b/.

In the lower alignment in Table 3, these problems have been
rectified, and a more plausible alignment results. This align-
ment was made using a DP matching algorithm in which
the distance D(p}, p;) between a phone in the reference

transcription P and a phone in the recognition output p*
considers a similitude score given by the empirically derived
expression:

Sim(B7, p;) = 5Prsi(3] 1 4j) ~ 2 ©)

where Prsi(g7 | q;) is a speaker-independent confusion
matrix pooled over 92 WSJ speakers and is estimated by a DP
algorithm that uses a simple aligner (e.g., HResults). Hence,
a pair of phonemes that were always confused is assigned a
score of +3, and a pair that is never confused is assigned a
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FIGURE 6: Mean word recognition accuracy of the adapted models
and the metamodels across all dysarthric speakers.

score of —2. The effect of this is that the DP algorithm prefers
to align phoneme pairs that are more likely to be confused.

5. Results of the Metamodels on
Dysarthric Speakers

Figure 6 shows the results of the metamodels on the
phoneme strings from the MLLR adapted acoustic models.
When a very small set of sentences, for example, four,
is used for training of the metamodels, it is possible
to get an improvement of approximately 1.5% over the
MLLR adapted models. This gain in accuracy increases
as the training/adaptation data is increased, obtaining an
improvement of almost 3% when all 34 sentences are
used. The matched pairs test described in [41] was used
to test for significant differences between the recognition
accuracy using metamodels and the accuracy obtained with
MLLR adaptation when a certain number of sentences
were available for metamodel training. The results with the
associated P-values are presented in Table 4. In all the cases,
metamodels improve MLLR adaptation with P-values less
than .01 and .05. Note that the metamodels trained with
only four sentences (META_04) decrease the number of word
errors from 1174 (MLLR_04) to 1139.

5.1. Low and High Intelligibility-Speakers. Low intelligibility-
speakers were classified as those with low recognition perfor-
mances using the unadapted and adapted models. As shown
in Figure 3, automatic recognition followed a similar trend to
human recognition (as scored by the FDA intelligibility test).
So in the absence of a human assessment test, it is reasonable
to classify a speaker’s intelligibility based on their automatic
recognition performance.

The set of speakers was divided into two equal-sized
groups: high intelligibility (BB, FB, JE, LL, and MH), and
low intelligibility (BK, BV, RK, RL, and SC). In Figure 7 the
results for all low intelligibility speakers are presented. There
is an overall improvement of about 5% when using different
training sets. However for speakers with high intelligibility,
there is no improvement over MLLR, as shown in Figure 8.



TaBLE 4: Comparison of statistical significance of results over all
dysarthric speakers.

System Errors P
MLLR_04 1174 .00168988
META_04 1139
MLLR_10 1073 .0002459
META_10 1036
MLLR_16 1043 .00204858
META_16 999
MLLR22 989 .0000351
META_22 941
MLLR_28 990 .00240678
META_28 952
MLLR_34 992 .00000014
META_34 924
65
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Sentences for MLLR adaptation and metamodels training

—— MLLR
—#— Metamodels on MLLR

FIGURE 7: Mean word recognition accuracy of the adapted models
and the metamodels across all low intelligibility dysarthric speakers.

These results indicate that the use of metamodels is a
significantly better approach to ASR than speaker adaptation
in cases where the intelligibility of the speaker is low and
only a few adaptation utterances are available, which are two
important conditions when dealing with dysarthric speech.
We believe that the success of metamodels in increasing
performance for low-intelligibility speakers can be attributed
to the fact that these speakers often display a confusion
matrix that is similar to the matrix shown in Figure 1, in
which a few phonemes dominate the speaker’s repertoire.
The metamodels learn the patterns of substitution more
quickly than the speaker adaptation technique, and hence
perform better even when only a few sentences are available
to estimate the confusion matrix.

6. Limitations of the Metamodels

As presented in Section 5, we had some success using the
metamodels on dysarthric speakers. However the experi-
ments showed that they suffered from two disadvantages.

(1) The models had a problem dealing with deletions.
If the metamodel network defining a legal sequence
of words is defined in such a way that it is possible

EURASIP Journal on Advances in Signal Processing

Word accuracy (%)
N
w

4 10 16 22 28 34

Sentences for MLLR adaptation and metamodels training

—— MLLR
—#— Metamodels on MLLR

FIGURE 8: Mean word recognition accuracy of the adapted models
and the metamodels across all high intelligibility dysarthric speak-
ers.

to traverse it by “skipping” every metamodel, the
decoding algorithm fails because it is possible to
traverse the complete network of HMMs without
absorbing a single input symbol. We attempted to
remedy this problem by adding an extra “deletion”
symbol (see Section4), but as this symbol could
potentially substitute every single phoneme in the
network, it led to an explosion in the size of the
dictionary, which was unsatisfactory.

(2) The metamodels were unable to model specific
phone sequences that were output in response to
individual phone inputs. They were capable of out-
putting sequences, but the symbols (phones) in these
sequences were conditionally independent, and so
specific sequences cannot be modelled.

A network of Weighted Finite-State Transducers (WEFSTs)
[42] is an attractive alternative to metamodels for the task of
estimating W from P*. WESTs can be regarded as a network
of automata. Each automaton accepts an input symbol and
outputs one of a finite set of outputs, each of which has an
associated probability. The outputs are drawn (in this case)
from the same alphabet as the input symbols and can be
single symbols, sequences of symbols, or the deletion symbol
&. The automata are linked by a set (typically sparse) of arcs
and there is a probability associated with each arc.

These transducers can model the speaker’s phonetic
confusions. In addition, a cascade of such transducers can
model the mapping from phonemes to words, and the
mapping from words to a word sequence described by a
grammar.

The usage proposed here complements and extends the
work presented in [43], in which WESTs were used to correct
phone recognition errors. Here, we extend the technique to
convert noisy phone strings into word sequences.

7. Second Technique: Network of Weighted
Finite-State Transducers

As shown in, for instance, [42, 44], the speech recognition
process can be realised as a cascade of WFSTs. In this
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approach, we define the following transducers to decode p*
into a sequence of words W*.

(1) C, the confusion matrix transducer, which models
the probabilities of phoneme insertions, deletions,
and substitutions.

(2) D, the dictionary transducer, which maps sequences

of decoded phonemes from P* o C into words in the
dictionary.

(3) G, the language model transducer, which defines
valid sequences of words from D.

Thus, the process of estimating the most probable sequence
of words W* given P* can be expressed as

W* =1*(P*2CoDoG), (10)

where 7* denotes the operation of finding the most likely
path through a transducer and o denotes composition of
transducers [42]. Details of each transducer used will be
presented in the following sections.

7.1. Confusion Matrix Transducer (C). In this section, we
describe the formation of the confusion matrix transducer
C. In Section 3, we defined p; as the jth phoneme in p*
and p; as the jth phoneme in P, where Pr(p} | p;) is
estimated from the speaker’s confusion matrix, which is
obtained from an alignment of many sequences of P* and
P. While single substitutions are modelled in the same way
by both, metamodels and WESTs, insertions and deletions
are modelled in a different way, thus taking advantage
of the characteristics of the WESTs. Here, the confusion
matrix transducer C can map single and multiple phoneme
insertions and deletions.

Consider Table 5, which shows an alignment from one of
our experiments. The top row of phone symbols represents
the transcription of the word sequence and the bottom
row the output from the speech recognizer. It can be
seen that the phoneme sequence /b aa/ is deleted after
/ax/, and this can be represented in the transducer as a
multiple substitution/insertion: /ax/ — /ax b aa/. Similarly
the insertion of /ng dh/ after /ih/ is modeled as /ih ng
dh/— /ih/. The probabilities of these multiple substitu-
tions/insertions/deletions are estimated by counting. In cases
where a multiple insertion or deletion is made of the
form A — /B C/, the appropriate fraction of the unigram
probability mass Pr(A — B) is subtracted and given to the
probability Pr(A — /B C/), and the same process is used for
higher-order insertions or deletions.

A fragment of the confusion matrix transducer that
represents the alignment of Table 5 is presented in Figure 9.
For computational convenience, the weight for each con-
fusion in the transducer is represented as —log Pr(p} |
pj)- In practice, we have found it convenient to build
an initial set of transducers directly from the speaker’s
“unigram” confusion matrix, which is estimated using each
transcription/output alignment pair available from that
speaker, and then to add extra transducers that represent

ax:ax/0.73

FIGURE 9: Example of the confusion matrix transducer C.

Response
ah |- 4
W ]
- -e - ]
eh - - 4
b - ]
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oh | - ]
wF ]
W E - ]
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= " - - . ]
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g “df ]
= dhp - ]
w L 4
nfiE ]
e - ]
1 - 4
nE - . . ]
ngf ]
e ]
st - ]
s - ]
thi 4
wE . ]
Jas L J -
zh | -
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aaacahaoawaxayeacherey ia ih iyohowoyuauhuwb ch d dh f ghhjhk I mnngp r ssh t thv w y z zhsil

F1GURE 10: Sparse confusion matrix for C.

multiple substitution/insertion/deletions. The complete set
of transducers are then determinized and minimized, as
described in [42]. The result of these operations is a single
transducer for the speaker.

One problem encountered when limited training data
is available from speakers is that some phonemes are never
decoded during the training phase, and therefore it is not
possible to make any estimate of Pr(p} | p;). This is shown in
Figure 10, which shows a confusion matrix estimated from a
single talker using only four sentences. Note that the columns
are the response and the rows are the stimulus in this matrix,
and so blank columns are phonemes that have never been
decoded. We used two techniques to smooth the missing
probabilities.

7.2. Base Smoothing. Itis essential to have a nonzero value for
every diagonal element of a confusion matrix to enable the
decoding process to work using an arbitrary language model.
One possibility is to set all diagonal elements for which no
data exists to 1.0, that is, to assume that the associated phone
is always correctly decoded. However, if the estimate of the
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TaBLE 5: Alignment of transcription P and recognized output P*.

P: ax b aa th ih ax z w ey ih ng dh ax b ch t

P*: ax r ih ng dh ax ng dh ax 1 ih ng dh ax b

overall probability of error of the recognizer on this speaker
is p, a more robust estimate is to set any unseen diagonal
elements to p, and we begin by doing this. We then need to
decide how to assign nondiagonal probabilities for unseen
confusions. We do this by “stealing” a small proportion of
the probability mass on the diagonal and redistributing it
along the associated row. This is equivalent to assigning a
proportion of the probability of correctly decoded phonemes
to as yet unseen confusions. The proportion of the diagonal
probability that is used to estimate these unseen confusions
depends on the amount of data from the speaker: clearly,
as the data increases, the confusion probability estimates
become more accurate and it is not appropriate to use a large
proportion. Some experimentation on our data revealed that
redistributing approximately 20% of the diagonal probability
to unseen confusions worked well.

7.3. SI Smoothing. The “base” smoothing described in
Section 7.2 could be regarded as “speaker-dependent” (SD)
in that it uses the (sparse) confusion estimates made from
the speaker’s own data to smooth the unseen confusions.
However, these estimates are likely to be noisy, so we add
another layer of smoothing using the speaker-independent
(SI) confusion matrix whose elements are well-estimated
from 92 speakers of the WSJ database (see Section 2). The
influence of this confusion matrix on the speaker-dependent
matrix is controlled by a mixing factor lambda. Defining
the elements of the SI confusion matrix as g} and gq; (see
Section 4.1) the resulting joint confusion matrix can be
expressed as

Cioint = ASI+ (1 —A)SD

(11)
= APrst (37 1 ¢;) + (1 - VPe(B} | ;).

The effect of both the base smoothing and the SI smoothing
on the sparse confusion matrix of Figure 10 can be seen in
Figure 11. The effect of A on the mean word accuracy across
all dysarthric speakers is shown in Figure 14.

7.4. Dictionary and Language Model Transducer (D,G). The
transducer D maps sequences of phonemes into valid words.
Although other work has investigated the possibility of using
WESTs to model pronunciation in this component [45],
in our study, the pronunciation modelling is done by the
transducer C. A small fragment of the dictionary entries is
shown in Figure 12(a), where each sequence of phonemes
that forms a word is listed as an FST. The minimized union
of all these word entries is shown in Figure 12(b). The single
and multiple pronunciations of each word were taken from
the British English BEEP pronouncing dictionary [39]. The

Response

d

Stimulus

s

N E <

aaacahaoawaxayeacherey ia ih iyohowoyuauhuwb ch ddh f ghhjhk I mnngp r ssh t thv wy 7z zhsil

FIGURE 11: SI Smoothing of C, with A = 0.25.

@sh £ @uw:s @ih:s @ng £ @8: shooing @

&: shin

ng: & /;\ e: shooing
L

(b)

FiGure 12: Example of the dictionary transducer D.

language model transducer consisted of a word bigram, as
used in the metamodels, but now represented as a WEST.
HLStats [39] was used to estimate these bigrams which were
then converted into a format suitable for using in a WEST. A
fragment of the word bigram FST G is shown in Figure 13.
Note that the network of Figure 13 allows sequences of the
form “the X is Y the Z” (see Section 2) to be recognized
explicitly, but an arbitrary word bigram grammar can be
represented using one of these transducers.

All three transducers used in these experiments were
determinized and minimized in order to make execution
more efficient.
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The/0.125

Shooing/1.69

|
6/0 !Enter/0

FiGure 13: Example of the language model transducer G.
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—— WESTs_04 —>— WEFSTs_22
—— WEFSTs_10 —*— WFSTs_28
—A— WEFSTs_16 —0— WESTs_34

FIGURE 14: Mean across all dysarthric speakers: comparison of
WESTs performance for different values of A.

8. Results of the WFST Approach on
Dysarthric Speakers

The FSM Library [42, 46] from AT&T was used for the
experiments with WESTs. Figure 15 shows the mean word
accuracies across all the dysarthric speakers for different
amounts of adaptation data and using different decoding
techniques. The Figure shows clearly the gain in performance
given by the WESTs over both MLLR and the metamodels,
where the SI Smoothing increases the WESTs performance
over the Base Smoothing.

Note that Figure 15 shows results for only two values of
A: A = 0 (Base Smoothing only) and SI Smoothing with A =
0.25, since the variation in performance for values of A above
0.25 is small, as observed in Figure 14.

When the WESTs are trained with four and 22 utterances
(WESTs_04, WFSTs_22), best performance is obtained with
A = 1. WESTs trained with 10 and 34 reach the maximum
with A = 0.25, while with 16 and 28 the maximum
is obtained with A = 0.50. However, the variation in
performance is small for A > 0.25 for most cases. It is
important to mention that the mixing factor is applied to
the unigram probability mass (see Section 3), which in turn
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word accuracy for different techniques.
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FIGURE 16: Mean word recognition accuracy of the adapted models,
the metamodels, and the WEFSTs across all low intelligibility
dysarthric speakers.

affects the probability of insertion/deletion of any sequence
of phonemes associated with that unigram. These sequences
are still estimated from the data provided by the speaker, and
thus are considered even when only the speaker-independent
estimates are used (A = 1).

8.1. Low and High Intelligibility Speakers. By separating the
speakers into high and low intelligibility groups, as done in
Section 5.1, a more detailed comparison of performance can
be presented. In Figure 16, for low intelligibility speakers, the
WESTs with A = 0.25 show a significant gain in performance
over the metamodels when 4, 10, and 28 sentences are
used for training. The gain in recognition accuracy is
also evident for high intelligibility speakers, as shown in
Figure 17. Figure 17 is encouraging because, as commented
in Section 5.1, the modelling using metamodels did not
achieve improvements on high intelligibility speakers. Hence
WESTs may be a useful technique to improve performance of
recognition of normal speech.

9. Summary and Conclusions

We have argued that in the case of dysarthric speakers, who
have a limited phonemic repertoire and thus consistently
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FIGURE 17: Mean word recognition accuracy of the adapted models,
the metamodels, and the WFSTs across all high intelligibility
dysarthric speakers.

substitute certain phonemes for others, modelling and
correcting the errors made by the speaker under the guidance
of a language model is a more effective approach than
adapting acoustic models in the way that is effective for
normal speakers. Our first system proposed the use of a tech-
nique called metamodels, which are HMM-like stochastic
models that incorporate a model of a speaker’s confusion
matrix into the decoding process. Results obtained using
metamodels showed a statistically significant improvement
over the standard MLLR algorithm when the speech has low
intelligibility and there is limited adaptation data available
for a speaker, two conditions that are often met when
dealing with dysarthric speakers. However, the architecture
of metamodels gave rise to difficulties when modelling
deletions of sequences of phones, which led us to refine the
technique to use weighted finite-state transducers (WFSTs).
These were used at the confusion matrix, word, and language
levels in a cascade in order to correct errors. The results
obtained using this technique were significantly better than
those obtained using MLLR, and also better than using
metamodels.

The work presented here must be treated as preliminary
given the small size of the vocabulary and the restricted
syntax of the sentences uttered in the NEMOURS database,
and it needs to be validated on a larger dataset with more
dysarthric speakers, more utterances per speaker, a larger
vocabulary, and a freer syntax. Future work will concentrate
on this, and also

(i) applying the techniques described here to normal
speech;

(ii) integrating better the confusion matrix transducer
with the speech recognizer;

(iii) obtaining robust estimates of confusion matrices
from sparse data [47].
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