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Optimizing the antecedent part of neurofuzzy system is an active research topic, for which different approaches have been
developed. However, current approaches typically suffer from high computational complexity or lack of ability to extract
knowledge from a given set of training data. In this paper, we introduce a novel incremental training algorithm for the class of
neurofuzzy systems that are structured based on local linear classifiers. Linear discriminant analysis is utilized to transform the
data into a space in which linear discriminancy of training samples is maximized. The neurofuzzy classifier is then built in the
transformed space, starting from the simplest form (a global linear classifier). If the overall performance of the classifier was not
satisfactory, it would be iteratively refined by incorporating additional local classifiers. In addition, rule consequent parameters
are optimized using a local least square approach. Our refinement strategy is motivated by LOLIMOT, which is a greedy partition
algorithm for structure training and has been successfully applied in a number of identification problems. The proposed classifier
is compared to several benchmark classifiers on a number of well-known datasets. The results prove the efficacy of the proposed
classifier in achieving high performance while incurring low computational effort.
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1. Introduction

Both fuzzy logic and neural networks include approaches to
human-like reasoning that utilize the human tolerance for
incompleteness, uncertainty, imprecision, and fuzziness in a
decision making process. Fuzzy logic is a key tool to express
the knowledge of domain experts so that valuable experience
of humans can be incorporated into the system design.
The neural network is an information processing system
with the ability to learn from training data. The learning
capability of neural networks makes them an appropriate
choice for combination with fuzzy systems in order to
automate or support the process of developing a fuzzy system
for a given task [1]. In this view, neurofuzzy systems have
been introduced and widely investigated [2]. A neurofuzzy
system is a fuzzy system that is trained by a learning
algorithm derived from neural network theory. The learning

procedure is performed by interleaving the optimization
of the antecedent and consequent part parameters. The
performance of a neurofuzzy system is largely influenced
by structure learning which involves two major issues: (i)
parameter tuning of the antecedent part, which provides us
with the fuzzy partitioning of the input space. (ii) Parameter
tuning of consequent part in which the parameters of conse-
quent functions are obtained. Each subspace together with
its associated consequent function is used to characterize
a corresponding fuzzy rule [3]. Generally, the local models
(consequent functions) are chosen to be linear, which yields
local linear model structures [4].

Recently, neurofuzzy systems have found extensive appli-
cations in pattern recognition [5–7]. In this context, several
techniques for deriving fuzzy rules from training data such
as fuzzy clustering and partitioning-based methods have
been proposed. The fuzzy clustering-based methods search
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the input space for clusters, which are then projected to
each dimension of input space to gain fuzzy rules with
better interpretability. This approach encompasses a variety
of algorithms such as Kohonen learning rule, hyperbox
method, product-space partitioning, and fuzzy C-mean
method [8]. Examples of partitioning-based methods are
NEFCLASS and NEFCAR, which start with a large number
of partitions. These partitions are then pruned to select
the best-performing fuzzy rules [1, 7, 9]. For a detailed
discussion on neurofuzzy rule generation algorithms, the
reader is referred to [10–14].

This study proposes a novel incremental technique for
structure optimization of local linear neurofuzzy classifiers.
The proposed neurofuzzy classifier is built starting from
the most generic and simplest form (a global linear clas-
sifier). If the overall performance of the classifier was not
satisfactory, it would be iteratively refined by incorporating
additional local classifiers. Proposed refinement strategy
is motivated by LOLIMOT, which is a greedy partition
algorithm for structure training of local linear neurofuzzy
models that determine the (sub) optimal partitioning of
input space by axis-orthogonal splits [15, 16] and has found
extensive applications in identification problems due to fast
implementation and high accuracy. Adoption of LOLIMOT
algorithm to classification requires inevitable modifications.
Conventional LOLIMOT is restricted to axis-orthogonal
splits and is unable of handling high-dimensional data.
We address these problems by employing a well-known
statistical stage, namely, linear discriminant analysis (LDA).
Therefore, antecedent structure of neurofuzzy classifier is
built in the transformed (and if needed reduced) input space
by axis-orthogonal splits. Moreover, for proper adoption of
LOLIMOT algorithm to classification, a novel interpretation
of error is introduced. Once the antecedent parameters
are determined, rule consequent parameters are efficiently
estimated using a local least square approach. To assess the
performance of the proposed method, results are compared
with conventional classifiers (neural networks, linear Bayes,
and quadratic Bayes), neurofuzzy classifiers (NEFCLASS
and FuNe I), piecewise linear classifiers, and decision trees
(C4.5). Experimental results on several well-known datasets
demonstrate that, in most cases, our algorithm outperforms
state-of-the-art classifiers and significantly improves the
classification results. The rest of this paper is organized
as follows. In Section 2, local linear neurofuzzy classifiers
are introduced and common approaches for antecedent
and consequent parameter optimization are discussed. In
Section 3, our proposed classifier is developed. Section 4 is
dedicated to assessment of the proposed algorithm and the
paper is concluded in Section 5.

2. Local Linear Neurofuzzy Classifier

A neurofuzzy system with multiple outputs can be realized
either by a single SIMO or MIMO model or by a bank of
SISO or MISO models [17]. In the current study, the former
approach is pursued as it often requires fewer neurons [16].
Assume a set of input/label pairs {U ,Y}, where U ∈ Rp

and Y ∈ {0, 1}K . In the case of two-class problems, it is

most convenient to use the binary representation, in which
there is a single target variable y ∈ {0, 1} such that y = 1
represents first class and y = 0 represents the other class.
When facing a K-class problem, it is often convenient to use
a 1-of-K coding scheme in which the label Y is a vector of
length K such that if the class is Cj , then all elements of Y
are zero except its jth element denoted by (Y) j , which takes
the value 1. The elements of label vector Y can be interpreted
as posterior probabilities of corresponding classes, with the
values of probability taking only the extreme values of 0 and
1. Therefore, we wish to predict discrete class labels, or more
generally posterior probabilities that lie in the range (0, 1).
This is achieved by introducing an activation function f (·)
[18] to limit the output of the model so that it falls into
(0, 1). The choice of activation function is usually logistic
sigmoid (K = 2 classes) or softmax (K ≥ 2 classes). Decision
is made by assigning each test sample to the class with
maximum posterior probability. The network architecture
of a neurofuzzy classifier, structured based on local linear
classifiers, is depicted in Figure 1, where the rule antecedent
inputs Z ∈ Rnz and the rule consequent inputs X ∈ Rnx are
subsets of the input samples U . Each neuron i = 1, . . . ,M of
the model realizes a fuzzy rule:

Ri = IF (Z)1 IS A(i,1) AND . . .AND (Z)nz IS Ai,nz

THEN ̂Y =WT
i X ,

(1)

where Ai, j is the jth fuzzy set defined on ith input and
Wi ∈ Rnx×K . Each neuron or rule represents K local linear
classifiers (LLCs) and an associated validity (weighting)
function that determines the region of validity of those
LLCs. For a reasonable interpretation of local classifiers it is
furthermore necessary that the validity functions sum up to
one for any antecedent input Z. The output of the local linear
neurofuzzy classifier would be

̂Y(U) = f

⎛

⎝

M
∑

i=1

ϕi(Z) · ̂Yi(X)

⎞

⎠ = f

⎛

⎝

M
∑

i=1

ϕi(Z) ·
(

WT
i X
)

⎞

⎠,

(2)

where ̂Yi denotes the output of local models and ϕi(·) is
interpreted as weighting function, i = 1, . . . ,M. Thus, the
output of the model is obtained by applying f (·) to the
weighted sum of the outputs of the LLCs. In other words,
the model interpolates between local models by weighting
functions. In the following, the validity functions ϕi(·) are
chosen to be normalized Gaussians:

ϕi(Z) = μi(Z)
∑M

j=1
μj(Z)

μi(Z) = exp
(

−1
2

(Z − Ci
)T∑−1

i
(Z − Ci)

)

,

(3)

where Ci ∈ Rnz is the center of ith membership function
and

∑

i ∈ Rnz×nz is a diagonal matrix containing variances
of individual dimensions, that is,

∑

i = diag{σ2
i,1, . . . , σ2

i,nz}.
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Figure 1: Local linear neurofuzzy classifier.

Here, we will assume the most general case for X and Z,
where X = Z = U . It should be pointed out that in
contrast to the models used for identification, discussed
neurofuzzy classifier will be no longer linear in the con-
sequent parameters due to the presence of f (·). This will
lead to more analytical and computational complexities than
for identification models. However, at the expense of losing
the probabilistic point of view, we can omit the nonlinear
activation function as in [19]. A test sample is then assigned
to the class with maximum activation value and the classifier
would be linear in consequent parameters. Optimization of
rule antecedent structure and rule consequent parameters is
discussed in the following sections.

2.1. Rule Consequent Parameters. Rule consequent parame-
ters are interpreted as parameters of local classifiers. Due to
linearity assumption for activation function, the neurofuzzy
classifier presented by (2) is linear in consequent parameters.
Therefore, these parameters can be efficiently estimated from
training patterns using a least square approach, provided that
the rule antecedent structure is given. Simultaneous opti-
mization of all consequent parameters (global optimization)
yields the best results in the sense of least mean square error
but involves extreme computational effort. Alternatively,
we can use local estimation approach presented in [15],
which neglects the overlap between the validity functions
and estimates the parameters of each rule separately. This
approach is computationally more efficient than global
estimation. The cost, however, is the introduction of a bias
error while, on the other hand, the variance error (and the
effect of over-fitting) is decreased and more robustness to
noise is gained. In this paper, the local estimation approach
is pursued and is described as follows. Instead of estimating
all M × K × (p + 1) consequent parameters simultaneously
(as in global estimation), M local estimations are carried out
for the K × (p + 1) parameters of each neuron. Note that the
parameter matrix associated with ith LLC is Wi ∈ R(p+1)×K

and that the contribution of ith LLC to the output vector
̂Yi(U) is ϕi(U)(WT

i U), i = 1, . . . ,M. The contribution of
ith LLC is dominant only in the region where the associated
validity function ϕi(·) is close to one (which happens near

the center of ϕi(·)). Training samples in this region are highly
relevant for the estimation of Wi. Therefore, local estimation
of Wi can be achieved by performing the following weighted
least square optimization:

min
Wi

Ii where Ii =
N
∑

j=1

ϕi

(

Uj

)

·
∥

∥

∥Y
(

Uj

)

− ̂Y
(

Uj

)∥

∥

∥

2
,

(4)

where Uj denotes the jth input sample, j = 1, . . . ,N . This
optimization is equivalent to fitting a linear classifier to
weighted training data. Let the target matrix Υ ∈ RN×K , the
regression matrix X ∈ RN×(p+1), and the weighting matrix
Qi ∈ RN×N be defined as follows:

Υ =
[

Y1 Y2 · · · YN

]T
, X =
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...
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.

(5)

Then, it can be simply verified that the optimum Wi ∈
R(p+1)×K that minimizes (4) is obtained as

Wi =
(

XTQiX
)−1

XTQiΥ (6)

2.2. Rule Antecedent Structure. Training of the antecedent
parameters is a nonlinear optimization task, which provides
us with the proper partitioning of the input space. Two
common strategies for antecedent structure optimization
are clustering-and partitioning-based techniques. In order
to embed data-driven knowledge in a neurofuzzy system,
clustering methods such as Fuzzy RuleNet [20] utilize cluster
vectors extracted from the input dataset to initialize the
centers of fuzzy rules. A learning algorithm is then applied
to fine tune the rules based on the available training data.
These approaches usually search for hyperellipsoidal or
hyperrectangular clusters in input space and are shown to
typically produce rules which are hard to interpret [21, 22].
Partitioning-based methods such as NEFCLASS [9] divide
the input space into finer regions by grid partitioning. Each
partition is supposed to represent an if-then rule. These rules
are then pruned using some heuristics. Finally, membership
functions are defined using only best performing rules. In
other words, NEFCLASS does not induce fuzzy classification
rules by searching for clusters, but by modifying the fuzzy
partitionings defined on each single dimension. Evidently,
partitioning-based approaches are computationally expen-
sive [23].

3. Proposed Algorithm for
Structure Optimization

Tuning of the antecedent parameters of a neurofuzzy
system is a nonlinear optimization task, which provides
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us with the proper input space partitioning. Some com-
monly used strategies for antecedent parameter optimization
were discussed in Section 2.1. In addition, optimization of
consequent parameters using local least square approach
was discussed in Section 2.2. The proposed algorithm for
structure optimization increases the complexity of the local
linear neurofuzzy classifier during the training phase. Hence,
it starts with a coarse partitioning of the input space, which
is then refined by increasing the resolution of the input space
partitioning. The proposed algorithm is based on divide-
and-conquer principle. This principle is widely used to attack
complex problems by dividing them into simpler classifica-
tion tasks whose resulting local classifiers are then combined
to obtain a global classifier which also generalizes well [24].
Our strategy for input space partitioning is motivated by
LOLIMOT, which is a local linear neurofuzzy algorithm that
uses axis-orthogonal splits to avidly partition the input space
for the rule antecedent parameter and structure training.
LOLIMOT has been successfully applied in a number of
identification problems and gained significant attention
due to simple and fast optimization of rule antecedent
parameters. Computational complexity of LOLIMOT grows
linearly with the number of neurons and cubically with the
number of consequent parameters of each neuron. This level
of computation complexity is quite favorable [16]. As will
be discussed shortly, adoption of LOLIMOT algorithm to
classification requires inevitable modifications.

One of the most severe restrictions of LOLIMOT is
the axis-orthogonal partitioning of the input space. This
restriction, while being crucial for interpretation as a fuzzy
system and for the development of an extremely efficient
construction algorithm, leads to the following shortcomings.
(i) Improper splitting of input space, which frequently
happens when optimal partitioning of input space does not
align with axis-orthogonal directions. In such cases, the
nonlinearity of data in the original input space does not
stretch along the input space axes and hence LOLIMOT
cannot efficiently determine proper input partitioning [25].
(ii) Curse of dimensionality, which often plagues fuzzy
systems in real-world applications. Fuzzy methods, which
are computationally manageable in low-dimensional spaces,
can become completely impractical in high-dimensional
spaces. Since at each iteration, LOLIMOT tries all divisions
of worst LLC to decide about further refinement, curse of
dimensionality will be more prohibitive. Several techniques
have been proposed to address these two drawbacks. For
example, Nelles developed an axis-oblique decomposition
algorithm, which suffers from computational concerns [25].
In addition, using different input spaces for rule antecedent
and consequent was suggested in [16], which could result in
the alleviation of computational efforts. Evidently, adoption
of LOLIMOT to classification confronts the above shortcom-
ings, especially when the discriminancy of classes is small
in the original axes. We suggest using a computationally
cheap, easy to implement statistical stage, namely, LDA (also
known as Fisher discriminant analysis), which alleviates
the mentioned problems by rotating the original axes, so
that the linear discriminancy of training samples along the
new axes is maximized in a global sense [8]. The basic

concept of LDA is to seek for the most efficient projective
directions which minimize the scattering of samples in
each class and maximize the distance of different classes.
In addition, LDA is capable of selecting the best linear
combinations of input features for classification and hence
can be used for dimensionality reduction. Therefore, axis-
orthogonal partitioning of the transformed input space
(building the structure in the transformed space) often
significantly reduces the complexity of antecedent structure,
as well as computational cost. LDA is formally described as
follows. Consider the sample set {Xi, j}, where i = 1, . . . , I
denotes the class to which Xi, j belongs and j = 1, . . . ,Ni

denotes the index of the sample Xi, j in the corresponding
class. Now, between-class scatter matrix SB is introduced
as

SB = 1
N

I
∑

i=1

Ni

(

Xi − X
)(

Xi − X
)T

, (7)

where Xi = (1/Ni)
∑Ni

j=1Xi, j denotes the sample mean

in class Ii and X = (1/N)
∑I

i=1

∑Ni
j=1Xi, j is the global

sample mean. Similarly, within-class scatter matrix is defined
as

SW = 1
N

I
∑

i=1

Nj
∑

j=1

(

Xi, j − Xi

)(

Xi, j − Xi

)T
. (8)

LDA then searches such optimal subspace projections
which minimize the trace of the resulting within-class scatter
matrix, while maximize the trace of the between-class scatter
matrix. In other words, the selected features are eigenvectors
of (SW )−1SB corresponding to largest eigenvalues. Another,
perhaps more popular, unsupervised alternative to LDA is
principal component analysis (PCA), which minimizes the
information loss upon projection to the lower dimensional
space. Since PCA minimizes the reconstruction error, classi-
fication based on PCA generally achieves lower performance
compared to LDA, as verified in Section 4.1. For a detailed
discussion on linear dimensional reduction techniques, the
interested reader is referred to [8, 26, 27].

Another practical concern for adoption of LOLIMOT
to classification is the error interpretation. Training of
local linear models in an LOLIMOT system is achieved by
minimizing the local loss function defined in (4). This loss
function is also used for comparison of local models. In this
paper, a novel interpretation of error is introduced. While
the loss function of (4) is used to train the LLCs, we suggest
using a different error index for comparison of LLCs, which
is based on percentage error rather than l2-norm (‖ · ‖2)
of the classification error. The percentage error resembles
the l1-norm of error (‖ · ‖1), which is shown to gain better
classification results than l2-norm of error [28]. Through our
experiments, it was found that this interpretation of error
improves the classification results.

Finally, note that the standard deviation of validity
functions is selected to be proportional to extension of
corresponding hyperrectangle. In the current study, this
proportionality factor is fixed and assumed to be 1/3 [16].
The proposed algorithm can be summarized as follows.
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(1) Finding the most discriminative basis: apply LDA in
order to find the most discriminative basis. If needed,
dimension reduction is also realized in this step by
keeping only the most discriminative features in the
new basis. The antecedent structure is built in this
transformed space.

(2) Start with an initial model: use any prior knowledge
to construct the validity functions in the transformed
initial input space partitioning. If no input space
partitioning is available a priori, then set M = 1 and
start with a single LLC.

(3) Compare LLCs to find the worst LLC: use the following
equation to calculate the error index l for all LLCs,
in which each misclassified pattern is assigned to the
LLC with largest degree of validity. Then, the LLC
with maximum error index l is selected as the worst-
performing, which is denoted by LLCb:

li = N
(

Si,e
)

N(Si)
where Si =

{

U | ϕi(U) > ϕj(U) for j /= i
}

Si,e = {U | U ∈ Si AND U is misclassified},
(9)

where, N(ξ) denotes the number of elements of
vector ξ.

(4) Check all divisions of worst LLC: consider the LLCb for
further refinement. The hyperrectangle of this LLC is
partitioned into two halves with an axis-orthogonal
split. Divisions in all dimensions are considered. For
each of the p divisions, the following steps are taken.

(a) Construct the membership functions for both
hyperrectangles.

(b) Construct all validity functions.

(c) For both newly generated LLCs, weigh the
training samples with corresponding validity
functions and fit a linear classifier to these
weighted samples by minimizing local loss
function defined in (4) (local optimization of
the rule consequent parameters for both newly
generated LLCs).

(d) Calculate the percentage error of classification
for the current overall model.

(5) Find the best division: select the best of the p
alternatives checked in step 4. The validity functions
constructed in step 4a and the LLCs optimized in step
4c are included in the classifier. The number of LLCs
is increased by one.

(6) Test for convergence: if the termination criterion (e.g.
convergence of performance) is not met, go to step 2.

In the next section, the efficacy of the proposed
framework is experimentally studied on several datasets. In
addition, to provide a better insight into the procedure,
operation of the algorithm will be graphically illustrated.

4. Experiments

This section presents the classification results of the pro-
posed method on several well-known datasets. The error
rates of the proposed classifier are compared to that of
a number of existing pattern classification algorithms. To
this end, four datasets from ELENA project [29], namely,
Iris CR, Phoneme CR, Satimage CR, and Texture CR, and
two datasets from UCI machine learning repository [30],
namely, Wisconsin breast cancer and Sonar are selected.
ELENA project and UCI machine learning repository are
resources of databases for testing and benchmarking pattern
classification algorithms. Main features of these datasets are
summarized in Table 1.

The CR affix in the names of datasets from ELENA
project indicates that the datasets are initially preprocessed
by a normalization routine to center each feature and enforce
unit variance. In our experiments on these datasets, we
follow a similar technique to [31]. First, each dataset is
partitioned into two equal random sets: one for training and
the other for test phase. Then, the roles of two halves are
reversed. To achieve more accurate results, experiments are
repeated 20 times and the average error rate is reported.

4.1. Role of LDA in Preprocessing. In this subsection, the role
of LDA in the preprocessing phase is experimentally studied.
Our first experiment is conducted on Iris CR dataset. To
be able to visualize the results, PCA [8] is first applied to
reduce the number of features to two. Then, the proposed
algorithm is applied to obtain the partitioning of the input
space for all samples in Iris CR dataset. Using rectangles to
show the validity region of the corresponding LLC’s, Figures
2(a) and 2(b) depict the obtained partitioning without
and with LDA preprocessing, respectively. Therefore, this
illustration provides a comparison between PCA and LDA
in the preprocessing phase. It is observed that there exists
a partition in Figure 2(a), for which it is impossible to
find a linear classifier that correctly classifies all samples
in the corresponding partition, whereas this situation does
not occur in Figure 2(b), in which splitting directions are
not axis-orthogonal, but are selected to maximize the linear
discriminancy of the samples. This illustrative example
implies that, with the same number of partitions, LDA
generally provides a better partitioning of the input space
compared to PCA. Figure 2(b) also provides a valuable
insight into the process of input space partitioning by the
proposed algorithm.

As our second experiment, the advantage of using
LDA preprocessing is quantified in terms of the per-
formance of the proposed classifier on a number of
datasets, namely, Iris CR, Satimage CR, Texture CR, and
Phoneme CR. Table 2 lists average classification error rates
of the proposed classifier, using PCA or LDA in the
preprocessing phase. In accordance with our expectation,
using LDA leads to better classification performance on all
datasets.

4.2. Comparison with Conventional Classifiers. Table 3 lists
average classification error rates of the proposed algorithm
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Figure 2: Application of the proposed algorithm for partitioning of the input space in Iris CR dataset, (a) without and (b) with LDA in the
pre-processing phase.

Table 1: Main features of datasets used in our experiments.

Dataset Number of classes Number of features Number of patterns

Iris 3 4 150

Satimage 6 36 6435

Texture 11 40 5500

Phoneme 2 5 5404

BCW 2 9 699

Sonar 2 60 208

Table 2: Error rates in percentage for the proposed classifier using PCA or LDA preprocessing. The best results are highlighted in boldface.

Datasets

Iris CR Satimage CR Texture CR Phoneme CR

Classifiers

Proposed classifier with LDA preprocessing 2.33 13.54 2.80 23.15

Proposed classifier with PCA preprocessing 4.27 77.83 19.49 27.22

Table 3: Error rates in percentage for conventional and proposed classifiers on several datasets. The best results are highlighted in boldface.

Datasets

Iris CR Satimage CR Texture CR Phoneme CR

Classifiers

Neural network 4.67 16.02 5.15 20.79

Linear Bayes 2.67 16.69 2.58 27.00

Quadratic Bayes 4.67 14.22 0.96 24.59

Proposed classifier 2.33 13.54 2.80 23.15

Table 4: Error rates for piecewise linear classifier [32], C4.5 decision tree [33] and the proposed classifier on several datasets. The best results
are highlighted in boldface.

Datasets

Iris CR Satimage CR Texture CR Phoneme CR BCW Sonar

Classifiers

Piecewise linear 3.34 13.90 4.90 17.85 4.80 19.70

C4.5 7.33 16.50 11.91 16.08 5.26 25.60

Proposed classifier 2.33 13.54 2.80 23.15 2.84 10.71



EURASIP Journal on Advances in Signal Processing 7

and of some conventional classifiers, namely, neural network,
linear Bayes, and quadratic Bayes on several datasets, as
reported in [31]. It shall be noted that, in [31], each classifier
has been reasonably optimized with regards to parameter
settings and available features. In addition, an earnest effort
was made to optimize each individual classifier with respect
to selecting good values for the parameters which govern
its performance. Moreover, feature selection techniques have
been applied to feed each classifier with best features. Table 3
indicates that, both on Iris CR and Satimage CR datasets,
the proposed technique outperforms other classifiers. On
Texture CR dataset, our classifier outperforms the neural
network classifier, achieves results comparable to the linear
Bayes classifier, and is slightly worse than the quadratic
Bayes classifier. On the other hand, on Phoneme CR dataset,
our classifier outperforms both linear and quadratic Bayes
classifiers and achieves results worse than the neural network
classifier. These results suggest that the proposed simple local
linear fuzzy classifier could be quite successful compared to
these conventional classifiers. Finally, note that the proposed
classifier typically achieves better results in comparison with
the neural network classifier, to which it can be regarded as a
close relative.

4.3. Comparison with Other Neurofuzzy Classifiers. NEF-
CLASS and FuNe I are two well-known neurofuzzy classi-
fiers. NEFCLASS starts with a large number of partitions
in the input space, which, as mentioned in Section 2.2, are
pruned to select the best-performing fuzzy rules [9]. FuNe
I, on the other hand, has a five-layer feedforward structure
and restricts itself to rules with one or two antecedents.
Fuzzy rules are then learned by a special training network,
that helps to identify suitable combinations of one or two
variables as antecedents. These rules are then trained to find
suitable fuzzy sets for the rules [34, 35].

Performance of these classifiers and of the proposed
method is compared on Iris CR dataset. For NEFCLASS
and FuNe I, the number of rules was limited to ten and
seven, respectively. Reported error rates of NEFCLASS and
FuNe I are 3.33% and 4%, respectively, while our method
achieves the error rate of 2.33%, with seven partitions. It shall
be pointed out that, in contrast to the proposed classifier,
NEFCLASS and FuNe I suffer from high-computational
complexity [35].

4.4. Comparison with Piecewise Linear Classifiers. Piece-
wise linear classifiers approximate the complex decision
boundaries with piecewise linear functions. Recently, Kostin
presented a simple and fast piecewise linear classifier which
demonstrated comparable (even superior in many cases)
results with many well-known benchmark classifiers [32].
Kostin’s classifier is based on simple calculation of centroids
of classes and the creation of a binary partition tree of
class centroids, which is then used to sequentially construct
piecewise linear boundaries for each nonleaf node of the
partition tree [32]. As was the case in our classifier, complex-
ity of the classifier is sequentially increased until satisfactory
performance is achieved.

In this subsection, due to similar essence and properties,
performance of the Kostin’s classifier [32], as a representative
member of piecewise linear classifiers, is compared with the
proposed classifier. The average classification error rates for
two methods are listed in Table 4. As indicated by the results,
the proposed classifier achieves a better performance com-
pared to Kostin’s classifier on five datasets, with slightly worse
performance on the Phoneme CR dataset. This improve-
ment is intuitively explained by noting that, with the same
complexity, natural datasets are generally better expressed
by space grids rather than hyperplanes. Furthermore, the
fuzzy nature of the decision making process in the proposed
classifier may be regarded as an advantage over crisp decision
boundaries involved in [32].

4.5. Comparison with Decision Tree Classifiers. Decision tree
algorithms are regarded as a powerful classification tool
in machine learning society, which have appeared quite
influential in practice [33]. This classifiers are constructed
in a form of a decision tree, in which each nonleaf node
tests a function of some attributes. An unknown pattern is
then classified by making consecutive decisions starting from
the root until reaching a leaf node. Clearly, proper selection
of the test functions and associated attributes at each node
are vital for successful application of decision tree classifiers.
Among several choices, C4.5 is utilized in our experiments as
a successful and popular decision tree classifier [33]. Using
two-way splits for numeric attributes in the creation of the
decision tree, C4.5 examines a family of possible tests at each
node and selects the one which maximizes the value of some
splitting criterion. Once the tree is built, a pruning procedure
is performed to avoid overfitting and excessive complexity.

Due to similar essence and characteristics, comparison
of the proposed classifier and decision tree classifiers is
inevitable. Therefore, in this subsection, performance of the
proposed classfier is compared with C4.5, as a representative
member of the decision tree classifiers. Table 4 lists average
classification error rates of the proposed method as well
as C4.5 classifier. As indicated by Table 4, except for the
Phoneme CR dataset, the proposed classifier outperforms
C4.5.

5. Conclusion

In this study, a simple and computationally efficient local
linear neurofuzzy classifier has been introduced, imple-
mented, and tested on a number of well-known datasets.
The structure of the antecedent part is obtained during the
training phase and is data-driven rather than knowledge
based. Input space is first transformed by LDA, so that the
linear discriminancy of training samples is maximized. The
antecedent structure is then built in the transformed space
by axis-orthogonal splits. At each iteration, the local linear
classifier with the worst error index is split into two new
rules which are then included in the classifier. In addition,
the rule consequent parameters are optimized using a local
least square approach. The simplicity and speed are the
main advantages of the proposed classifier. Together with
high performance, this classifier is a good choice for many
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applications in which the use of more sophisticated classifiers
can be impractical.
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