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1. Introduction

Discrete multitone (DMT) is a digital implementation
technique widely used for high speed wired multicarrier
transmission such as asymmetric digital subscriber lines
(ADSLs) [1]. The cyclic prefix (CP) is inserted among
DMT-symbols to arrange subchannels separately in order
to eliminate intercarrier interference (ICI) and intersym-
bol interference (ISI). Conventional equalisation of DMT-
based system consists of an adaptive (real) time-domain
equaliser (TEQ) which shortens the convolutional result
of TEQ and channel impulse response (CIR). So that ISI
can be effectively handled by CP, and ICI can also be
mitigated. A (complex) one-tap frequency-domain equaliser
(FEQ) is applied subsequently to compensate for ampli-
tude and phase of distortion [1, 2]. However, TEQs are
not designed to achieve the maximum bit rate perfor-
mance [3]. The so-called per-tone equalisation which is a
frequency-domain equalisation scheme for each tone has
been introduced in [4]. It is shown to give comparable bit

rate maximising characteristics with existing equalisation
schemes.

In the literature, a few update algorithms for T-tap per-
tone equalisers (PTEQs) are proposed in [4–7]. The per-tone
equalisation scheme using a technique based on transferring
the (real) TEQ-operations to the frequency-domain is done
per tone after the fast Fourier transform (FFT) demodulation
as suggested in [4]. This enables us to accomplish the signal-
to-noise ratio (SNR) optimisation per tone, because the
equalisation of each tone is independent of other tones.
This PTEQ performance has been presented to be better
than any TEQ-based receiver. In [4], the authors conclude
that the result of complexity of TEQ (including one-tap
FEQ) is comparable to PTEQ. To reduce complexity during
initialisation of PTEQ, the tone grouping PTEQ approach
is presented in [7–9] by combining tones. The idea of tone
grouping is to compute the PTEQ for the center tone of
each group, then to reuse it for the whole group. Another
method to decrease the complexity of PTEQ is to consider
a suitable length of the equaliser for every tone. A resource
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allocation technique is presented for the variable-length
equaliser in order to optimise the length distribution of
PTEQ over tones with a relatively low complexity, as given in
[10].

Based on the recursive least squares (RLS) algorithm, the
adaptive PTEQs with inverse updating have been presented
in [5, 7]. An RLS-based algorithm requires the second-order
information as the autocorrelation matrix of the sliding dis-
crete Fourier transform (DFT) of the received signal. In [5],
it is shown that a significant part of RLS-based computations
for storing and updating can be shared among the different
tones, leading to sufficiently low initialisation complexity. A
combined recursive least squares-least mean square (RLS-
LMS) initialisation algorithm for PTEQs [7] is presented
to exploit the advantages of both the fast convergence and
low complexity. In [6], an adaptive recursive Levenberg-
Marquardt (RLM) algorithm for PTEQs is proposed with no
TEQ concerned.

In [11], the authors present a TEQ design as its optimal
solution of the truly bit rate maximising time-domain
equalisation (BM-TEQ) cost function. It is based on an
exact formulation of the subchannel SNR as a function of
the taps of TEQ. Its bit rate is smooth as a function of
synchronisation delay, so it is shown to approach as well as
the PTEQ performance. An adaptive RLM-based BM-TEQ
design [12] is derived from the nonlinear and nonconvex
cost criterion. This adaptive BM-TEQ has the same second-
order statistics as that of the RLS-based adaptive PTEQ in
[5]. Furthermore, many algorithms have been presented to
adaptively initialise the TEQ and PTEQ schemes, but none
of them truly maximises the bit rate of PTEQs framework in
DMT-based systems.

The purpose of this paper is twofold. First, we introduce
the bit rate maximising criterion of PTEQ. The PTEQ which
attains this bit rate maximising capability is called a bit rate
maximising per-tone equalisation (BM-PTEQ). Second, we
apply an adaptive implementation to show how the solution
of BM-PTEQ can be achieved in pratice. We also show
that the BM-PTEQ solution can be expressed in the form
of the BM-TEQ of [11]. This leads us to the proposition
that, given the proven superior performance of PTEQ over
TEQ [13], the BM-PTEQ will continue to do better than
the BM-TEQ of [11] in the sense of bit rate maximising
performance.

We describe an overview of system model and notation
in Section 2. The solution of the PTEQ design criterion is
reviewed in Section 3. The derivation of proposed BM-PTEQ
criterion is developed in Section 4. Section 5 shows that the
proposed adaptive BM-PTEQ can be designed recursively
using the nonlinear cost criterion. The simulation results
are presented in Section 6. Finally, Section 7 concludes the
paper.

2. SystemModel and Notation

In this section, we describe that the data model and notation
based on an FIR model of the DMT transmission channel is
presented as [4]

y = H ·X + n,
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(1)

where l denotes the first considered sample of the kth
received DMT-symbol. This depends on the number of tap
of equaliser (T) and the synchronisation delay (Δ). The
vector yk,i: j of received samples i to j of kth DMT-symbol

is yk,i: j = [yk,i · · · yk, j]
T . A sequence of the N × 1xk,N

transmitted symbol vector is xk,N = [xk,0 · · · xk,N−1]T . The
size N is of inverse discrete Fourier transform (IDFT) and
DFT. The parameter ν denotes the length of cyclic prefix.
The matrices 0(1) and 0(2) are also the zero matrices of size
(N − l) × (N − L + 2ν + Δ + l) and (N − l) × (N + ν − Δ).
The vector h is the h channel impulse responce (CIR) vector
in reverse order. The (N + ν)×N matrix Pν is denoted by

Pν =
⎡
⎣ 0ν×(N−ν) Iν

IN

⎤
⎦, (2)

which adds the cyclic prefix. The IN is N × N IDFT matrix
and modulates the input symbols. The ηk,l+Δ:N−1+Δ is a vector
with additive white Gaussian noise (AWGN) and near-end
cross-talk (NEXT).

Some notation will be used throughout this paper as
follows: E{·} is the expectation operator and diag(·) is a
diagonal matrix operator. The operators (·)T , (·)H , (·)∗
denote the transpose, Hermitian, and complex conjugate
operator, respectively. The k is the DMT symbol index and Ia
is an a× a identity matrix. A tilde over the variable indicates
the frequency domain. The vectors are in bold lowercase and
matrices are in bold uppercase.

3. Per-Tone Equalisation

In this section, we show the concept of per-tone equaliser
(PTEQ). We refer the readers to [4] for more details. The
per-tone equalisation structure is based on transferring
the TEQ-operations into the frequency-domain after DFT



EURASIP Journal on Advances in Signal Processing 3

B
it

ra
te

(b
ps

)

0

2

4

6

8

10

12

14
×106

Number of DMT symbols

0 50 100 150 200 250 300 350 400

(a) CSA Loop no. 1
B

it
ra

te
(b

ps
)

0

2

4

6

8

10

12

14
×106

Number of DMT symbols

0 50 100 150 200 250 300 350 400

(b) CSA Loop no. 2

B
it

ra
te

(b
ps

)

0

2

4

6

8

10

12
×106

Number of DMT symbols

0 50 100 150 200 250 300 350 400

ABM-PTEQ (iQRRLM)
BM-PTEQ (MMSE)
PTEQ (RLM)

ABM-TEQ (RLM)
BMTEQ

(c) CSA Loop no. 4

B
it

ra
te

(b
ps

)

0

2

4

6

8

10

12

14
×106

Number of DMT symbols

0 50 100 150 200 250 300 350 400

ABM-PTEQ (iQRRLM)
BM-PTEQ (MMSE)
PTEQ (RLM)

ABM-TEQ (RLM)
BMTEQ

(d) CSA Loop no. 5

Figure 1: Learning curves of bit rate convergence of proposed adaptive iQRRLM-based BM-PTEQ (ABM-PTEQ), adaptive RLM-based
PTEQ [6], and adaptive RLM-based BM-TEQ (ABM-TEQ) [12] which compared with BM-TEQ [11] and proposed MMSE-based BM-
PTEQ for ADSL downstream starting at tones 38 to 255, when the samples of CSA loop are (a) CSA Loop no. 1, (b) CSA Loop no. 2, (c)
CSA Loop no. 4, and (d) CSA Loop no. 5.

demodulation, which results in a T-tap PTEQ for each tone
separately. For each tone i (i = 1, . . . ,n), the TEQ-operations
are shown as follows [4]:

d̃n =
1-tap FEQ︷︸︸︷

z̃n ·rown

1 DFT︷ ︸︸ ︷
(FN ) · (Y ·w) , (3)

= rown(FN · Y)︸ ︷︷ ︸
T DFTs

· w · z̃n︸ ︷︷ ︸
T-tap FEQ vn

, (4)

where d̃n is the output after frequency-domain equalisation
for tone n. The z̃n is the (complex) one-tap FEQ for tone n.
The parameter w is of (real) T-tap TEQ and FN is an N ×N
DFT matrix [4]. Note that Y is an N × T Toeplitz matrix of
received signal samples as vecotor y in (1). From (4), the T
DFT-operations are cheaply calculated by means of a sliding
DFT. It is demonstrated in [4] that every T-tap FEQ vn exists
a T-tap PTEQ p̃n which consists of only one DFT and T − 1
real difference terms as its input.
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Figure 2: Bit rate as a function of the synchronisation delay Δ for ADSL downstream starting at tones 38 to 255, when the samples of CSA
loop are (a) CSA Loop no. 1, (b) CSA Loop no. 2, (c) CSA Loop no. 4, and (d) CSA Loop no. 5.

The PTEQ output x̂k,n can be specified as follows:

x̂k,n = p̃Hn ·
⎡
⎣ IT−1 0 −IT−1

0 FN (n, :)

⎤
⎦

︸ ︷︷ ︸
Fn

· y, (5)

= p̃Hn · ỹk,n, (6)

where p̃n is the T-tap complex-valued PTEQ vector for tone
n. The Fn is a (T − 1)× (N +T − 1) matrix [4]. The FN (n, :)
is the nth row of FN . By using the sliding DFT, the first

block row of matrix Fn in (5) extracts the difference terms,
while the last row corresponds to the usual DFT operation as
detailed in [4, 10]. The vector y is of channel output samples
as described in (1). The ỹk,n is the sliding DFT output for tone
n at symbol k.

4. A Bit Rate Maximising Per-Tone Equalisation

In this section, we introduce the BM-PTEQ criterion with an
exact subchannel SNR model. In the derivation of the cost
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Figure 3: The bit rate performance of the BM-TEQ [11], adaptive
RLM-based BM-TEQ (ABM-TEQ) [12], proposed MMSE-based
BM-PTEQ, and proposed adaptive iQRRLM-based BM-PTEQ
(ABM-PTEQ) for all CSA loop nos. 1–8 at starting tones 38 to 255
downstream ADSL when fixed Δ = 45.

function of BM-PTEQ, we start from the bit rate expression
as given in [14]. The total number of bits transmitted in one
DMT-symbol is defined by

bPTEQ =
∑

n∈Nd

log2

(
1 +

SNRn

Γn

)
, (7)

where Nd is the range of active tones, and SNRn denotes the
SNR on tone n. The constant Γn is a function of the desired
probability of error, coding gain, and system margin. We
notice that an integer number of bits is allocated to optimise
the transmit power per tone after equalisation.

4.1. An Exact Subchannel SNR Model. For the BM-PTEQ
criterion to be derived, it is important to define the
dependence of the subchannel SNR on PTEQs. The SNR on
tone n can be written as

SNRn = εs,n
εe,n

, (8)

where εs,n is the desired received signal energy on tone n,
and εe,n is the energy in the error signal on tone n at the
FEQ output. The signal energy portions εs,n and εe,n in
the subchannel SNR model (8) are determined at the FFT
outputs, as assumed in [14, 15].

Following [16, 17], the PTEQ output on tone n can be
written as

p̃Hn ỹk,n = βnx̃k,n + ĩcn + ĩηn︸ ︷︷ ︸
η̃n

,
(9)

where the p̃n is the complex PTEQ vector on tone n, and ỹk,n

is the nth sliding DFT output vector for tone n at symbol
k. The βnx̃k,n is a scaled version of the transmitted frequency-
domain DMT-symbol x̃k,n. The error η̃n is the sum of residual
ISI/ICI ĩcn and noise ĩηn at the nth PTEQ output. When the
scalar βn in (9) is equal to 1, the desired signal component
at the PTEQ output is unbiased, in case of unconstrained
MMSE PTEQ p̃∗,n as

p̃∗,n =
E
{
ỹHk,nx̃k,n

}

E
{
ỹHk,nỹk,n

} . (10)

With MMSE PTEQ, the desired signal energy εs,n =
E{|x̃k,n|2} is equal to σ2

x̃n
. The error energy εe,n in (8) is

the mean square error E{|η̃n|2} at the PTEQ output. It
takes residual ISI/ICI ĩcn and all external noise ĩηn sources
into account. The ratio of signal energy E{|x̃k,n|2} over the
estimated error energy E{|η̃n|2} yields an estimated SNR on
tone n needed in the bit rate calculation. So the SNR in
(8) is suitable to calculate the transmitted power allocation
scheme.

Therefore, the exact subchannel SNR model (8) can be
rewritten as

SNRmax
n = εs,n

εe,n
=

E
{∣∣x̃k,n

∣∣2
}

E
{∣∣η̃n

∣∣2
} =

σ2
x̃n

E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣2
} .

(11)

Introducing the compact notation for the 1 × T correla-
tion vectors

∑
x̃ỹn and T × T matrix

∑2
ỹn as

∑

x̃ỹn

= E
{
x̃∗k,nỹk,n

}
, (12)

H∑

x̃ỹn

= E
{
ỹHk,nx̃k,n

}
, (13)

2∑

ỹn

= E
{
ỹHk,nỹk,n

}
, (14)

and expanding the denominator of (11) gives

E
{∣∣η̃n

∣∣2
}
= E

{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣2
}

= σ2
x̃n
− p̃∗,n

∑

x̃ỹn

−p̃H∗,n

H∑

x̃ỹn

+
∣∣p̃∗,n

∣∣2
2∑

ỹn

= σ2
x̃n

⎛
⎜⎝

σ2
x̃n

∑2
ỹn∣∣∣∑x̃ỹn

∣∣∣2 − 1

⎞
⎟⎠,

(15)

where p̃∗,n is the unconstrained MMSE PTEQ as defined in
(10).
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We obtain a compact maximum SNR model SNRmax
n by

replacing (15) in (11) as

SNRmax
n =

σ2
x̃n

σ2
x̃n

(
σ2
x̃n

∑2
ỹn /

∣∣∣∑x̃ỹn

∣∣∣2 − 1
)

=
∣∣∣∑x̃ỹn

∣∣∣2

σ2
x̃n

∑2
ỹn −

∣∣∣∑x̃ỹn

∣∣∣2

=
∣∣∣∑x̃ỹn

∣∣∣2

(
σ2
x̃n

∑2
ỹn

){
1−

∣∣∣∑x̃ỹn

∣∣∣2
/σ2

x̃n

∑2
ỹn

}

= ρ2
n

1− ρ2
n

,

(16)

with

ρ2
n =

∣∣∣∑x̃ỹn

∣∣∣2

σ2
x̃n

∑2
ỹn

, (17)

where ρ2
n is a squared normalised correlation function of

FFT output ỹk,n and x̃k,n at the PTEQ output. We note that
the SNRmax

n in (16) is an exact (maximum) subchannel SNR
model per tone at the PTEQs outputs, which is achieved by
using the MMSE PTEQ p̃∗,n in (10) as described in [4]. So
this BM-PTEQ design criterion will be defined by means of
the unconstrained MMSE PTEQ p̃∗,n as given in (10). This
will be used to maximise the bit rate capacity with regard to
an integer number of bits allocation as given in (7).

4.2. The BM-PTEQ Cost Function. With the use of (7) and
(16), the BM-PTEQ cost function criterion is the solution of

arg max
p̃∗,n

bmax
PTEQ = arg max

p̃∗,n

∑

n∈Nd

log2

(
1 +

SNRmax
n

Γn

)

= arg max
p̃∗,n

∑

n∈Nd

log2

(
1 +

ρ2
n

Γn
(
1− ρ2

n

)
)

= arg max
p̃∗,n

∑

n∈Nd

log2

(
Γn

(
1− ρ2

n

)
+ ρ2

n

Γn
(
1− ρ2

n

)
)

= arg max
p̃∗,n

∑

n∈Nd

log2

(
Γn + (1− Γn)ρ2

n

Γn
(
1− ρ2

n

)
)
.

(18)

By rearranging (10) in terms of compact notation in (13)
and (14), the unconstrained MMSE PTEQ p̃∗,n is given as

p̃∗,n =
∑H

x̃ỹn∑2
ỹn

, (19)

and the squared normalised correlation parameter ρ2
n in (17)

is rewritten as

ρ2
n =

∑
x̃ỹn

∑H
x̃ỹn

σ2
x̃n

∑2
ỹn

. (20)

Therefore, the BM-PTEQ cost function using the uncon-
strained MMSE PTEQs p̃∗,n in (19) when considering the
maximum subchannel SNR at FEQs outputs in (16) is
introduced as

arg max
p̃∗,n

bmax
PTEQ

= arg max
p̃∗,n

∑

n∈Nd

log2

Γn + (1− Γn)
(∑

x̃ỹn

∑H
x̃ỹn /σ

2
x̃n

∑2
ỹn

)

Γn
{

1−∑
x̃ỹn

∑H
x̃ỹn /σ

2
x̃n

∑2
ỹn

}

= arg max
p̃∗,n

∑

n∈Nd

log2

Γnσ
2
x̃n

+ p̃∗,n
∑

x̃ỹn −p̃∗,nΓn
∑

x̃ỹn

Γnσ
2
x̃n
− p̃∗,nΓn

∑
x̃ỹn

= arg max
p̃∗,n

∑

n∈Nd

log2

Γn
{
σ2
x̃n

}
+ (1− Γn)

{
p̃H∗,n

∑2
ỹn p̃∗,n

}

Γn
{
σ2
x̃n
− p̃H∗,n

∑2
ỹn p̃∗,n

}

=arg max
p̃∗,n

∑

n∈Nd

log2

p̃∗,nΓnp̃H∗,n+p̃∗,n ρ2
n p̃H∗,n−p̃∗,nΓnρ2

n p̃H∗,n

p̃∗,nΓn p̃H∗,n−p̃∗,nΓnρ2
n p̃H∗,n

= arg max
p̃∗,n

∑

n∈Nd

log2

p̃∗,n
{
Γn

(
1− ρ2

n

)
+ ρ2

n

}
p̃H∗,n

p̃∗,n
{
Γn

(
1− ρ2

n

)}
p̃H∗,n

=arg max
p̃∗,n

∑

n∈Nd

log2

p̃∗,n

{
Γn

(
σ2
x̃n

∑2
ỹn−g

)
+ g

}
p̃H∗,n

p̃∗,n

{
Γn

(
σ2
x̃n

∑2
ỹn−g

)}
p̃H∗,n

= arg max
p̃∗,n

∑

n∈Nd

log2

p̃∗,nAnp̃H∗,n

p̃∗,nBnp̃H∗,n
,

(21)

where g represents
∑

x̃ ỹn

∑H
x̃ ỹn and An and Bn depend on the

second order statistics information σ2
x̃n

,
∑2

ỹn and
∑

x̃ỹn

An = Γn

⎛
⎝σ2

x̃n

2∑

ỹn

−
∑

x̃ ỹn

H∑

x̃ ỹn

⎞
⎠ +

∑

x̃ ỹn

H∑

x̃ ỹn

,

Bn = Γn

⎛
⎝σ2

x̃n

2∑

ỹn

−
∑

x̃ ỹn

H∑

x̃ ỹn

⎞
⎠

(22)

Clearly, (21) has the exact form for the BM-TEQ solution
of [11] with only a trivial interchange of the maximisation
and minimisation operations for the argument. Therefore,
the solution to achieve BM-PTEQ p̃∗,n can be also achieved
with the same methodology for the bit rate maximising TEQ
of [11]. This leads us to the crucial point that, given the
proven superior performance of PTEQ over TEQ [13], the
BM-PTEQ will always continue to do better than the BM-
TEQ of [11] in the sense of bit rate maximising performance.

Proposition 1. The bit rate performance of the BM-PTEQ is
greater than or equal to that of the BM-TEQ,

bmax
PTEQ ≥ bmax

TEQ, (23)

where bmax
TEQ represents the maximum bit rate achievable from

the BM-TEQ of [11].



EURASIP Journal on Advances in Signal Processing 7

5. An Adaptive Bit Rate Maximising
Per-Tone Equalisation

In Section 5.1, we introduce the constrained nonlinear
exponentially weighted cost function for the complex-valued
PTEQ. This criterion is translated with the deterministic
approach to accomplish the maximum number of bits per
DMT-symbol. With this nonlinear criterion in Section 5.1,
we introduce an adaptive BM-PTEQ algorithm based on
RLM algorithm in Section 5.2.

5.1. The Constrained Nonlinear BM-PTEQ Cost Function.
This criterion follows from the constrained nonlinear opti-
misation problem as described in [12], which is modified for
the complex-valued PTEQs criterion as

max
p̃∗,n

∑

n∈Nd

log2

(
1 +

SNRn

Γn

)
, (24)

with

SNRn =
σ2
x̃n

E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣2
} , (25)

subject to

p̃∗,n =
E
{
ỹHk,nx̃k,n

}

E
{
ỹHk,nỹk,n

} =
∑H

x̃ ỹn∑2
ỹn

, ∀n ∈ Nd, (26)

where x̃k,n is the kth transmitted DMT-symbol on tone n.
The σ2

x̃n
= E{|x̃k,n|2} is a variance and ỹk,n is the kth

unequalised T × 1 symbol vector after sliding DFT at tone
n. We aim to maximise the number of bits per DMT-symbol
in (24) subject to the unconstrained MMSE PTEQ p̃∗,n in
(26) with the subchannel SNR on n tone in (25).

A constrained optimisation criterion is typically restated
as a cost minimisation

J
(
p̃∗,n

) =
∑

n∈Nd

log2

(
1 +

SNRn

Γn

)
. (27)

By means of the least squares criterion, the gradient of
(27) with respect to PTEQs p̃∗,n can be rewritten compactly
with an exponentially weighted over K DMT-symbols as (see
also in the appendix)

∇p̃∗,n J =
∑

n∈Nd

K∑

k=1

λK−kγ̃k,nỹHk,ne
∗
k,n, (28)

with

γ̃k,n = SNR2
n

σ2
x̃k,n

(Γn + SNRn)
,

ek,n = E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣
}

,

(29)

where γ̃k,n is a tone-dependent weight and ek,n is the error on
tone n at symbol k.

Hence, γ̃k,n is replaced by an instantaneous a priori esti-
mate based on the previous parameter tap-weight estimate
vector p̂k−1,n on tone n at symbol k − 1. Consequently,
the tone-dependent weight estimate γ̂k,n at tone n for each
symbol k is given as

γ̂k,n =
%SNR

2
k,n

σ2
x̃k,n

(
Γn + %SNRk,n

) , (30)

where

%SNRk,n =
σ2
x̃n∣∣∣x̃k,n − p̂Hk−1,nỹk,n

∣∣∣2 . (31)

The gradient in (28) is also applied to the nonlinear
weighted problem with varying weight estimate γ̂k,n and the
instantaneous estimate SNR at each symbol k for n tone
%SNRk,n. We note that the denominator of %SNRk,n in (31)
is equal to the MSE with the previous tap-weight estimate
vector p̂k−1,n at the PTEQ output.

Therefore, a constrained nonlinear exponentially weight-
ed least squares cost function for the complex-valued PTEQ
tap-weight estimate vector p̂k,n is defined as

JNL
(
p̂k,n

) =
∑

n∈Nd

1
2

K∑

k=1

λK−kγ̂k,n
∣∣ẽk,n

∣∣2, (32)

ẽk,n = x̃k,n − p̂Hk−1,nỹk,n, (33)

where ẽk,n is the a priori estimate error at each DMT-
symbol. With the nonlinear cost function in (32), an adaptive
algorithm introduced in Section 5.2 can achieve the same
performance as the BM-PTEQ cost function in (21) with
these approximations in (30) and (31).

5.2. An Adaptive BM-PTEQ Algorithm. In this section, we
introduce the methodology in solving the nonlinear cost
function in (32) recursively at each symbol k based on an
adaptive recursive Levenberg-Marquardt (RLM) algorithm
updating of T × 1 PTEQ tap-weight vector p̂k,n at tone n
for n ∈ Nd. The iterative Levenberg Marquadt (LM) method
is classical and well-known strategies for solving nonlinear
batch optimisation problems. The recursive LM is definitely
modified for adaptively solving nonlinear problems by earlier
algorithms as the recursive identification system presented in
[18] and neural network for nonlinear adaptive filter training
described in [19].

The constrained nonlinear exponentially least squares
cost criterion in (32) for a complex-valued tap-weight
estimate PTEQ p̂k,n at DMT-symbol k on tone n is defined
as

J
(
p̂k,n

) = 1
2

K∑

k=1

λK−kγ̂k,n
∣∣ẽk,n

∣∣2, (34)

where γ̂k,n is a scalar of tone-dependent weight estimate
as given in (30) and ẽk,n is the a priori estimate error as
described in (33).
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Following [18], a tap-weight estimate PTEQ p̂k,n can be
obtained at each DMT-symbol k as

p̂k,n = p̂k−1,n + Ř−1
k,ng̃k,n, (35)

where the gradient estimate g̃k,n is derived by differentiating
the cost function in (34) with respect to p̂k,n in (35) as

g̃k,n = ∇p̂k,n J = γ̂k,nỹHk,nẽ
∗
k,n. (36)

Based on LM method [20], the regularised approximation
Hessian Řk,n is reformed as

Řk,n =
K∑

k=1

λK−k
({

γ̂k,nỹk,nỹHk,n

}
+ δk,n diag

{
Rk,n

})
, (37)

Rk,n =
K∑

k=1

λK−kγ̂k,nỹk,nỹHk,n, (38)

where Rk,n is the approximation Hessian for the complexed
PTEQ. The δk,n is the regularisation parameter at symbol k
[19], in which this algorithm ensures the stability by taking
the changing of the approximation Hessian over symbol into
account. Hence, the regularised approximation Hessian Řk,n

is regularised for stability reason by the second term in (37).
With the recursion method, the tap-weight estimate

PTEQ vector p̂k,n is updated as

p̂k,n = p̂k−1,n + (1− λ)R̂−1
k,ng̃k,n, (39)

where

R̂k,n = λR̂k−1,n + (1− λ)
{{

γ̂k,nỹk,nỹHk,n

}

+δk,n diag
{
γ̂k,nỹk,nỹHk,n

}}
,

(40)

where λ is the forgetting-factor, 0 < λ < 1. The regularised
approximation Hessian Řk,n in (37) is replaced by an
exponentially weighted estimate approximation Hessian R̂k,n

in (40).

5.2.1. The Modified Inverse Regularised Approximation Hes-
sian Matrix. Unfortunately, the matrix inversion lemma
cannot be used directly on the updating approximation
Hessian R̂k,n in (40). So, we rearrange R̂k,n

R̂k,n = λR̂k−1,n + (1− λ) γ̂k,n

{{
ỹk,nỹHk,n

}

+δk,n diag
{
ỹk,nỹHk,n

}}
,

(41)

by adding the ϕk,n matrix and ψk,n matrix into (41) ( The
matrix inversion lemma. Let A and B be two positive definite
M-by-M matrices related by A = B−1 + C ·D−1 · CH , where
D is a positive definite N-by-M matrix and C is an M-by-N
matrix. We may express the inverse of the matrix A by A−1 =
B − BC(D + CHBC)−1CHB.) .

We then introduce how to define R̃k,n as

R̃k,n = λR̃k−1,n + (1− λ)γ̂k,n

{
ψk,nϕk,nψ

H
k,n

}
, (42)

where

ψk,n =
⎡
⎣ ỹk,n 0T

Ĩ

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ(1)
k,n 0 0 · · · 0

ỹ(2)
k,n 1 0 · · · 0

ỹ(3)
k,n 0 1 · · · 0

...
...

. . .
. . .

...

ỹ(T)
k,n 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

Υk,n = δk,n diag
{
ỹk,nỹHk,n

}
=

⎡
⎣Υ11 0T

0 Υ22

⎤
⎦, (44)

ϕk,n =
⎡
⎣1 0T

0 Υ22

⎤
⎦, (45)

where ψk,n denotes the T × T matrix. The Υ22 is the (T −
1) × (T − 1) block diagonal matrix. The size of zero vector
0 is of 1 × (T − 1), and the size of the identity matrix Ĩ is
of (T − 1) × (T − 1). Notice that Υk,n in (44) and ϕk,n in
(45) are the T × T block diagonal matrices. Hence, the ϕk,n
is nonsingular, if and only if its inverse exists [21]. With the
approximation Hessian R̃k,n assumed to be positive definite
and therefore nonsingular, we can apply the matrix inversion
lemma to the modified approximation Hessian R̃k,n in (42)
instead of R̂k,n in (41).

We make the following identifications as A = R̃k,n,
B−1 = λR̃k−1,n, C = ψk,n, D−1 = (1 − λ)γ̂k,nϕk,n. By
substituting these definitions in the matrix inversion lemma,
we then obtain the following recursive equation for the
inverse of the modified approximation Hessian R̃k,n as

R̃−1
k,n = λ−1R̃−1

k−1,n − λ−1R̃−1
k−1,nK̃k,nψ

H
k,n, (46)

K̃k,n =
λ−1R̃−1

k−1,nψk,n{
(1− λ)−1γ̂−1

k,nϕ
−1
k,n

}
+
{
λ−1ψH

k,nR̃
−1
k−1,nψk,n

} , (47)

where γ̂k,n is a scalar of tone-dependent weight estimate as
given in (30).

Consequently, the tap-weight estimate PTEQ vector p̂k,n

can be computed as

p̂k,n = p̂k−1,n + (1− λ)R̃−1
k,ng̃k,n, (48)

where R̃−1
k,n is introduced above in (46) and g̃k,n is the gradient

estimate in (36).

5.2.2. An Adaptive Inverse Square-Root Recursive Levenberg-
Marquardt (iQR-RLM) Algorithm. We consider the Givens
rotation-based adaptive inverse square-root (QR) algorithm.
An adaptive inverse QR algorithm is a QR decomposition-
based recursive least squares (QR-RLS) algorithm that is
designed to obtain explicit weight extraction by work-
ing directly with the incoming data matrix via the QR
decomposition [22]. Accordingly, the QR-RLS algorithm is
numerically more stable than the standard RLS algorithm
[23].
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Notice that the modified inverse approximation Hessian
R̃−1
k,n in (46) is also derived in a similar fashion with the

inverse correlation Φ−1
k,n of RLS algorithm as described in

[23]. Hence, the form of R̃−1
k,n in (46) of RLM algorithm is

similar to the inverse correlation Φ−1
k,n of RLS algorithm. We

then introduce the Givens rotation-based adaptive inverse
QR algorithm, which can be applied for R̃−1

k,n of RLM
algorithm for computing the PTEQ tap-weight estimate p̂k,n

at symbol k for tone n ∈ Nd.
For convenience of computation, let

Dk,n � R̃−1
k,n,

zk,n =
{

(1− λ)−1γ̂−1
k,nϕ

−1
k,n

}
+
{
λ−1ψH

k,nDk−1,nψk,n

}
.

(49)

Using these definitions in (49), we may rewrite R̃−1
k,n (46)

as

Dk,n = λ−1Dk−1,n − λ−1Dk−1,nψk,nz
−1
k,nψ

H
k,nλ

−1Dk−1,n. (50)

There are 4-matrix terms that constitute the right-hand
side of (50), we may introduce the 2× 2 block matrix G as

G =
⎡
⎣ zk,n λ−1ψH

k,nDk−1,n

λ−1Dk−1,nψk,n λ−1Dk−1,n

⎤
⎦. (51)

We then redefine the block matrix G in (51) using the
Cholesky factorisation as

G = AAH ,

A =
⎡
⎣(1− λ)−1/2 γ̂−1/2

k,n ϕ−1/2
k,n λ−1/2ψH

k,nD
1/2
k−1,n

0 λ−1/2D1/2
k−1,n

⎤
⎦,

(52)

where 0 is the null vector, the prearray A is an upper
triangular matrix and Dk−1,n indicates with its factor

Dk−1,n = D1/2
k−1,nD

H/2
k−1,n. (53)

We may set the prearray A to resulting the postarray
B transformation for iQR-RLM algorithm using the matrix
factorisation lemma as

AΘ = B,
⎡
⎣(1− λ)−1/2γ̂−1/2

k,n ϕ−1/2
k,n λ−1/2ψH

k,nD
1/2
k−1,n

0 λ−1/2D1/2
k−1,n

⎤
⎦Θ

=
⎡
⎣ z1/2

k,n 0T

K̃k,nz
1/2
k,n D1/2

k,n

⎤
⎦,

(54)

where Θ is a unitary rotation and K̃k,n is described in (47)
( The matrix factorisation lemma. Given any A and B n ×
m matrices with dimention n ≤ m, this lemma states by
following [23] as AΘΘHAH = BBH , if and only if, there exists
a unitary matrix Θ such that AΘ = B and ΘΘH = I.) .

We note that D1/2
k,n in the right-hand side of (54) is the

lower triangular matrix. In virtue of the product of square-

root matrix its Hermitian transpose

Dk,n = D1/2
k,nD

H/2
k,n (55)

is always nonnegative matrix as derived in [24].
Therefore, the tap-weight estimate PTEQ vector p̂k,n

based on iQR-RLM algorithm can be performed

p̂k,n = p̂k−1,n + (1− λ)Dk,ng̃k,n, (56)

where Dk,n is defined in (55) and g̃k,n is the gradient estimate
in (36).

5.2.3. The Adaptive Regularisation Parameter. Both the con-
vergence rate and stability are affected by a suitable choice
of the regularisation parameter δk,n such that a small δk,n

could cause the RLM algorithm to be unstable, while a
large δk,n could deduce slow convergence [18]. So the
parameter δk,n should be adapted during convergence. An
adaptive regularisation parameter algorithm based on the
instantaneous estimates of the predicted and actual cost
criterion reduction is proposed in [19]. Hence, we apply this
algorithm for an adaptive iQR-RLM algorithm as explained
below.

Following [19], the predicted instantaneous cost reduc-
tion r̃pk,n of the criterion in (34) for each update of iQRRLM-
based algorithm (56) is computed as

r̃pk,n = (1− λ)
[
γ̂k,nỹHk,nẽ

∗
k,n

]H
Dk,n

[
γ̂k,nỹHk,nẽ

∗
k,n

]
, (57)

ẽk,n = x̃k,n − p̂Hk−1,nỹk,n, (58)

where γ̂k,n is a scalar of tone-dependent weight estimate as
given in (30). The error ẽk,n is a priori estimate error, and Dk,n

is the inverse of modified approximation Hessian in (55).
The actual instantaneous cost reduction r̃ak,n is deter-

mined by using a priori estimate error ẽk,n in (58) and a

posteriori estimate error ξ̃k,n as

r̃ak,n = γ̂k,n

{∣∣ẽk,n
∣∣2 −

∣∣∣ξ̃k,n

∣∣∣2
}

,

ξ̃k,n = x̃k,n − p̂Hk,nỹk,n.

(59)

Then, the values for δk,n can be adapted using the
following criterion.

(i) Increase δk−1,n by a factor of α if r̃ak,n /r̃pk,n is smaller
than a threshold ζ .

(ii) Decrease δk−1,n by a factor of 1/α if r̃ak,n /r̃pk,n is larger
than a threshold 1− ζ .

The adaptive regularisation parameter δk,n method is sum-
marised as

δk,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α · δk−1,n, if r̃ak,n < ζ r̃pk,n ,

1
α
· δk−1,n, if r̃ak,n > (1− ζ) r̃pk,n ,

δk−1,n, otherwise,

(60)

where 0 < ζ < 0.5 and a typical value is of 0.25.
Therefore, the iQR-RLM algorithm for BM-PTEQ using

adaptive regularisation method is summarised as described
in Algorithm 1.
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Starting with the soft-constrained initialisation as: p̂(0) = 0
For n ∈ Nd , n = 1, 2, . . ., compute.

for k = 1, 2, . . . ,K
(1) To arrange the block diagonal matrices ψk,n, Υk,n and ϕk,n as:

ψk,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ(1)
k,n 0 0 · · · 0

ỹ(2)
k,n 1 0 · · · 0

ỹ(3)
k,n 0 1 · · · 0

...
...

. . .
. . .

...

ỹ(T)
k,n 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υk,n = δk,n diag{ỹk,nỹHk,n} =
⎡
⎣ Υ11 0

0 Υ22

⎤
⎦,

ϕk,n =
⎡
⎣ 1 0

0 Υ22

⎤
⎦,

where ỹk,n =
[
ỹ(1)
k,n ỹ(2)

k,n · · · ỹ(T)
k,n

]T
.

(2) To compute %SNRk,n and γ̂k,n as:

%SNRk,n = σ2
x̃n

|x̃k,n − p̂H
k−1,nỹk,n|2

,

γ̂k,n =
%SNR

2

k,n

σ2
x̃n

(Γn + %SNRk,n)
.

(3) To compute Dk,n as:

A =
⎡
⎣ (1− λ)−1/2γ̂−1/2

k,n ϕ−1/2
k,n λ−1/2ψH

k,nD
1/2
k−1,n

0 λ−1/2D1/2
k−1,n

⎤
⎦,

AΘ =
⎡
⎣ B11 b12

b21 B22

⎤
⎦, where Θ is a unitary rotation,

Dk,n = B22BH
22.

(4) To compute p̂k,n as:

p̂k,n = p̂k−1,n + (1− λ)Dk,ng̃k,n,

where g̃k,n = γ̂k,nỹHk,nẽ
∗
k,n,

ẽk,n = x̃k,n − p̂H
k−1,nỹk,n.

(5) To compute δk,n as:

δk,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α · δk−1,n if r̃ak,n < ζr̃pk,n ,

1
α
· δk−1,n if r̃ak,n > (1− ζ)r̃pk,n ,

δk−1,n otherwise,

where r̃pk,n = (1− λ)[γ̂k,nỹHk,nẽ
∗
k,n]

H
Dk,n[γ̂k,nỹHk,nẽ

∗
k,n],

r̃ak,n = γ̂k,n{|ẽk,n|2 − |ξ̃k,n|
2
},

ξ̃k,n = x̃k,n − p̂H
k,n ỹk,n.

end
end

Algorithm 1: Summary of the proposed adaptive iQRRLM-based BM-PTEQ.
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6. Simulation Results

In this section, we performed transmission simulations for
the ADSL downstream including AWGN and NEXT over
the entire test channel. The used tones were starting at
tones 38 to 255, and the unused tones were set to zero.
The bit allocation calculation requires an estimate of SNR
on tone n ∈ Nd, when the noise energy is estimated after
per-tone equalisation. The carrier serving area (CSA) loop
nos. 1–8 were used for the test channel, which comprises 512
coefficients of CIR. The length of CP (ν) was 32. The SNR gap
of 9.8 dB, the coding gain of 4.2 dB, the noise margin of 6 dB,
and the input signal power of −40 dBm/Hz were used for all
active tones. The AWGN with a power of −140 dBm/Hz and
NEXT coming from 12 ADSL disturbers were included. All
simulations were done for T = 32, fs = 2.208 MHz, and
N = 512.

We compare the proposed MMSE-based BM-PTEQ with
iterative method, the proposed adaptive BM-PTEQ with
adaptive iQRRLM-based design, with the RLM-based PTEQ
approach [6], with other BM-TEQ such as BM-TEQ with
iterative scheme [11] and with the recursive method [12].
The BM-TEQ was initialised with w = [1 0 · · · 0]T , as
presented in [11]. The proposed iQRRLM-based BM-PTEQ
can be computed with the soft-constrained initialisation. The
regularisation parameter δk of adaptive RLM-based PTEQ
[6], adaptive RLM-based BM-TEQ [12], and proposed adap-
tive iQRRLM-based BM-PTEQ were initialised at δ0 = 10−3

for all active tones. The forgetting-factor λ of the adaptive
RLM-based PTEQ [6], the RLM-based adaptive BM-TEQ
(ABM-TEQ) [12], and the proposed adaptive iQRRLM-
based BM-PTEQ (ABM-PTEQ) were increased from λ =
0.95 during the first 150 update-symbols to λ = 0.99 for the
remaining updated symbols. The adaptation parameter α of
δk of the proposed iQRRLM-based adaptive BM-PTEQ was
fixed at α = 2.

Figure 1 depicts that the learning curves of bit rate
convergence of all adaptive algorithms as a function of
the number of updated DMT-symbols for the samples of
CSA loop no. 1, no. 2, no. 4 and no. 5. The proposed
iQR-RLM adaptive BM-PTEQ (ABM-PTEQ) is compared
with the RLM-based adaptive BM-TEQ (ABM-TEQ) [12].
The bit rate of the RLM-based adaptive BM-TEQ [12]
curves closely to reach the maximum bit rate of BM-TEQ
[11]. Meanwhile, the learning curve of proposed adaptive
BM-PTEQ with iQRRLM-based algorithm converges nearly
to the truly MMSE-based BM-PTEQ. Approximately, 100
updated symbols are appeared to converge to steady-state
condition for the proposed iQRRLM-based adaptive BM-
PTEQ. The curve of proposed iQRRLM-based adaptive
BM-PTEQ has slower convergence than the RLM-based
adaptive BM-TEQ. The adaptive RLM-based PTEQ has
the slowest convergence. In [11], the performance of BM-
TEQ has shown closely to PTEQ and the learning curve
of adaptive RLM-based BM-TEQ compared with adaptive
RLM-based PTEQ [6] in both these figures reveal to
confirm.

Figure 2 illustrates the bit rate as a function of syn-
chronisation delay Δ of T-tap complexed equalisers for the
samples of CSA loop no. 1, no. 2, no. 4, and no. 5, when
the numbers of taps of equalisers equal 32 (T = 32). The
proposed BM-PTEQ and ABM-PTEQ are compared with
the BM-TEQ [11] design. It is noticed that the proposed
ABM-PTEQ performance has the same direction with the
proposed BM-PTEQ design along the number of increasing
delay for all samples of CSA loop. The performance of
the BM-TEQ confirms that its bit rate has been smooth
as a function of delay, as presented in [11]. The proposed
ABM-PTEQ and BM-PTEQ appear to give higher bit rate
than BM-TEQ design for a given range of synchronisation
delay.

Figure 3 reveals the bit rate performance of the proposed
MMSE-based BM-PTEQ and adaptive iQRRLM-based BM-
PTEQ (ABM-PTEQ) for all CSA loop nos. 1–8 at starting
tones 38 to 255 ADSL downstream when the fixed delay
equals 45 (Δ = 45). The performance of proposed ABM-
PTEQ is compared with BM-TEQ [11] and adaptive RLM-
based BM-TEQ (ABM-TEQ) [12]. It is shown that the
proposed ABM-PTEQ is similar to the performance of BM-
PTEQ approach. The bit rate of proposed ABM-PTEQ can be
improved as compared to the BM-TEQ and the ABM-TEQ
design.

7. Conclusion

In this paper, we present the BM-PTEQ design with the
nonlinear bit rate maximising cost function. The proposed
BM-PTEQ cost function is derived from the exact subchan-
nel SNR model at the FEQ outputs. Since, the solution
to achieve the BM-PTEQ criterion is exactly the same
form of that of the BM-TEQ, we conclude that the BM-
PTEQ can always perform better than or equal to the
BM-TEQ in the sense of bit rate maximising performance.
For achievable BM-PTEQ in practice, we then introduce
the methodology of adaptive inverse-QR RLM-based BM-
PTEQ design by the nonlinear bit rate maximising cost
criterion. The proposed BM-PTEQ and iQRRLM-based
ABM-PTEQ can ensure the performance of maximum bit
rate. Simulation results with several ADSL parameters show
that the proposed BM-PTEQ and iQRRLM-based ABM-
PTEQ are able to improve superior bit rate performance as
compared with BM-TEQ and ABM-TEQ design for all CSA
loop.

Appendix

The constrained optimisation criterion is given as

J
(
p̃∗,n

) =
∑

n∈Nd

log2

(
1 +

SNRn

Γn

)
. (A.1)
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The derivation of the gradient of (A.1) with respect to PTEQ
p̃∗,n is

∇p̃∗,n J =
∑

n∈Nd

∂

∂p̃∗,n

{
log2

(
1 +

SNRn

Γn

)}

=
∑

n∈Nd

(
Γn

Γn + SNRn

)
∂

∂p̃∗,n

(
1 +

SNRn

Γn

)

=
∑

n∈Nd

(
σ2
x̃n

Γn + SNRn

)
ỹHk,ne

∗
k,n(

E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣2
})2

=
∑

n∈Nd

SNR2
n

σ2
x̃k,n

(Γn + SNRn)
ỹHk,ne

∗
k,n

=
∑

n∈Nd

γ̃k,nỹHk,ne
∗
k,n,

(A.2)

where SNRn is the SNR on tone n, and γ̃k,n is a tone-
dependent weight at symbol k on tone n

SNRn =
σ2
x̃n

E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣2
} ,

γ̃k,n = SNR2
n

σ2
x̃n

(Γn + SNRn)
,

ek,n = E
{∣∣∣x̃k,n − p̃H∗,nỹk,n

∣∣∣
}
.

(A.3)

The gradient in (A.2) of the constrained optimisation
criterion in (A.1) with respect to PTEQ p̃∗,n can be expressed
with the exponentially weighted over K DMT-symbols as

∇p̃∗,n J =
∑

n∈Nd

K∑

k=1

λK−kγ̃k,nỹHk,ne
∗
k,n, (A.4)

where λ is an exponential weighting factor or forgetting
factor.
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