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1. Introduction

Bistatic radar systems are gaining more and more interest
over the past two decades due to the freedom and flexibility it
offers in deploying transmitters and receivers. Other advan-
tages include the ability to use inexpensive receive modules,
the use of continuous wave signals, the use of transmitters
of opportunity, lower maintenance cost, operation without
frequency clearance (if using third party transmitters), covert
operation of the receiver, increase resilience to electrometric
countermeasures, ability to hide the receiver location and the
waveform being used, and huge enhancement of the target
radar cross-section due to geometrical effects. However,
several disadvantages include the system complexity, cost of
providing communication between sites, lack of any control
over the transmitter (if using third party transmitters), and
reduced low-level coverage due to the need for line-of-sight
from several locations.

Passive radar systems (also referred to as passive coherent
location and passive covert radar) encompass a class of
radar systems that detect and track objects by processing
reflections from noncooperative sources of illumination
in the environment, such as commercial broadcast and

communications signals. It is a specific case of bistatic
radar that exploites cooperative and noncooperative radar
transmitters. References [1–5] are some of the examples.

In bistatic radar systems, the time synchronization is
one of the most important key technology areas. This is
necessary to maintain bistatic phase coherency between the
transmitter and the receiver. This is the main factor that
may severely limit the radar performance. Because of the
separation between the transmitter and the receiver, one
needs to maintain the synchronization of receive and trans-
mit signals, that is, accurate phase information, transmit
time. Transmitter geolocation needs to be conveyed about
the transmitter itself and the transmitted pulse to the receiver
to reconstitute a phase coherent image at the receiver. For
bistatic radar usually two or more separate local oscillators
(LO), one in the transmitters and one in each of the receivers,
need to be synchronized. In a monostatic configuration,
the same LO is shared physically by both the transmitter
and the receiver avoiding the need for synchronization. In
bistatic configurations, the transmitter-related information
is delivered by a separate data link between the transmitter
and the receiver. Such a data link is highly probable for
failures and demand additional hardware complexity. Other
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approaches include the use of GPS systems that may allow us
to synchronize the time over a reasonably long period with a
time difference of less than 1 nanosecond. This topic has been
discussed widely in the existing literature by various authors
and various improved methods are also available. References
[6–9] are some of the examples. In this study we propose
an innovative approach to locate the targets without the aid
of the communication satellites or the GPS systems. Under
the proposed technique, one does not need to maintain any
form of synchronization between transmitter and receiver, in
respect of, instant of pulse transmission and transmit signal
phase.

This study introduces a technique to resolve the synchro-
nization problem related to bistatic radar by using a new and
emerging class of signal processing technique that may be
referred to as space fast-time adaptive processing (SFTAP).
The SFTAP is conventionally applied to null mainlobe
interferers using an array of receivers in a monostatic
configuration [10–15]. In a conventional space fast-time
adaptive processor one blindly stacks a large number of
consecutive range cell returns to form a space fast-time
adaptive processor expecting that the process would null
the interference signal (commonly known as the mainlobe
signal) due to the presence of its delayed copies known as
terrain scattered interference paths. Recent advances in this
type of signal processing have led to the introduction of a
processor known as the Terrain Scattered Interference (TSI)
finder [14], the function of which is to avoid the stacking
of a large number of range cells blindly, instead it leads
the SFTAP processor to the correct range cell position to
form the space fast-time data snap. The TSI finder basically
identifies all the delayed copies of the signal of interest, which
include the multipath bounces off various other targets and
the ground. This is achieved by forming a space fast-time
beam in the direction of the signal of interest, or in our case
the transmitter, by assuming the bearing of the transmitter
is precisely known. Such a beam is able to null all other
existing sidelobe arrivals, which are known as interferers or
jammers, which are uncorrelated with the signal of interest.
The objective of the beam is to identify all the sidelobe
arrivals which are delayed versions of the look direction
signal.

An application of this theory would be the detection
of airborne targets in a maritime environment where the
transmitter is placed several kilometers away from the
maritime platform in a known position (or the position
of a moving transmitter location is accurately known to
the receiver system in order to form the space-time beam
at any given time). Another important application would
be to detect high altitude or space-based targets, such as
intercontinental ballistic missiles, using a bistatic arrange-
ment where a series of transmitters and receivers can be
geographically distributed to achieve the best possible results.
In such a scenario, one would locate all the transmitters
in high altitude locations (mountains), where receivers can
receive direct signal (which can be a random continuous
waveform) from all or most of the transmitters in order
to track each of the multipath signals (target reflections)
originating due to the known transmitters. The proposed
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Figure 1: Transmitter and receiver arrangements with an airborne
target, a jammer, and one transmitter.

algorithm will identify each multipath with its associated
direct transmit signal, by forming a space fast-time beam in
the direction of each known transmitter.

We aim to solve the problem by locking the radar
receiver in the direction of a known transmitter at a known
bearing and distance (usually a third party transmitter in
the line-of-sight). The objective is to receive its direct signal
by forming a beam in the direction of the transmitter (a
space-time beam), which allows us to effectively form a
secondary search beam for arrival of the same stream of
data (with a delay) due to reflections off the targets and
the ground (these beams are formed simultaneously). Such
delayed versions usually have a different bearing and a fixed
delay factor during the integration period. In this study these
are termed as multipath arrivals of the main beam signal
(or in the case of ground reflections they are termed as
TSI arrivals). Once this knowledge is established, for every
multipath or TSI arrival, one can estimate the location of
the reflection point via triangulation. While some points
are identified as targets some may correspond to ground
reflections. Reflection points which vary over time may be
classified as moving targets, at a postprocessing stage.

In this study, first we formulate the problem (Section 2),
and then in Section 3 we discuss the properties of the
original TSI finder. In Section 4 we introduce the second
processor (a postprocessor) to identify all target bearings
that may include all the bounced rays off the moving
targets as well as stationary targets (ground reflections),
by forming a beam in the desired direction which in this
case is the transmitter direction. In order to achieve this,
we introduce an innovative multipath bearing estimator
using two very different optimization approaches. Both
solutions are discussed in detail as potential solutions to
the multipath bearing estimation problem. Section 5 briefly
presents the formula for estimating the target location.
Finally in Section 6 we carry out a simulation study to
demonstrate bistatic scenarios including multiple air target
detection using a known transmitter in a known direction,
which transmits a random continuous wave signal.

2. Formulation

Suppose we have an N-channel radar receiver (Figure 1)
whose N × 1 steering manifold is represented by s(φ, θ),
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where φ is the azimuth angle, θ is the elevation angle,
s(φ, θ)Hs(φ, θ) = N , and the superscript H denotes the
Hermitian transpose. The tth range gate, N × 1 measured
signal x(t) (t is also the fast-time scale or an instant of
sampling in fast-time) can be written as

x(t) = j1(t)s
(
φ1, θ1

)
+ j2(t)s

(
φ2, θ2

)

+
a1∑

m=1

β1,m j1
(
t − n1,m

)
s
(
φ1,m, θ1,m

)

+
a2∑

m=1

β2,m j2
(
t − n2,m

)
s
(
φ2,m, θ2,m

)
+ ε,

(1)

where j1(t), j2(t) represent a series of complex random
amplitudes corresponding to two far field sources, with the
directions of arrival pairs, (φ1, θ1) and (φ2, θ2), respectively.
The third term represents Scattered Interference (in our
case, multipath bounces) paths off the first source with
time lags (path lags) n1,1,n1,2,n1,3, . . . ,n1,a1 , the scattering
coefficients |β1,m|2 < 1, m = 1, 2, . . . , a1, and the associated
direction of arrival pairs (φ1,m, θ1,m) (m = 1, 2, . . . , a1). The
fourth term is the multipaths off the second source with
path delays n2,1,n2,2,n2,3, . . . ,n2,a2 , the scattering coefficients
|β2,m|2 < 1, m = 1, 2, . . . , a2, and the associated direction
of arrivals (φ2,m, θ2,m) (m = 1, 2, . . . , a2). More sources and
multiple paths from each source are accepted in general,
but for the sake of brevity, we represent one of each and ε
represents the N × 1 white noise component. In this study
we consider the clutter-free case. Furthermore, we assume
that ρ2

k = E{| jk(t)|2} (k = 1, 2, . . .) are the power levels
of each source, and |βk,m|2ρ2

k (m = 1, 2, . . .) represent the
multipath power levels associated with each bounce from
the kth source, where E{·} denotes the expectation operator
with respect to the variable t. Throughout the analysis we
assume that we are interested only in the source powers
(as potential transmit sources) that are above the channel
noise power, that is, snrk = ρ2

k/σ
2
n > 1, k = 1, 2, . . .,

E{εεH} = σ2
nIN , where snrk is the transmit source power

to noise power ratio per channel, σ2
n is the white noise

power present in any channel, and IN is the unit identity
matrix (the effect of snrk = ρ2

k/σ
2
n < 1, k = 1, 2, . . .,

is discussed in the simulation section). Without loss of
generality we use the notations s1 and s2 to represent s(φ1, θ1)
and s(φ2, θ2), respectively, but the steering vectors associated
with multipath arrivals are represented by two subscript
notations s1,m = s(φ1,m, θ1,m) (m = 1, 2, . . . , a1), s2,m =
s(φ2,m, θ2,m) (m = 1, 2, . . . , a2), and so on. Furthermore it
is assumed that E{ jk(t + l) jk(t + m)∗} = ρ2

kδ(l − m) (k =
1, 2, . . .), where ∗ denotes the complex conjugate operation.
This last assumption restricts the application of this theory
to noise-like sources that are essentially continuous over the
period of examination.

3. Multipath Lag Finder

3.1. Multipath Lag versus Power Spectrum. This section looks
at a technique that will identify each source (given the source
direction) and its associated multipath arrivals (if present).

Here we assume that the radar has been able to identify the
desired source as the suitable transmitter (i.e., ρ2

k/σ
2
n > 1) and

we would like to identify all its associated multipaths. The
formal use of the multipaths (known as Terrain Scattered
Interference paths or TSI) is very well known in literature
under the topic mainlobe jammer nulling [10–14]. However,
the use of the multipath in this study is restricted to the
bounces off the airborne targets (reflections off the ground
are discarded as discussed later). Throughout this study we
assume that the first source is our desired transmit source
with the known bearing. The array’s N×N spatial covariance
matrix has the following structure (for the case where two
sources and one multipath off each source is present):

Rx = ρ2
1s1sH1 + ρ2

2s2sH2 + ρ2
1

∣
∣β1,1

∣
∣2
s1,1sH1,1

+ ρ2
2

∣
∣β2,1

∣
∣2
s2,1sH2,1 + σ2

nIN .
(2)

Suppose now we compute the space fast-time covariance
R2 of size 2N × 2N corresponding to an arbitrarily chosen
fast-time lag n, then we have

R2 = E
{
Xn(t)Xn(t)H

} =
⎛

⎝
Rx ON×N

ON×N Rx

⎞

⎠

for n /=n1,m or n2,m m = 1, 2, . . . ,

(3)

where Xn(t) = (x(t)T , x(t + n)T)
T

is termed as the 2N × 1
space fast-time snapshot for the selected lag n and ON×N
is the N × N matrix with zero entries. However if n =
n1,m or n2,m for some m then we have (say n = n1,1 as an
example)

Xn1 (t) =
⎛

⎝
x(t)

x
(
t + n1,1

)

⎞

⎠

= j1(t)

⎛

⎝
s1

β1,1s1,1

⎞

⎠ + j2(t)

⎛

⎝
s2

oN×1

⎞

⎠

+ β1,1 j1
(
t − n1,1

)
⎛

⎝
s1,1

oN×1

⎞

⎠ + β2,1 j2
(
t − n2,1

)
⎛

⎝
s2,1

oN×1

⎞

⎠

+ j1
(
t + n1,1

)
⎛

⎝
oN×1

s1

⎞

⎠ + j2
(
t + n1,1

)
⎛

⎝
oN×1

s2

⎞

⎠

+ β2,1 j2
(
t − n2,1 + n1,1

)
⎛

⎝
oN×1

s2,1

⎞

⎠ +

⎛

⎝
ε1

ε2

⎞

⎠,

(4)

where ε1 and ε2 represent two independent measurements of
the white noise component, and oN×1 is the N × 1 column
of zeros. In this case the space fast-time covariance matrix is
given by

R2 =
⎛

⎝
Rx QH

Q Rx

⎞

⎠, (5)

where Q = ρ2
1β1,1s1,1sH1 .
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It is important to note that we assume that n1,m (m =
1, 2, . . .) represent digitized sample values of the fast-time
variable t and the reflected path is an integer-valued delay of
the direct path. If this assumption is not satisfied, one would
not achieve a perfect decorrelation, resulting in a nonzero off
diagonal term in (5) and a clear distinction between (4) and
(5) would not be possible. The existence of the delayed value
of the term Q can be made equal to zero, or not by suitably
choosing a delay value for n when forming the space-time
covariance matrix. However, Q is a matrix and as a result one
must consider its determinant value in order to differentiate
the two cases in (4) and (5). After extensive analysis, one
may find the signal processing gain is not acceptable for
this choice. A more physically meaningful measure would be
to consider its contribution to the overall processor output
power (when minimized with respect to the look direction
constraint). Depending on whether the power contribution
is zero or not we have the situation described in (4) or (5)
clearly identified under the above assumptions. The scaled
measure was introduced as the TSI finder [14], which is a
function of the chosen delay value n, must represent the
scaled version of the contribution due to the presence of
Q at the total output power. Even though one can come
up with many variations of the TSI finder based on the
same principle, the one expressed in this study is tested and
verified to have high signal processing gain as seen later (the
performance degradation of the finder spectrum when the
path delay is not an integer multiple of the range resolution
is discussed in the simulation section). Now suppose the
direction of arrival of the mainlobe source (transmitter) to
be (φ1, θ1), the first objective is to find all its associated path
delays, which may be of low power. This is carried out by the
lag finder in the lag domain by searching over all possible lag
values while the look direction is fixed at the desired source
direction (φ1, θ1). This is given by the spectrum

Ts(n) =
{

1
Pout

(
sH1 R−1

x s1
) − 1

}

, (6)

where Pout = wHR2w, w is the 2N×1 space fast-time weights
vector which minimizes the power while looking into the
direction of the source of interest (transmitter) subject to
the constraints: wHsA = 1 and wHsB = 0, where sA =
(sT1 ,oTN×1, )

T
sB = (oTN×1, sT1 )

T
. The solution w for each lag

is given by w = λR−1
2 sA + μR−1

2 sB, where the parameters λ
and μ are given by (one may apply the Lagrange multiplier
technique and optimize the function Φ(w) = wHR2w +
β(wHsA − 1) + ρwHsB with respect to w where β, ρ are
arbitrary parameters. As a result, ∂Φ/∂w = 0 gives us w =
λR−1

2 sA + μR−1
2 sB)

⎛

⎜
⎝
sHAR2

−1sA sHB R2
−1sA

sHAR2
−1sB sHB R2

−1sB

⎞

⎟
⎠

⎛

⎝
λ∗

μ∗

⎞

⎠ =
⎛

⎝
1

0

⎞

⎠. (7)

As the search function Ts(n) scans through all potential
lag values, one is able to identify the points at which a
corresponding delayed version of the look direction signal
(in this example it is the first source) is encountered as seen
in the next section.

Denoting Rx = ρ2
1s1sH1 + R1, we have

R1 = ρ2
2s2sH2 +

∣
∣β1,1

∣
∣2
ρ2

1s1,1sH1,1 +
∣
∣β2,1

∣
∣2
ρ2

2s2,1sH2,1 + σ2
nIN .

(8)

(The case of more than two sources and many number
of multipaths does not alter the theory to follow, this is
discussed in detail in Appendix A).

3.2. Analysis of the Multipath Finder. Now, for the sake of
convenience we represent the 2N × 1 space fast-time weights

vector as wT = (wT
1 ,wT

2 )
T

, where N×1 vector w1 refers to the
first N components of w and the rest is represented by N × 1
vector w2. First suppose that the chosen lag n is not equal to
any of the values n1, j ( j = 1, 2, . . .). In this case substituting
(3) and Rx = ρ2

1s1sH1 + R1 in Pout = wHR2w we have

Pout = wH
1 R1w1 + wH

2 R1w2 + ρ2
1w

H
1 s1sH1 w1 + ρ2

1w
H
2 s1sH1 w2.

(9)

The minimization of power subject to the same constraints:
wHsA = 1 and wHsB = 0 (i.e., wH

1 s1 = 1 and wH
2 s1 = 0) leads

to the following solution:

w1 = R−1
1 s1

(sH1 R
−1
1 s1)

, w2 = oN×1. (10)

(Note: this procedure cannot be used to find the weights,
the earlier described process must be applied to evaluate the
space fast-time weights vector).

In this case we have the following expression for the space
fast-time processor output power:

Pout = wHR2w

= wH
1 R1w1 + ρ2

1w
H
1 s1sH1 w1

= (sH1 R−1
1 s1

)−1
+ ρ2

1.

(11)

Substituting this expression in (6) leads to

TS(n)n /=n1,1
=

(
sH1 R−1

x s1
)−1

(
sH1 R

−1
1 s1

)−1
+ ρ2

1

− 1 = 0. (12)

(See Appendix B for a proof of the result (sH1 R−1
x s1)

−1 =
(sH1 R

−1
1 s1)

−1
+ ρ2

1). It was noticed that w2 = oN×1 if and
only if Q = ON×N . As a result we would consider the
scaled quantity Ts(n) = (Pout−wH

1 R1w1−ρ2
1w

H
1 s1sH1 w1)/Pout,

which is a function of w2 only, as a suitable multipath lag
finder. Further simplification of this quantity using the look
direction constraints, the result in Appendix B, and (10)
leads to (6).

The most important fact here is that we do not have
to assume the simple case of a mainlobe source and one
multipath path to prove that this quantity is zero. The finder
spectrum has the following properties, as we look into the
direction (φ1, θ1):

TS(n) ≈

⎧
⎪⎨

⎪⎩

P−1
out

(
sH1 R−1

x s1
)−1 − 1, n = n1, j for some j,

0, n /=n1, j .

(13)
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This can be further simplified to obtain the following
property (Appendix A):

TS(n) =

⎧
⎪⎨

⎪⎩

N
∣
∣β1, j

∣
∣2

snr1, n = n1, j for some j,

0, n /=n1, j .
(14)

This spectrum indicates an infinite processing gain (at least
in theory) and is able to detect extremely small power due
to multipath off the mainlobe source while suppressing the
source (transmitter) itself and any of the unrelated sidelobe
arrivals and their multipaths. Furthermore, we can arrive at
the following results.

In order to quantify the processing gain of this spectrum
one has to replace the zero figure with a quantity which
would represent the average output interference level present
in the spectrum whenever a lag mismatch occurs. Replacing
QH = ON×N in (3) by an approximate figure (when n /=n1,1)
would give rise to a small nonzero value. This figure can be
shown to be of the order N/Msnr1 (written as O(N/Msnr1)),
where M is the number of samples used in covariance
averaging. As a result we can establish processing gain as

TS(n)n=n1,1

TS(n)n /=n1,1

≈ N
∣
∣β1, j

∣
∣2

snr1

O
(
N/M snr1

) ≈ O
(
M|β1, j|2snr2

1

)
. (15)

(See Appendix A for the proof). This equation allows us to
establish the following lemma.

Lemma1. In order to detect a very small multipath power level
of the order 1/N (i.e., |β1 j|2 ≈ 1/N while satisfying snr1 > 1),
with a processing gain of approximately 10 dB (value at peak
point when a match occurs/the average output level when a
mismatch occurs), one needs to average around 10N(= M)
samples at the covariance matrix. However if snr1 is large (i.e.,
� 1) one can use fewer samples.

For example, if snr1 = 10 dB, then any value of N(>
M) can produce 10 dB processing gain at the spectrum for
multipath signals of order |β1 j|2 ≈ 1/N . In fact simulations
generally show much better processing gains as discussed
later.

4. Mutipath Bearing Estimator

4.1. MPDR Solution. In order to estimate the direction
of arrival of the multipath signals, we apply a modified
version of the traditionally used Minimum Power Distor-
tionless Response (MPDR) approach [15]. The fundamental
assumption we make in this section is that one is able to
identify all the associated time lags of the look direction
signal (transmitter). The remaining issue we need to resolve
here is to estimate the direction of arrival of all the
multipaths in the azimuth/elevation plane. Assume as in
(4) we have selected the desired delay factor (n1,1) to
form the space-fast time data vector. The 2N × 2N signal
covariance matrix formed by summing and averaging the
outer products Xn1,1 (t)Xn1,1 (t)H has the following proper-
ties. Its signal subspace, which is a subspace of complex

2N dimensional space (or C2N×1), formed by the base

vectors (sT1 ,β1,1sT1,1)
T

, (oTN×1, sT1 )
T

, (sT1,1,oTN×1)
T

, (sT2 ,oTN×1)
T

,

(oTN×1, sT2 )
T

, (sT2,1,oTN×1)
T

, and (oTN×1, sT2,1)
T

(more base vec-
tors may exist due to more sources and associated multipaths,
this will not alter the argument to follow). For any given
arbitrary s(φ, θ) consider the space fast-time steering vector

constructed by S(φ, θ,β)T = (s1(φ1, θ1)T ,βs(φ, θ)T)
T

, where
β is a variable. As φ, θ, β vary over all possible values, the

two steering vectors S(φ, θ,β1)T = (s1(φ1, θ1)T ,β1s(φ, θ)T)
T

and S(φ, θ,β2)T = (s1(φ1, θ1)T ,β2s(φ, θ)T)
T

are linearly
independent whenever β1 /=β2.

Now if we minimize WHR2W subject to WHS(φ, θ,β) =
1 by choosing an arbitrary value for β (where β /=β1, j , j =
1, 2, . . .), the natural tendency is to provide a solution W
that is almost orthogonal to all the base vectors (which

includes S(φ1,1, θ1,1,β1,1) = (sT1 ,β1,1sT1,1)
T

) in signal subspace
mentioned earlier. The reason for this is that the look
direction vector S(φ, θ,β) does not represent any vector in
the signal subspace. However, if we choose S(φ1,1, θ1,1,β1,1) =
(sT1 ,β1,1sT1,1)

T
(yet unknown) as the look direction vector,

we would receive energy corresponding to this vector while
minimizing the energy due to all other direction of arrivals.
Therefore, if we find a set of values for φ, θ, β in order
to optimize WHR2W, then the only available solution is
φ1,1, θ1,1, β1,1.

A suitable procedure to achieve this result is to first
optimise WHR2W for a fixed β and then further optimize the
output with respect to β, this way, one is expected to reach
a maxima for the quantity WHR2W at the correct value of

φ, θ, β which represent (sT1 ,β1,1sT1,1)
T

while minimizing the
energy content in the output due to all other signals in the
signal subspace.

Now consider

Φ(φ, θ,β) =WHR2W + λ
(
WHS(φ, θ,β)− 1

)
. (16)

By applying the Lagrange Multiplier technique we have

W = −λR−1
2 S(φ, θ,β), (17)

where λ is given by WHS(φ, θ,β) = 1. As a result we have

Φ(φ, θ,β)−1 = S(φ, θ,β)HR−1
2 S(φ, θ,β). (18)

Further differentiation of this quantity is carried out by
rewriting (18) in the following form:

Φ(φ, θ,β)−1

=
[(

s1

oN×1

)

+ β

(
oN×1

s

)]H

R−1
2

⎡

⎣

⎛

⎝
s1

oN×1

⎞

⎠ + β

(
oN×1

s

)⎤

⎦

= (Ŝ1 + βŜ
)H

R−1
2

(
Ŝ1 + βŜ

)

Φ(φ, θ,β)−1

= ŜH1 R
−1
2 Ŝ1 + β∗ŜHR−1

2 Ŝ1 + βŜH1 R
−1
2 Ŝ

+ |β|2ŜHR−1
2 Ŝ,

(19)

where, Ŝ1 = (s1, oTN×1)
T

and Ŝ = (oTN×1, sT)
T

.
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Now ∂Φ−1/∂β∗ = 0 gives

β = − (ŜHR−1
2 Ŝ1)

ŜHR−1
2 Ŝ

. (20)

For every given value of the pair (φ, θ) we can estimate β
using (20) and plot Φ in the (φ, θ) plane in order to obtain
the peak point which occurs at (φ1,1, θ1,1,β1,1) point only.
This procedure is carried out for every multipath detected
using the lag finder.

4.2. High-Resolution Approach. Suppose e1, e2, . . . , eM repre-
sent the signal subspace eigen vector of R2. Here the value of
M is selected using the usual rules used in the MUSIC tech-
nique [16, 17]. Assuming that this parameter is found using
the eigen analysis of R2 we apply the following argument.

The steering vector S(φ, θ,β)T = (s1(φ1, θ1)T ,βs(φ, θ)T)
T

corresponding to any signal in the signal subspace is a linear
combination of the eigen vectors e1, e2, . . . , eM . We may write
this as

S(φ, θ,β)T = EA, (21)

where E = e1, e2, . . . , eM , A = (a1, a2, . . . , aM)T and
a1, a2, . . . , aM represent a set of unknown parameters. This
linear system is satisfied for some A, only if the correct values
of β and (φ, θ) are encountered, namely, β = β1,1 and (φ, θ) =
(φ1,1, θ1,1). Any other value for these parameters would not
represent a steering value that corresponds to a signal that
exists in the signal subspace. Therefore a suitable spectrum
to detect these values would be

F(φ, θ,β) = ‖VS(φ, θ,β)‖2

= S(φ, θ,β)HVHVS(φ, θ,β),
(22)

where

V = [I2N×2N − E
(
EHE

)−1
EH
]

(23)

(known as the projection operator).
Further simplification of (22) leads to

F = SH1 V
HVŜ1 + β∗ŜHVHVŜ1

+ βŜ
H

1 V
HVS + ββ∗ŜHVHVŜ,

(24)

the best solution for β is obtained by (for every given φ, θ).
∂F/∂β∗ = 0, which leads to the solution

β = −
(
Ŝ
H
VHVŜ1

)

Ŝ
H
VHVŜ

. (25)

5. Target Location

The path delay and the direction of arrival of each multipath
can uniquely identify each target location (distance) as

follows. As illustrated in Figure 1, the distance between the
transmitter and the receiver is assumed to be a known
value d, the distance to the target from the transmitter is
s2 (unknown) and the distance from the receiver to the
target is s1 (unknown), the multipath delay is a known value
τ (estimated using lag finder). Once the bearing estimator
has estimated the direction of the arrival of the multipath
with lag τ, it is equivalent to the knowledge of the angle γ
(whenever the transmitter direction is preciously known).
Thus we have

s1 + s2 = d + cτ, (26)

where c is the speed of light.
Furthermore we have

(d − s1 cos γ)2 + (s1 sin γ)2 = s2
2, (27)

therefore we have s2
2− s2

1 = d2−2ds1 cos γ = (s2− s1)(s2 + s1).
Now substituting (26) in the above expression, we have

(d + cτ)2 − 2(d + cτ)s1 = d2 − 2ds1 cos γ, (28)

which leads to the target distance

s1 = cτ(2d + cτ)
2[cτ + d(1− cos γ)]

. (29)

6. Simulation Results

It should be noted that in this study the primary assumption
is that the target and source transmitter are both in the
line-of-sight to achieve a perfect correlation of the direct
signal with the reflection off the target. Once we identify all
available lag values corresponding to all available multipaths
of the look direction signal, the multipath bearing estimator
estimates the associated direction of arrival for all multipaths
which may include reflections off the ground and other
stationary points. At this stage most multipaths may be
ignored as ground reflections if the associated elevation
angle of the multipath is negative. Other reflection points
may be tracked over time to validate if they are moving
targets, and hence the associated velocities can be esti-
mated.

In the example simulated, we have an array of 16 × 19
elements and considered the case with 4 target returns (4
multipaths of the transmitter correspoinding to 4 bistatic
radar responses which is on the broadside (φ1, θ1) =
(00, 00)). The directions of arrivals pairs ((φ1, j , θ1, j), j =
1, 2, 3, 4) for the multipaths are (100,−100), (200,−200),
(250,−250), (300,−300). The simulated path delays are 30,
50, 82, and 84, respectively. The squares of the reflective
coefficients (|β1, j|2, j = 1, 2, 3, 4) are 1/20, 1/30, 1/30, and
1/30, respectively. A jammer is present in the direction
(φ2, θ2) = (400, 00) with a jammer to noise ratio of 10 dB
and a single multipath of the jammer with (φ2,1, θ2,1) =
(50, 00) and |β2,1|2 = 1/10. We have considered the two
cases where the transmitter power to noise ratio snr1 =
7 dB, and snr1 = −10 dB. The Lag finder spectrum is
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Figure 2: (a) Multipath lag finder spectrum when the look direction
is the broadside with snr1 = 7 dB. (b) Path lag finder spectrum when
the look direction is the broadside with snr1 = −10 dB.

shown in Figures 2(a) and 2(b), respectively, of the two
cases. This demonstrates the fact that the theory works very
well for the case snr1 ≤ 1. But this case was not analyzed
due to the mathematical complexity involved. It should be
noted that for the case snr1 = 7 dB, we have the received
target reflectivity power to noise power ratios of (i.e., snr j ·
|β1 j|2, j = 1, 2, 3, 4) −6 dB, − 8 dB, − 8 dB, and −8 dB,
respectively.

Once the Lag finder spectrum identifies the lag values
available, one has to produce the angle of arrival estimate
spectrum as shown in Figure 3(a) or 3(b) using the MPDR
or high-resolution solution for each lag value. This spectrum
accurately estimates the azimuth and elevation values as
well as the reflective coefficient for each multipath. Figure 4
displays the results of the 4 multipaths we have estimated
using this procedure (horizontal and vertical cuts across
the peak points of the azimuth/elevation plots for all of
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Figure 3: (a) MPDR solution for the lag = 30 (snr1 = 7 dB). (b)
high-resolution (HR) solution for the lag = 30 (snr1 = 7 dB).

lag values). This procedure can identify all target directions
of arrivals. Figure 5 illustrates the estimated value and the
exact values of a montecarlo simulation run where β1,1

and β1,2 assume various values (one decreases while the
other increases, keeping 3rd and 4th multipath reflectivity
coefficients (squared) constant values of 1/30 each). In
Figure 5, + or ∗ denotes the average estimate for the
parameter, while straight lines represent its exact value.
When the multipath contributions are of extended nature,
namely, ground scatter, one would expect a cluster of peak
points in the TSI domain extending over several lag values
(Figure 2). In theory, as long as we consider the middle value
(lag) as the solution to form the correct space fast-time
processor, we can implement multipath bearing estimator
and subsequently employ the triangulation technique to
identify the origin (reflection point).

As to the computation cost, the usual spatial beamformer
generally requires O(N3) operations to perform the matrix
inversion for an N element array where the size of the
matrix is N ×N . However, for the same array, the space-time
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Figure 4: Bearing estimation for all four multipaths using all four lag estimates. These figures display the cuts across the peak values of the
elevation/azimuth spectrum of the type displayed in Figure 3.
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Figure 5: The estimated value of the reflectivity parameters β1,1

and β1,2 with |β1,3|2 = |β1,4|2 = 1/30. Straight lines represent the
simulated values, and ∗ or + represents the estimations.

beamformer inverts a larger matrix of size 2N × 2N . This
procedure increases the computation load by a factor 8.

7. Concluding Remarks

We have simulated the existing lag finding algorithm (or
better known as TSI finder) to estimate all the delays
corresponding to multipath arrivals due to bistatic radar
responses present in the received signal where the received
signal (main beam signal) is generally a known transmitter.
Once all its multipaths are located in the lag domain, a
new postprocessor algorithm was developed for multipath
direction finding. We used two approaches to evaluate the
target bearings of all the reflected paths due to a known
signal of interest. Simulation shows the high-resolution-
based approach always provides better signal processing
gain at a higher computational cost (around 100% more).
Furthermore, the simulation study has shown that when the
time delay of the reflected path is not an integer multiple
of the sample size (range sample size), it did not reduce the

spectrum’s performance more than 3 dB in the lag finding

spectrum. The proposed algorithm is robust and flexible
and may lend itself to many applications as discussed in the

introduction. The use of the transmitter of opportunity is
possible only if the transmitter’s bearing and the position are
known.
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Appendices

A.

The output power at the processor Pout (for n = n1,1) given
by (using (5) and substituting Rx = ρ2

1s1sH1 + R1)

Pout = wHR2w

= wH
1 R1w1 + wH

2 R1w2

+ ρ2
1w

H
1 s1sH1 w1 + ρ2

1w
H
2 s1sH1 w2

+ ρ2
1β
∗
1,1w

H
1 s1sH1,1w2 + ρ2

1β1,1wH
2 s1,1sH1 w1.

(A.1)

When the constraints wH
1 s1 = 1.0 and wH

2 s1 = 0 are imposed,
we have

Pout = wHR2w

= wH
1 R1w1 + wH

2 R1w2 + ρ2
1

+ ρ2
1

(
β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1
)
.

(A.2)

The original power minimization problem can now be
broken into two independent minimization problems as
follows.

(1) Minimize wH
1 R1w1 subject to the constraint wH

1 s1 =
1.

(2) Minimize wH
2 R1w2 + ρ2

1 + ρ2
1(β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1)
subject to wH

2 s1 = 0.

The solution can be expressed as

w1 = R−1
1 s1(

sH1 R
−1
1 s1

) , (A.3)

w2 = −β1,1ρ
2
1R

−1
1 s1,1 + β1,1ρ

2
1

(
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

)

R−1
1 s1. (A.4)

The above representation of the solution cannot be used
to compute the space-time weights vector w due to the fact
that the quantities involved are not measurable. Instead the
result in (7) is implemented to evaluate w as described earlier
in Section 3.

Substituting R1 = ρ2
2s2sH2 + ρ2

1|β1,1|2s1,1sH1,1 +
ρ2

2|β2,1|2s2,1sH2,1 + σ2
nIN into (A.2) and noting that

ρ2
1|β1,1|2wH

2 s1,1sH1,1w2 + ρ2
1 + ρ2

1(β∗1,1s
H
1,1w2 + β1,1wH

2 s1,1) =
ρ2

1|1 + β1,1wH
2 s1,1|2, we have the following expression for the

output power:

Pout = ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

1 s1,1
∣
∣2

+ ρ2
1

∣
∣1 + β1,1wH

2 s1,1
∣
∣2

+ wH
1 R0w1 + wH

2 R0w2 + σ2
n

(
wH

1 w1 + wH
2 w2

)
,

(A.5)

where R0 = ρ2
2s2sH2 + |β2|2ρ2

2s2,1sH2,1 is the output energy due
to any second source and associated multipaths present at
the input. It should be noted that this component of the
output also contains any output energy due to any second
(unmatched) multipath of the look direction source (e.g.,
|β1,2|2s1,2sH1,2 terms). The most general form would be

R0 =
a1∑

j=2

ρ2
1

∣
∣β1, j

∣
∣2
s1, jsH1, j +

q∑

k=2

ρ2
ksks

H
k

+
q∑

k=2

ak∑

j=1

ρ2
k

∣
∣βk, j

∣
∣2
sk, jsHk, j ,

(A.6)

where q is the number of sources and ak is the number of TSI
paths available for the kth source. The expression for Pout in
(A.5) clearly indicates that the best w1 that (which has a total
degrees of freedom N) would minimize Pout is very likely to
be orthogonal to s1,1, that is, |wHs1,1| ≈ 0 and furthermore

it would be attempting to satisfy |1 + β1,1wH
2 s1,1|2 ≈ 0 while

being orthogonal to all other signals present in R0.
Note that

wH
1 R0w1 =

a1∑

j=2

ρ2
1

∣∣β1, j
∣∣2∣∣wH

1 s1, j
∣∣2

+
q∑

k=2

ρ2
k

∣∣wH
1 sk

∣∣2

+
q∑

k=2

ak∑

j=1

ρ2
k

∣
∣βk, j

∣
∣2∣∣wH

1 sk, j
∣
∣2

(A.7)

and a similar expression holds for ( wH
2 Rw2).

Any remaining degrees of freedom would be used to min-
imize the contribution due to the white noise component. In
order to investigate the properties of the solution for w let
us assume that we have only a look direction signal and its
mutipath, in which case we have R0 = ON×N and

Pout = ρ2
1

∣∣β1,1
∣∣2∣∣wH

1 s1,1
∣∣2

+ ρ2
1

∣∣1 + β1,1wH
2 s1,1

∣∣2

+ σ2
n

(
wH

1 w1 + wH
2 w2

)
.

(A.8)

In this case R1 = |β1,1|2ρ2
1s1,1sH1,1 + σ2

nIN and the inverse of
which is given by

R−1
1 = 1

σ2
n

⎡

⎣IN −
(
ρ2

1

∣
∣β1,1

∣
∣2
s1,1sH1,1

)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

⎤

⎦. (A.9)

As a result we have

R−1
1 s1 = 1

σ2
n

⎡

⎣s1 −
(
ρ2

1

∣
∣β1,1

∣
∣2
s1,1sH1,1s1

)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

⎤

⎦, (A.10)

R−1
1 s1,1 = s1,1

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) , (A.11)
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sH1,1R
−1
1 s1,1 = N

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) , (A.12)

sH1,1R
−1
1 s1 =

sH1,1s1
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) . (A.13)

Furthermore we adopt the notation snr1 = snr for the look
direction source to noise power and (for N|β1,1|2snr � 1)

sH1 R
−1
1 s1 = 1

σ2
n

⎡

⎣N −
(
ρ2

1

∣
∣β1,1

∣
∣2∣∣sH1 s1,1

∣
∣2)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

⎤

⎦

= N

σ2
n

⎡

⎣1−
∣∣sH1 s1,1

∣∣2∣∣β1,1
∣∣2

snr

N
(
1 + N

∣∣β1,1
∣∣2

snr
)

⎤

⎦

≈ N

σ2
n

⎛

⎝1−
∣
∣sH1 s1,1

∣
∣2

N2

⎞

⎠

≈ N

σ2
n
.

(A.14)

The assumption made in the last expression (i.e.,

|sH1 s1,1|2/N2 ≈ 0) is very accurate when the signals are
not closely spaced. This assumption cannot be verified
analytically, as it depends on the structure of the array,
however, it can be numerically verified for a commonly used
linear equispaced array with half wavelength spacing. The
other assumption made throughout this study is that the look
direction interferer is above the noise floor (i.e., snr > 1).
In this case, we need at least |β1,1|2 � 1/N (or equivalently
N|β1,1|2snr � 1) in order to detect any multipath power as
seen later. We shall also see that when |β1,1|2 is closer to the
lower bound of 1/N we do not achieve good processing gain
to detect multipath unless snr is extremely large (but this case
is not analyzed here).

Now we would like to investigate the two cases |β1,1|2 �
1/N and |β1,1|2 � 1/N simultaneously. The value of the
expression (A.14) for |β1,1|2 � 1/N can be simplified as
follow:

sH1 R
−1
1 s1 ≈ N

σ2
n

⎡

⎣1−
∣
∣sH1 s1,1

∣
∣2∣∣β1,1

∣
∣2

snr
N

⎤

⎦

≈ N

σ2
n

⎡

⎣1−
∣∣sH1 s1,1

∣∣2(
N
∣∣β1,1

∣∣2)
snr

N2

⎤

⎦

≈ N

σ2
n
.

(A.15)

Throughout the study, this case is taken to be equivalent to
N|β1,1|2snr � 1 as well because snr is not assumed to take
excessively large values for |β1,1|2 � 1/N). The investigation
of the signal processing gain for the case where |β1,1|2 � 1/N

and at the same time snr is very large is outside the scope of
this study.

Furthermore, applying the above formula and (A.11) in
(A.3) we can see that

∣
∣wH

1 s1,1
∣
∣2 =

∣
∣∣
∣
∣
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

∣
∣∣
∣
∣

2

=
∣
∣∣
∣
∣

sH1
sH1 R

−1
1 s1

· s1,1
(
σ2
n + N|β1,1|2ρ2

1

)

∣
∣∣
∣
∣

2

≈
(∣∣sH1 s1,1

∣∣2
/N2

)

(
1 + N

∣
∣β1,1

∣
∣2

snr
)2

≈ 0.

(A.16)

This expression shows how closely we have achieved the
orthogonality requirement expected above. It is reasonable

to assume that wH
1 s1,1 ≈ 0 (or equivalently |sH1 s1.1|2/N2 ≈

0) for all possible positive values of N|β1,1|2. We may now
investigate the second and third terms as the dominant
terms at the processor output in (A.8). The approximate
expressions for these two terms can be derived using (A.10)–
(A.14) as follows.

From (A.4) we have

β1,1wH
2 s1,1 = β1,1

[

− β1,1ρ
2
1R

−1
1 s1,1

+ β1,1ρ
2
1

(
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

)

R−1
1 s1

]H
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∣2
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1s
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1,1R

−1
1 s1,1 +
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∣
∣2
ρ2

1

∣
∣sH1 R

−1
1 s1,1

∣
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sH1 R
−1
1 s1

.

(A.17)

Now further simplification of (A.17) using (A.12) leads to

1 + β1,1wH
2 s1,1

= 1−
∣
∣β1,1

∣
∣2
ρ2

1N

σ2
n + N

∣
∣β1,1

∣
∣2
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1

+
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∣
∣2
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1
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−1
1 s1,1

∣
∣2

sH1 R
−1
1 s1

= σ2
n

σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

+
|β1,1|2ρ2

1

∣
∣sH1 R

−1
1 s1,1

∣
∣2

sH1 R
−1
1 s1

,

(A.18)
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where the second term on the right-hand side can be simpli-
fied using (A.13), (A.14) and finally assuming N|β1,1|2snr �
1 (i.e., 1 + N|β1,1|2snr ≈ N|β1,1|2snr) as follows:

∣
∣β1,1

∣
∣2
ρ2

1
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∣sH1 R

−1
1 s1,1
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∣2
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=
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∣2
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1
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)(
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1
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∣∣2

snr

N
(
1 + N
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∣β1,1
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snr
)2

≈
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∣sH1,1s1
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∣2
/N2

(
N
∣
∣β1,1

∣
∣2
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)

≈ 0 for N
∣
∣β1,1

∣
∣2

snr � 1,
(A.19)

∣
∣β1,1

∣
∣2
ρ2

1

∣
∣sH1 R

−1
1 s1,1

∣
∣2

sH1 R
−1
1 s1

=
∣
∣β1,1

∣
∣2∣∣sH1,1s1

∣
∣2

snr

N
(
1 + N

∣
∣β1,1

∣
∣2

snr
)2

≈
∣
∣β1,1

∣
∣2∣∣sH1,1s1

∣
∣2

snr

N

= (N∣∣β1,1
∣∣2

snr
)
∣
∣sH1,1s1

∣
∣2

N2

≈ 0 for N
∣
∣β1,1

∣
∣2

snr � 1.

(A.20)

As a result we have

∣
∣1 + β1,1wH

2 s1,1
∣
∣2

≈ 1
∣
∣1 + N

∣
∣β1,1

∣
∣2

snr
∣
∣2

≈ 1
(
N
∣∣β1,1

∣∣2
snr
)2 for N

∣∣β1,1
∣∣2

snr � 1

≈ 1− 2N
∣∣β1,1

∣∣2
snr for N

∣∣β1,1
∣∣2

snr � 1.

(A.21)

The final term of the power output at the processor, that
is, σ2

n(wH
1 w1 + wH

2 w2) = σ2
n‖w‖2 can be approximated as

follows.
Using (A.3) and (A.14) we have

wH
1 w1 =

(
R−1

1 s1

sH1 R
−1
1 s1

)H(
R−1

1 s1

sH1 R
−1
1 s1

)

≈ σ4
n

N2

(
R−1

1 s1
)H(

R−1
1 s1

)
.

(A.22)

Substituting (A.10) and sH1 s1 = N in the above expres-
sion and noting that 1 + N|β1,1|2snr ≈ N|β1,1|2snr (i.e.,
N|β1,1|2snr � 1), we get

wH
1 w1 ≈ σ4

n

N2
· 1
σ4
n

⎧
⎨

⎩N −
2ρ2

1

∣
∣β1,1

∣
∣2∣∣sH1 s1,1

∣
∣2

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

+
ρ4

1

∣
∣β1,1

∣
∣4∣∣sH1 s1,1

∣
∣2
N

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)2

⎫
⎬

⎭

=
⎧
⎨

⎩
1
N
− 2

∣∣β1,1
∣∣2

snr
∣∣sH1 s1,1

∣∣2
/N2

(
1 + N

∣
∣β1,1

∣
∣2

snr
)

+
|β1,1|4snr2

∣∣sH1 s1,1
∣∣2
/N

(
1 + N

∣
∣β1,1

∣
∣2

snr
)2

⎫
⎬

⎭

≈ 1
N
−
∣
∣sH1 s1,1

∣
∣2

N3

≈ 1
N

(
for N

∣
∣β1,1

∣
∣2

snr � 1
)
.

(A.23)

For 1 + N|β1,1|2snr ≈ 1 (i.e., N|β1,1|2snr � 1) we have

wH
1 w1 ≈

⎧
⎨

⎩
1
N
− 2

∣
∣β1,1

∣
∣2

snr
∣
∣sH1 s1,1

∣
∣2

N2

+

∣
∣β1,1

∣
∣4

snr2
∣
∣sH1 s1,1

∣
∣2

N

⎫
⎬

⎭

=
⎧
⎨

⎩
1
N
− 2N

∣
∣β1,1

∣
∣2

snr
∣
∣sH1 s1,1

∣
∣2

N3

+

(
N
∣∣β1,1

∣∣2
snr
)2|sH1 s1,1|2

N3

⎫
⎬

⎭

≈ 1
N
.

(A.24)

From (A.4) we have

wH
2 w2 =

∣
∣β1,1

∣
∣2
ρ4

1

[

−R−1
1 s1,1 +

(
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

)

R−1
1 s1

]H

×
[

−R−1
1 s1,1 +

(
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

)

R−1
1 s1

]

.

(A.25)
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The dominant term in the expression for wH
2 w2 is given by

the first term inside the bracket involving R−1
1 s1,1, which can

be simplified using (A.11) as

wH
2 w2 ≈

∣
∣β1,1

∣
∣2
ρ4

1

(
R−1

1 s1,1
)H(

R−1
1 s1,1

)

= |β1,1|2ρ4
1N

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)2

=
∣
∣β1,1

∣
∣2
Nsnr2

(
1 + N

∣
∣β1,1

∣
∣2

snr
)2

≈ 1

N
∣
∣β1,1

∣
∣2

(A.26)

for N|β1,1|2snr � 1.
The final expression is

wH
2 w2 ≈

⎧
⎪⎨

⎪⎩

1

N
∣
∣β1,1

∣
∣2 for N

∣
∣β1,1

∣
∣2

snr � 1,

N
∣
∣β1,1

∣
∣2

snr2 for N
∣
∣β1,1

∣
∣2

snr � 1.
(A.27)

We can show that the contributions arising from the
three other terms in (A.25) are negligible as follows. The
second term in the brackets of (A.25) contains the term
(sH1 R

−1
1 s1,1/sH1 R

−1
1 s1)R−1

1 s1, the square of which after substi-
tuting (A.13) and (A.14) takes the following form:

∣
∣β1,1

∣
∣2
ρ4

1

∣
∣
∣∣
∣
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

∣
∣
∣∣
∣

2
∥
∥R−1

1 s1
∥
∥2

=
∣
∣β1,1

∣
∣2
σ4
nρ

4
1

∣
∣sH1 s1,1

∣
∣2
/N2

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)2

∥
∥R−1

1 s1
∥
∥2

,

(A.28)

where (from (A.10))

∥
∥R−1

1 s1
∥
∥2 = 1

σ4
n

⎛

⎝s1 −
ρ2

1

∣
∣β1,1

∣
∣2
s1,1sH1,1s1

σ2
n + N

∣∣β1,1
∣∣2
ρ2

1

⎞

⎠

H

×
⎛

⎝s1 −
ρ2
J

∣
∣β1,1

∣
∣2
s1,1sH1,1s1

σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

⎞

⎠

= 1
σ4
n

⎛

⎝N − 2
∣∣β1,1

∣∣2
snr
∣∣sH1,1s1

∣∣2

1 + N
∣
∣β1,1

∣
∣2

snr

+
|β1,1|4Nsnr2

∣
∣sH1,1s1

∣
∣2

(
1 + N

∣∣β1,1
∣∣2

snr
)2

⎞

⎠.

(A.29)

Simplifying the above expression and finally substituting 1 +

N|β1,1|2snr ≈ N|β1,1|2snr we have ‖R−1
1 s1‖2 ≈ (N/σ4

n)(1 −

|sH1 s1,1|2/N2) ≈ N/σ4
n . On the other hand for N|β1,1|2snr �

1 we have

∥
∥R−1

1 s1
∥
∥2 ≈ N

σ4
n

⎛

⎝1− 2
∣
∣β1,1

∣
∣2∣∣sH1 s1,1

∣
∣2

snr
N

+|β1,1|4
∣
∣sH1 s1,1

∣
∣2

snr2
)

≈ N

σ4
n

⎛

⎝1− 2
(
N
∣∣β1,1

∣∣2
snr
)|sH1 s1,1|2

N2

+

(
N
∣
∣β1,1

∣
∣2

snr
)2∣∣sH1 s1,1

∣
∣2

N2

⎞

⎠

≈ N

σ4
n
.

(A.30)

Back substitution of these expressions in (A.28) and the
use of 1 + N|β1,1|2snr ≈ N|β1,1|2snr lead to the following
expression:

∣
∣β1,1

∣
∣2
ρ4

1

∣
∣∣
∣
∣
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

∣
∣∣
∣
∣

2
∥
∥R−1

1 s1
∥
∥2

=
∣∣β1,1

∣∣2
snr2

∣∣sH1 s1,1
∣∣2

N
(
1 + N

∣
∣β1,1

∣
∣2

snr
)2

≈
∣
∣sH1 s1,1

∣
∣2
/N2

N
∣
∣β1,1

∣
∣2

≈ 0 for N
∣
∣β1,1

∣
∣2

snr � 1,

(A.31)

and for N|β1,1|2snr � 1 we have

∣∣β1,1
∣∣2

snr2
∣∣sH1 s1,1

∣∣2

N
(
1 + N

∣
∣β1,1

∣
∣2

snr
)2 ≈

∣∣β1,1
∣∣2

snr2
∣∣sH1 s1,1

∣∣2

N

≈ (N∣∣β1,1
∣∣2

snr2)
⎛

⎝
∣
∣sH1 s1,1

∣
∣2

N2

⎞

⎠

≈ 0.
(A.32)

The third contribution in (A.25) is given by (sum of two
terms)

− 2 Real

⎧
⎨

⎩
ρ4

1

∣
∣β1,1

∣
∣2(

sH1,1R
−1
1 s1

)(
sH1 R

−1
1 R−1

1 s1,1
)

(
sH1 R

−1
1 s1

)

⎫
⎬

⎭

= 2
∣
∣β1,1

∣
∣2

snr2
∣
∣sH1,1s1

∣
∣2

N
(
1 + N

∣
∣β1,1

∣
∣2

snr
)3 .

(A.33)

(Note: replacing (sH1 R
−1
1 s1) by the approximation N/σ2

n and
the use of (A.10), (A.11) and (A.13) in (A.33), we arrive at
the expression in the right-hand side of (A.33)). In fact after
applying the approximation 1 + N|β1,1|2snr ≈ N|β1,1|2snr
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or 1 + N|β1,1|2snr ≈ 1 we can conclude that the right-hand
side of (A.33) is approximately equal to zero. From (A.5) and
(A.27), the final expression for σ2

n‖w‖2 given by (combining
(A.23) and (A.27))

σ2
n‖w‖2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ2
n

⎛

⎝ 1
N

+
1

N
∣
∣β1,1

∣
∣2

⎞

⎠ for N
∣
∣β1,1

∣
∣2

snr � 1,

σ2
n

(
1
N

+ N
∣
∣β1,1

∣
∣2

snr2
)

for N
∣
∣β1,1

∣
∣2

snr � 1.

(A.34)

Now we have

∣
∣1 + β1,1wH

2 s1,1
∣
∣2 ≈ 1

(
N
∣
∣β1,1

∣
∣2

snr
)2 for N

∣
∣β1,1

∣
∣2

snr�1

≈1−2N
∣
∣β1,1

∣
∣2

snr for N
∣
∣β1,1

∣
∣2

snr�1.

σ2
n‖w‖2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ2
n

⎛

⎝ 1
N

+
1

N
∣∣β1,1

∣∣2

⎞

⎠ for N
∣
∣β1,1

∣
∣2

snr�1

σ2
n

(
1
N

+ N
∣
∣β1,1

∣
∣2

snr2
)

for N
∣
∣β1,1

∣
∣2

snr�1.

(A.35)

Substituting (A.35) in (A.8) we can evaluate Pout/σ2
n as

Pout

σ2
n
≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 1
N

+
1

N
∣
∣β1,1

∣
∣2

⎞

⎠ +
1

N2
∣
∣β1,1

∣
∣4

snr
,

N
∣
∣β1,1

∣
∣2

snr � 1

1
N

+ snr−N
∣
∣β1,1

∣
∣2

snr2,

N
∣∣β1,1

∣∣2
snr � 1,

(A.36)

which becomes

Pout

σ2
n
≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N
∣
∣β1,1

∣
∣4

snr+N
∣
∣β1,1

∣
∣2

snr + 1

N2
∣∣β1,1

∣∣4
snr

, N
∣∣β1,1

∣∣2
snr�1

1
N

+snr, N
∣∣β1,1

∣∣2
snr�1.

(A.37)

After substituting N|β1,1|4snr + N|β1,1|2snr + 1 ≈
N|β1,1|4snr + N|β1,1|2snr in the above expression for
N|β1,1|2snr � 1 case, we have

σ2
n

Pout
≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N
∣
∣β1,1

∣
∣2

1 +
∣
∣β1,1

∣
∣2 , N

∣
∣β1,1

∣
∣2

snr � 1

N

1 + Nsnr−N2
∣∣β1,1

∣∣2
snr2

, N
∣
∣β1,1

∣
∣2

snr � 1.

(A.38)

As seen later in the simulation section, the conclusions
drawn here do not change significantly when one or two
sidelobe interferers (other sources) are considered. The only

difference is that (A.8) will have additional terms due to
sidelobe interferers and other multipaths. The added terms

in (A.8) are of the form ρ2
k|wH

1 sk|
2

(k = 1, 2, . . .) and they
should satisfy the orthogonality requirement in a very similar
manner. By denoting the value of TS(n) for n = n1,1 by
TS(n)n=n1,1

we can use the result in (A.38) and the identity
obtained in Appendix A to further simplify (6) to show that

TS(n)n=n1,1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ2

1 +
(
sH1 R

−1
1 s1

)−1) N
∣∣β1,1

∣∣2

σ2
n

(
1 +

∣
∣β1,1

∣
∣2) − 1,

N
∣
∣β1,1

∣
∣2

snr � 1

(
ρ2

1 +
(
sH1 R

−1
1 s1

)−1) N

σ2
n

(
1 + Nsnr−N2

∣∣β1,1
∣∣2

snr2
)−1,

N
∣
∣β1,1

∣
∣2

snr � 1.
(A.39)

For the case of a small number of sources and multipaths we
have shown that (sH1 R

−1
1 s1) ≈ N/σ2

n for N|β1,1|2snr � 1 and
N|β1,1|2snr � 1. As a result we have for N|β1,1|2snr � 1

TS(m)m=n1,1
=
(

ρ2
1 +

σ2
n

N

)
N
∣∣β1,1

∣∣2

σ2
n

(
1 +

∣
∣β1,1

∣
∣2) − 1

≈ N
∣
∣β1,1

∣
∣2

snr− 1
(
1 +

∣
∣β1,1

∣
∣2)

≈ N
∣
∣β1,1

∣
∣2

snr,

(A.40)

and for N|β1,1|2snr � 1

TS(n)n=n1,1

=
(
ρ2

1 + σ2
n/N

)

Pout

− 1
N
(
ρ2

1 + σ2
n/N

)

σ2
n

(
1 + Nsnr−N2

∣
∣β1,1

∣
∣2

snr2
) − 1

≈ N2
∣
∣β1,1

∣
∣2

snr2

(
1 + Nsnr

(
1−N

∣
∣β1,1

∣
∣2

snr
))

≈ N2
∣
∣β1,1

∣
∣2

snr2

(1 + Nsnr)

≈ N
∣∣β1,1

∣∣2
snr.

(A.41)

The TSI finder spectrum has the following properties:

TS(n) =

⎧
⎪⎨

⎪⎩

N
∣∣β1,1

∣∣2
snr, n = n1,1,

0, n /=n1,1.
(A.42)

In order to quantify the processing gain of this spectrum
one has to replace the zero figure with a quantity which
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would represent the average output interference level present
in the spectrum whenever a lag mismatch occurs. Replacing
QH = ON×N in (6) by an approximate figure (when n /=n1,1)
would give rise to a small nonzero value. This figure can be
shown to be of the order N/Msnr (written as O(N/Msnr)),
where M is the number of samples used in covariance
averaging. As a result we can establish processing gain as

TS(n)n=n1,1

TS(n)n /=n1,1

≈ N
∣
∣β1,1

∣
∣2

snr
O(N/Msnr))

≈ O
(
M
∣
∣β1,1

∣
∣2

snr2). (A.43)

The above expression can be derived using the following
argument. Consider the case when n /=n1,1, but β1,1 ≈ 0. In
this case we have

⎛

⎝
x(r)

x(t + n)

⎞

⎠ =
⎛

⎝
j1(t)s1 + ε1

j1(t + n)s1 + ε2

⎞

⎠

R =
⎛

⎝
Rx QH

Q Rx

⎞

⎠,

(A.44)

where

QH = E
{
j1(t) j1(r + n)∗

}
s1sH1 + E

{
j1(t)s1ε

H
2

}

+ E
{
j1(t + n)∗ε1sH1

}
+ E

}
ε1ε

H
2

}
.

(A.45)

Generally this term is zero when a large sample support is
available for estimating the covariance matrix. However, we
would like to estimate the order of the next term as a function
of M (number of samples) for large M. Suppose X and Y
are two independent complex random variables with zero
mean and Gaussian distribution then E{XY∗} = 0, but the
estimator would be Z = (1/M)

∑M
i=1 xi y

∗
i , where xi and yi are

the measured sample values. The variance of the estimator
is given by Var{Z} = E{|Z|2} = (1/M)σ2

x σ
2
y , where σ2

x and
σ2
y are the respective individual variances. As a result we

may approximately take the error term to be in the order
(1/
√
M)σxσy (one standard deviation off the mean value)

and represent by O(σxσy/
√
M). Now we may consider the

following approximate representations:

E
{
j1(t) j1(r + n)∗s1sH1

} ≈ O

(
ρ2

1s1sH1√
M

)

,

E
{
j1(t)s1ε

H
2

} ≈ O

(
ρ1σns1uH√

M

)

,

E
{
j1(t)ε1sH1

} ≈ O

(
ρ1σnusH1√

M

)

,

E
{
ε1ε

H
2

} ≈ O

(
σ2
nuu

H
√
M

)

(A.46)

(this term will be ignored as a lower-order term when ρ2
1 >

σ2
n), where u = (1, 1, . . . , 1)T . Noting that Rx = R1 + ρ2

1s1sH1
and R1 = σ2

nIN (for β1,1 = 0), we have

Pout = wHE
{
x(t)x(t + n)H

}
w

= wH
1 Rxw1 + wH

2 Rxw2

+
O
(
wH

1

(
ρ2

1s1sH1 + ρ1σns1uH + ρ1σnusH1
)
w2
)

√
M

+
O
(
wH

2

(
ρ2

1s1sH1 + ρ1σnusH1 + ρ1σns1uH
)
w1
)

√
M

.

(A.47)

Now considering the requirements in the minimization
problem (i.e., wH

1 s1 = 1 and wH
2 s1 = 0) we have to minimize

Pout = ρ2
1 + wH

1 R1w1 + wH
2 R1w2

+ O

(
ρ1σn

(
uHw2 + wH

2 u
)

√
M

)

.
(A.48)

The solution for w1 (which minimizes Pout, subject to) is
given by

w1 = R−1
1 s1(

sH1 R
−1
1 s1

) = s1

N

(
for R1 = σ2

nIN
)
, (A.49)

and the solution for w2 is given by minimizing wH
2 R1w2 +

O(ρ1σn(uHw2 + wH
2 u)/

√
M) (subject to wH

2 s1 = 0). This
leads to w2 = −O(ρ1σnR−1

1 u/
√
M) + μR−1

1 s1, where μ is
a constant. Now substituting wH

2 s1 = 0, we have μ∗ =
O(ρ1σn(uHR−1

1 s1)/((sH1 R
−1
1 s1)/

√
M)). As result we have

w2 = O

((
ρ1σn√
M

)

R−1
1 u−

(
ρ1σn√
M

)(
(sH1 R

−1
1 u)

(sH1 R
−1
1 s1)

)

R−1
1 s1

)

,

(A.50)

and for R1 = σ2
nIN this reduces to w2 = O((ρ1/σn)(u/

√
M) +

((ρ1/σn)(sH1 u/N)(s1/
√
M))). Since (sH1 u/N) < 1, it is reason-

able to ignore the low-order term in w2 to take the dominant
term only and write w2 ≈ O((ρ1/σn)(u/

√
M)) (substituting

R1 = σ2
nIN as well as uHu = N in Pout)

Pout ≈ ρ2
1 + σ2

n/N + O(ρ2
1N/M). Therefore when β1,1 ≈ 0

(i.e., no significant multipath energy is available at the lag
of interest) we may use (6) and (B.4) to approximate the
following:

T(n)n /=n1,1
≈ ρ2

1 +
(
sH1 R

−1
1 s1

)−1

ρ2
1 + σ2

n/N + O
(
ρ2

1N/M
) − 1

≈ ρ2
1 + σ2

n/N −
(
ρ2

1 + σ2
n/N + O

(
σ2

1N/M
))

ρ2
1 + σ2

n/N + O
(
ρ2

1N/M
)

≈ O
(
ρ2

1N/M
)

ρ2
1

≈ O
(
N

M

)
.

(A.51)
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Now we investigate a mismatch with a TSI energy present
(|β1,1|2 � 1/N).

Terms involved in QH are given by

QH = {( j1(t)s1 + β1,1 j1(t − n1,1
)
s1,1 + ε1

)

× ( j1(t + n)∗sH1 + β∗1,1 j1
(
t − n1,1 + n

)∗
sH1,1 + εH2

)}
.

(A.52)

This can be represented by

QH ≈ O

(
ρ2

1s1sH1√
M

,
|β1,1|2ρ2

1s1,1sH1,1√
M

,
σ2
nuu

H
√
M

,

β∗1,1ρ
2
1s1sH1,1√
M

,
ρ1σns1uH√

M
,
β1,1ρ

2
1s1,1sH1√
M

,

β1,1ρ1σns1,1uH√
M

,
ρ1σnusH1√

M
,
β∗1,1ρ1σnusH1,1√

M

)

.

(A.53)

In Pout = wHR2w, the contribution due to the presence of
nonzero Q is given by the term wH

1 QHw2 + wH
2 Qw1. This is

equivalent to the terms (all positive contributions)

ρ2
1

(
wH

1 s1sH1 w2 + wH
2 s1sH1 w1

)

√
M

,

∣
∣β1,1

∣
∣2
ρ2

1

(
wH

1 s1,1sH1,1w2 + wH
2 s1,1sH1,1w1

)

√
M

,

σ2
n

(
wH

1 uuHw2 + wH
2 uuHw1

)

√
M

,

ρ2
1

(
β∗1,1w

H
1 s1sH1,1w2 + β1,1wH

2 s11sH1 w1
)

√
M

,

ρ1σn
(
wH

1 s1uHw2 + wH
2 us

H
1 w1

)

√
M

,

ρ2
1

(
β1,1wH

1 s1,1sH1 w2 + β∗1,1w
H
2 s1sH1,1w1

)

√
M

,

ρ1σn
(
β1,1wH

1 s1,1uHw2 + β∗1,1w
H
2 us

H
1,1w1

)

√
M

,

ρ1σn
(
wH

1 us
H
1 w2 + wH

2 s1uHw1
)

√
M

,

ρ1σn
(
β∗1,1w

H
1 us

H
1,1w2 + β1,1wH

2 s1,1uHw1
)

√
M

.

(A.54)

As we minimize the power wHRw subject to and wH
2 s1 =

0, the natural selection is that w1 be almost orthogonal to
all the signals including u (except of course). As a result the

order of w1 will not change and wH
1 R1s1 = (sH1 R

−1
1 s1)

−1 ≈
σ2
n/N still holds. After assuming the orthogonality and sub-

stituting the above two constraints as well, we are left with the
contributions O(ρ1σn(uHw2 +wH

2 u)/
√
M), O(ρ2

1(β∗1,1s
H
1,1w2 +

β1,1wH
2 s1,1)/

√
M), and ρ2

1/
√
M. Now ignoring the constant

terms our minimization problem for obtaining an approx-
imate highest order for w2 is equivalent to minimizing

wH
2 R1w2 + O(ρ1σn(uHw2 + wH

2 u)/
√
M) subject to wH

2 s1 = 0
or minimize wH

2 R1w2 + O(ρ2
1(β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1)/
√
M)

subject to the same constraint. If the dominant term out of
the last two terms isO(ρ1σn(uHw2+wH

2 u)/
√
M), then we have

the same case as before but with R1 = ρ2
1|β1,1|2s1,1sH1,1 + σ2

nIN .
However, in this case, using a similar argument and using
(A.10)–(A.14) we can prove that T(n)n /=n1,1

≈ O(N/M) as
follows.

The solution for this case would be

w2 = O
(
ρ1σn√
M

)
R−1

1 u− ρ1σn√
M

(
sH1 R

−1
1 u

)

(
sH1 R

−1
1 s1

)R−1
1 s1. (A.55)

The first part of the above expression is simplified as follows
(expanding R−1

1 u):

≈ O
ρ1σn√
M
· 1
σ2
n

⎛

⎝IN −
ρ2

1

∣
∣β11

∣
∣2
s1,1sH1,1

σ2
n + Nρ2

1

∣
∣β11

∣
∣2

⎞

⎠u

≈ O
ρ1√
M
· 1
σn

(

IN −
s1,1sH1,1

N

)

u
(
for N

∣
∣β1,1

∣
∣2 � 1

)

≈ O

(
ρ1u

σn
√
M

)

−O

(
ρ1

σn

s1,1√
M

sH1,1u
N

)

.

(A.56)

The second part of the expression is expanded (using

wH
1 R1w1 = (sH1 R

−1
1 s1)

−1 ≈ σ2
n/N) as

O
ρ1σn√
M

(
sH1 R

−1
1 u

)

(
sH1 R

−1
1 s1

)R−1
1 s1

≈ ρ1σn√
M

[(
sH1 R

−1
1 u

)
σ2
n

N

]

R−1
1 s1

≈ O
ρ2

1σ
3
n√

MN

⎡

⎣ s
H
1

σ2
n

⎛

⎝IN −
ρ2

1

∣
∣β1,1

∣
∣2
s1,1sH1,1

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

⎞

⎠u

⎤

⎦

×
⎡

⎣ 1
σ2
n

⎛

⎝s1−
ρ2

1

∣∣β1,1
∣∣2
s1,1sH1,1s1

(
σ2
n + N

∣∣β1,1
∣∣2
ρ2

1

)

⎞

⎠

⎤

⎦ (using (A.10)).

(A.57)

Now applying N |β1,1|2snr � 1 (i.e., σ2
n + N|β1,1|2ρ2

1 ≈
N|β1,1|2ρ2

1 ) we have

≈ O
ρ1

σn
√
MN

[

sH1

(

IN −
s1,1sH1,1

N

)

u

(

s1 −
s1,1sH1,1s1

N

)]

≈ O
ρ1

σn
√
MN

[(

sH1 u−
sH1 s1,1sH1,1u

N

)(

s1 −
s1,1sH1,1s1

N

)]

≈ O
ρ1

σn

[(
sH1 u

)

N

s1√
M
−
(
sH1 u

)

N

s11√
M

(
sH1,1s1

)

N

−
(
sH1 s1,1

)

N

(
sH1,1u

)

N

s1√
M

+

(
sH1 s1,1

)

N

(
sH1,1u

)

N

s1,1√
M

(
sH1,1s1

)

N

]

.

(A.58)
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When the two expressions are added ((A.56) and (A.58)),
we can conclude that the dominant order term is ≈
O(ρ1u/σn

√
M).

On the other hand suppose the dominant contribution is
O(ρ2

1(β∗1,1w
H
1 s1sH1,1w2 + β1,1wH

2 s1,1sH1 w1)/
√
M) term then we

have to minimize Pout = wH
1 Rxw1 + wH

2 Rxw2 + wH
1 QHw2 +

wH
2 Qw1, which after substituting the constraints and noting

that R1 = ρ2
1|β1,1|2s1,1sH1,1 + σ2

nIN , Rx = R1 + ρ2
1s1sH1 is

reduced to minimizing Pout = ρ2
1 + wH

1 R1w1 + wH
2 R1w2 +

O(ρ2
1(β∗1,1s

H
1,1w2 +β1,1wH

2 s1,1)/
√
M) subject to the constraints:

wH
1 s1 = 1 and wH

2 s1 = 0. This problem has been solved
earlier without the factor O(1/

√
M) and as a result we can

write (using (A.4))

w2 = −O
(
β11ρ

2
1√

M

)

R−1
1 s1,1 + O

(
β11ρ

2
1√

M

)(
sH1 R

−1
1 s1,1

sH1 R
−1
1 s1

)

R−1
1 s1,

w1 = R−1
1 s1(

sH1 R
−1
1 s1

) .

(A.59)

Now applying earlier results we can show that (A.23), (A.27)
‖w1‖2 ≈ 1/N and ‖w2‖2 ≈ 1/(NM|β1,1|2) for N|β1,1|2snr �
1 and furthermore

Pout ≈ ρ2
1 + wH

1 R1w + σ2
n

∥
∥w2

∥
∥2

+ ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

2 s1,1
∣
∣2

+ O

(
ρ2

1

(
β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1
)

√
M

)

≈ σ2
n‖w‖2 + ρ2

1 + ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

2 s1,1
∣
∣2

+ O

(
ρ2

1

(
β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1
)

√
M

)

.

(A.60)

(Note: wH
1 s1,1 ≈ 0 has been assumed).

Now we have

β1,1wH
2 s1,1 = O

⎛

⎝−
∣
∣β1,1

∣
∣2

√
M

ρ2
1s

H
1,1R

−1
1 s1,1

+

∣
∣β1,1

∣
∣2

√
M

ρ2
1

∣∣sH1 R
−1
1 s1,1

∣∣2

sH1 R
−1
1 s1

⎞

⎠,

(A.61)

using the earlier results (i.e., |sH1 R−1
1 s1,1|/sH1 R−1

1 s1 ≈ 0
(A.19)) we have(using (A.12))

β1,1wH
2 s1,1 ≈ −

∣
∣β1,1

∣
∣2
ρ2

1N√
M
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

=
∣
∣β1,1

∣
∣2
Nsnr√

M
(
1 + N

∣
∣β1,1

∣
∣2

snr
)

≈ − 1√
M

(A.62)

(for N|β1,1|2 � 1).

Now substituting, O(ρ2
1(β∗1,1s

H
1,1w2 + β1,1wH

2 s1,1)/
√
M) ≈

O(ρ2
1/M) , wH

1 R
−1
1 w1 = (sH1 R

−1
1 s1)

−1 ≈ σ2
n/N , ‖w2‖2 ≈

1/(NM|β1,1|2) and the above result in the above expression
for Pout and further simplifying we arrive at

Pout ≈ ρ2
1 + σ2

n

(
1
N

)
+ O

(
σ2
n(

MN|β1,1|2
)

)

+ O
(
ρ2

1

M

)

for N|β1,1|2 � 1,

(A.63)

since the term O(1/(MN|β1,1|2)) is very small compared to
the orders of all other terms we end up with Pout ≈ ρ2

1 +
σ2
n(1/N) + O(ρ2

1/M) forN|β1,1|2 � 1.
Now substituting this result in (6) we have

Ts(n)n /=n1,1
≈

(
s1R−1

1 s1
)−1

+ ρ2
1

ρ2
1 + σ2

n(1/N) + O
(
ρ2

1/(M)
) − 1. (A.64)

This is equivalent to

Ts(n)n /=n1,1
≈ O

(
1
M

)
, (A.65)

which produces much small noise floor and hence this option
is discarded in estimating the signal processing gain.

The final expression for the signal processing gain of the
lag finder is obtained by the use of the earlier result as

Ts(n)n=n1,1

Ts(n)n /=n
≈ O

⎛

⎝N
∣
∣β1,1

∣
∣2

snr
(N/M)

⎞

⎠ ≈M|β1,1|2snr. (A.66)

B.

Lemma B. Suppose the square matrix A is added to an
additional dyad term uuH , where u is a column vector, then
the inversion of the new matrix is given by (e.g., [10, Van Trees,
page 1348])

(
A + uuH

)−1 = A−1 − A−1uuHA−1

1 + uHA−1u
. (B.1)

By definition one have Rx = ρ2
1s1sH1 + R1. Applying the above

lemma one have the following identity:

R−1
x = R−1

1 − ρ2
1

(
R−1

1 s1sH1 R
−1
1

)

1 + ρ2
1

(
sH1 R

−1
1 s1

) . (B.2)

This leads to the expression

sH1 R
−1
x s1 = sH1 R

−1
1 s1 −

ρ2
1

(
sH1 R

−1
1 s1sH1 R

−1
1 s1

)

1 + ρ2
1

(
sH1 R

−1
1 s1

)

= sH1 R
−1
1 s1

1 + ρ2
1

(
sH1 R

−1
1 s1

)

(B.3)

(
sH1 R

−1
x s1

)−1 = ρ2
1 +

(
sH1 R

−1
1 s1

)−1
. (B.4)
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