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A new block-based noise reduction system is proposed which focuses on the preservation of transient sounds like stops or speech
onsets. The power level of consonants has been shown to be important for speech intelligibility. In single-channel noise reduction
systems, however, these sounds are frequently severely attenuated. The main reasons for this are an insufficient temporal resolution
of transient sounds and a delayed tracking of important control parameters. The key idea of the proposed system is the detection
of non-stationary input data. Depending on that decision, a pair of spectral analysis-synthesis windows is selected which either
provides high temporal or high spectral resolution. Furthermore, the decision-directed approach for the estimation of the a priori
SNR is modified so that speech onsets are tracked more quickly without sacrificing performance in stationary signal regions.
The proposed solution shows significant improvements in the preservation of stops with an overall system delay (input-output,
excluding group delay of noise reduction filter) of only 10 milliseconds.

Copyright © 2009 D. Mauler and R. Martin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

A large class of speech enhancement algorithms is realized in
the spectral domain. Since their performance depends on the
quality of the spectral representation of the noisy data, sys-
tems for a reliable and precise spectral analysis are required.
Apart of filter bank implementations, a common approach is
to compute the discrete Fourier Transform (DFT) on short
overlapping time domain segments [1]. Short-time DFT
systems with frame overlap are attractive because of their
aliasing robustness and ease of implementation [2]. The data
length of a short-time segment is on the one hand connected
to the frequency resolution which is achieved after transfor-
mation. The longer the time domain segment, the higher the
spectral resolution. A short data length, on the other hand, is
required for a good temporal resolution. In noise reduction
systems usually a fixed data length is used for the short-
time spectral analysis, thus making a compromise between
the required spectral resolution and the minimal admissible
temporal resolution [3, page 469]. This concept, however,
has a major drawback: in order to achieve a sufficiently high
frequency resolution, in many noise reduction systems the

data length of the short-time segments is longer than the
duration of stationarity of the time domain signal, making
short-time segments span over nonstationary signal sections.
An example for this are segments that contain speech pause
and speech active samples. As a consequence, the short-time
spectrum results in an average spectrum over the different
statistics of the current time domain signal section. Since
the spectral representation is less pronounced, a suboptimal
noise reduction performance results. Using shorter data
segments for the DFT would solve this problem only at the
cost of a reduced spectral resolution. The resolution in this
case might be yet sufficient to represent spectra that are
relatively flat like those ones of burst-like signals. However,
spectra that convey many details would not be sufficiently
well resolved when short data segments are used for the DFT.

This trade off between spectral and temporal resolution
has been addressed in recent algorithm developments.
In [4] the data, length that contributes to the spectral
representation is adaptively grown or shrunk according
to the stationarity range of the current signal section. In
another approach [5] that focuses on audio restoration, the
frequency resolution is improved using an extrapolation of



the time domain data prior to the computation of the short-
time DFT. The disadvantages of this method are its high
computational demands and the fact that the extrapolation
requires perfect modeling of the signal which is in general
difficult to achieve. Furthermore, random noise cannot be
properly extrapolated. In audio coding, analysis windows
of different lengths and shapes are switched in a signal-
dependent fashion [6, 7] in order to reduce pre-echo effects
that may appear after decoding.

In many application fields like telecommunications or
hearing instruments the system delay is of great importance.
The group delay of a hearing instrument can produce a
noticeable or even objectionable coloration of the hearing
aid wearer’s own voice. In [8] it is reported that a delay
of 3 to 5milliseconds was noticeable to most of a group
of normal hearing listeners while a delay of longer than 10
milliseconds was objectionable. In [9] asymmetric windows
are presented as a way to reduce the delay in spectral analysis.
However, spectral synthesis is not discussed and would
become difficult with the proposed asymmetric windows if
perfect or nearly perfect reconstruction is required. The delay
issue has also been addressed recently in [10] where a warped
analysis-synthesis filter bank for speech enhancement is
presented which achieves a very low system delay. In a DFT-
based analysis-synthesis system using overlap-add for signal
synthesis, the delay is given by the frame length of the
synthesis window, the frame advance and the group delay of
a possible spectral modification filter.

In this contribution we propose an analysis-synthesis
overlap-add framework that uses different analysis-synthesis
window pairs. They differ in their length (before zero-
padding) and their shape. Depending on the stationarity
of the current time domain signal a proper window pair is
selected for the analysis and synthesis. Data that is stationary
over a relatively long span is analyzed using a long window
in order to allow for a high spectral resolution, while short-
time stationary data-like bursts of stops or speech onsets
are analyzed with a short data window so that the energy
burst is well preserved in the spectral representation. The
reduced spectral resolution that results from using a short
analysis window is not considered as a limitation, since for
the latter class of short burst-like signals we expect relatively
broadband spectra with few spectral details. The proposed
system achieves perfect reconstruction and produces the
same low delay irrespective of the analysis-synthesis window
pair that is currently in use.

The signal dependent selection of an analysis-synthesis
window pair to be used requires the knowledge of the span
of stationarity in the signal. In order to find the boundaries
of signal stationarity in [4] an iterative window growing algo-
rithm is proposed that is based on a probabilistic framework.
Since a necessary condition for stationarity is an invariant
power of the random process, the temporal evolution of the
mean power of consecutive frames is observed. Based on a
likelihood ratio test a decision is made whether a neighboring
frame contains data that originates from the same statistical
process or not. The method requires a look-ahead over
several frames of data in order to be able to determine the
parameters of parameterized probability density functions
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(pdfs). It is thus not suited for very low delay applications.
In an alternative approach [11] the detection of stationarity
changes is based on an autoregressive signal model. For the
reliable estimation of the model parameters a look-ahead of
20 ms is required which again is not permissible for very low
delay applications that this paper focuses on. The approach
presented here allows the detection of stationarity changes
with a very low delay of about 2 ms.

Eventually, we propose and evaluate a noise reduction
system that integrates the switching of the analysis-synthesis
window pair based on the detection of stationarity changes
in the time domain signal. The information on stationarity
boundaries can be used to additionally improve the preser-
vation of stops and speech onsets: we propose a change of
the decision-directed a priori SNR estimator [12] and the
amplification of plosive-like sounds. The latter is motivated
by the fact that the improvement of the consonant-vowel
intensity ratio was shown to be important for improving
speech intelligibility [13-15].

In Section 2 we introduce the concept of switchable
analysis-synthesis window pairs and estimate the benefit and
the computational cost of the approach. Then, in Section 3,
we introduce a detector for stationarity changes in the time
domain signal that is based on a likelihood ratio test (LRT).
The analysis of the properties of the likelihood ratio helps
setting a proper threshold for the LRT. In Section 4 a noise-
reduction system is proposed and analyzed that makes use
of the nonstationarity detection. Apart from switching the
analysis and synthesis windows we propose two measures
that aim at improving speech intelligibility by a preservation
or amplification of speech onsets and burst-like sounds.
Finally, in Section 5 we present experimental results.

2. Analysis-Synthesis Window Sets

In this section we define the spectral analysis-synthesis
system that provides spectral data to the frequency domain
noise reduction algorithm and synthesizes the time domain
signal after possible spectral modifications.

The main idea in this section is to provide an analysis
system with long and short analysis windows that are arbi-
trarily switchable. This allows a signal dependent selection
of the appropriate analysis window. Each analysis window is
matched with a particular synthesis window that guarantees
perfect reconstruction for each window pair.

2.1. DFT-Based Analysis Synthesis System. We assume a
sampled noisy signal that is the sum of a speech signal, s(i),
and uncorrelated noise, n(i)

y(i) = s(i) + n(i). (1

The index i denotes the discrete time index of the data,
sampled with sampling frequency f.

We consider a block-based analysis-system with K
frequency bins and a frame advance of R samples. If we
restrict the system to uniform frequency resolution the
discrete Fourier Transform (DFT) can be used and efficiently
implemented by means of a Fast Fourier Transformation
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(FFT) algorithm. Then, the spectral coefficients, Yi(m), of
the sampled time domain data y(i) are obtained as

K-1
Yi(m) = > x(mR + i)h(i)e /K (2)
i=0

where k(i) denotes an analysis window, m is the subsampled
(frame) index, k = 0...K — 1 is the discrete frequency bin
index, and K is the length of the DFT.

The spectral coefficients, Y(m), may then be weighted
with a spectral gain, Gx(m), before the signal synthesis is
performed via IDFT, multiplication with a synthesis window,
f (i), and a subsequent overlap-add operation [1].

2.2. Switchable Analysis-Synthesis Window Sets. In [16] a
system with switchable analysis-synthesis window pairs is
proposed which achieves perfect reconstruction and can
provide spectral or temporal resolution in a flexible manner
while always realizing the same small delay. The main ideas
that are underlying the window design are the following.

(i) Since the spectral and temporal resolution of an anal-
ysis system is governed by the length of the analysis
window, analysis windows of different lengths have to
be provided for a system with maximum flexibility.

(ii) The delay in an overlap-add system is basically
determined by the length of the synthesis window.
Therefore, in order to realize the same short delay
for all window pairs in a switchable analysis-synthesis
system, the synthesis windows have to be of the
same length regardless of the length of the associated
analysis window.

(iii) In order to allow for an arbitrary frame-by-frame
switching between different analysis-synthesis win-
dow pairs, in an overlap-add system the product of
analysis and associated synthesis window has to be
the same for all window pairs.

(iv) The analysis-synthesis system should be perfectly
reconstructing whenever no processing is applied.

(v) The windows shall have reasonable frequency re-
sponses to avoid aliasing and imaging distortions.

For the subsequent investigations we use the window
set example in Figurel [16]. It is designed for a K =
512 point DFT with frame advance R = 32 samples at
16 kHz sampling frequency and consists of two analysis-
synthesis window pairs. The first window pair consists of
a zero-padded square-root Hann window of length 128
(M = 64 in Figure 1) for both, analysis, h!(i), and synthesis
window, f(i). The product of analysis and synthesis window
is a length-128 Hann window. The second window pair
provides an asymmetric analysis window, h!! (i), with square
root Hann slopes. The long asymmetric analysis window
is padded with d = 64 zeros to alleviate spectral aliasing.
The respective short synthesis window, f(i), is designed
in a way that the product of analysis and synthesis window
again results in the same length-128 Hann window as for
the short window pair. Therefore, an arbitrary switching

between either of the window pairs is possible without
violating perfect reconstruction, of course assuming that the
signal is not modified otherwise.

2.3. Analysis of Energy Gain Using Switched Windows. As
mentioned before, short analysis windows provide a high
temporal resolution. This implies that the energy of nonsta-
tionary signal sections, like bursts of plosive speech sounds,
is better captured with a short analysis window than with a
long one. In the following, we quantify this effect.

A gain Ggyich can be defined as the ratio of the signal
power captured under the short analysis window, h!(i),
related to the power that would be captured under the long
analysis window, 'l (i)

SE o S ()

Gswitch = . ( 3 )

S (mt Gy ST () )

The windows in the numerator and denominator of the
above formula are normalized to unity power. Since K — 2M
zeros are padded in window h!(i) the outer sum in the
numerator can startati = K — 2M.

In the best case the nonstationarity (e.g. speech onset)
occurs like a step function and coincides exactly with the
limits of the short window, therefore maximizing the power
that can be captured under the short window. This scenario
is illustrated in Figure 2, where 07 (i), 7 , and o;; denote the
power of the noisy signal, the speech power, and the noise
power, respectively.

Speech is assumed to be statistically independent of the
noise process and appears only during the 2M most recent
samples. If additionally the windows k(i) and h'/(i) are
assumed to be rectangular (Figure 2(a)), (3) simplifies so that
an estimate for the maximal achievable gain is

K/(2M)
(K/2M) —1)(02/(02 +02)) +1°

(4)

Gswitch =

In Figure 3 this expression is evaluated as a function of
the a priori SNR & = 02/0? and for several ratios of
the length of the short window to the length of the long
window. The solid lines show the result for the assumed
rectangular windows, the dashed lines show the expected
gain if the proposed tapered windows of Figure 2(b) are
used instead. The gain of the tapered windows is always
smaller than that obtained with rectangular windows. We
find that using the proposed short window over the proposed
long window during a burst-like speech sound at 15dB
a priori SNR improves the spectral representation by roughly
4 dB. Rectangular windows would yield a gain of about
5.6 dB at these conditions. Due to their unfavorable spectral
properties rectangular analysis windows do not represent
an alternative but should instead serve here as the upper
bound for possible gains, Ggyitch- Note that an increase in the
spectral representation of only a few dB may already help to
change the filter behavior in a noise reduction application in
a way that stops will be better preserved.
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FiGure 1: Example for a low delay switchable analysis-synthesis window set guaranteeing perfect reconstruction. The window pair in the
left column has good temporal resolution while the pair in the right column provides a good spectral resolution. The asymmetry of the long

analysis window emphasizes most recent samples.

In the preceding analysis we assumed that the non-
stationarity coincides exactly with the limits of the short
window. If this is not the case, the gain Ggyitch decreases.
Therefore it is advisable to operate the analysis system with
a small frame advance R. For the proposed window set
in Figurel a choice of R = M)/2 turned out to be a
good compromise between computational complexity and
a sufficient high temporal resolution. In terms of the filter-
bank interpretation of a DFT analysis system a small frame
advance corresponds to an oversampled system which is also
frequently used to reduce aliasing effects [1, page 339].

2.4. Computational Complexity. For the ease of use of a
flexible spectral analysis-synthesis system it is desirable that
the system behaves transparently to the spectral domain
application when switching from one to another window
pair. The system is therefore required to always provide
the same number of spectral components no matter which
window set is active. For this reason all analysis windows
are zero-padded to the same length so that a DFT of one
and the same length can be computed. Zero-padding the
short window does not increase the spectral resolution but
corresponds to an interpolation of the spectral data of the
short window. This increases the computational complexity
as compared to the case of a standard system with a short
analysis window without zero-padding but allows for a
more flexible allocation of temporal and spectral resolution.
Compared to a standard long window for analysis and

synthesis the proposed solution is less complex, more flexible

in terms of spectrotemporal resolution and has a lower delay.
With these considerations, the total number of multipli-

cations can be estimated for the following three cases.

(a) Standard system with symmetric short analysis and
short synthesis windows, for example, square-root
Hann windows.

(b) Proposed flexible analysis-synthesis system with a set
of two window pairs:

(1) short analysis window and short synthesis win-
dow,

(2) long (asymmetric) analysis window and long
(asymmetric) synthesis window.

(c) Standard system with symmetric long analysis and
long synthesis windows, for example square-root
Hann windows.

Complexity is determined here in terms of the number
of real-valued multiplications. These have been determined
in [17] for the calculation of an N-point FFT or IFFT:

C(N) = 0.5Nlog,N — 1.5N +2. (5)

If, as in the classical analysis-synthesis system, only a short
window of length 2M is used without zero-padding, the
complexity would amount to C(2M). Padding this window
to the length K would increase the number of multiplications
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FIGURE 2: Idealized scenario of a speech onset of power 02 in noise
of power o?2. The speech onset coincides with the short spectral
analysis window (2M most recent samples). The analysis window
is either (a), rectangular, or (b), tapered.

to C(K). However, as most of the input data to the FFT is
zero, advanced techniques for pruned FFT may reduce the
complexity by a factor of [18]

r=1-1, (©)
q

where 29 = K and 2! = 2M. Further multiplications are
required when weighting the input data with the analysis
window and the processed data with the synthesis window.
Here, only the nonzero samples of every window have to be
multiplied with the data.

Table 1 reports the computational complexity relative
to the complexity of case a. Furthermore, the temporal
resolution, the frequency bin spacing and the system delays
are indicated for a sampling frequency of f; = 16kHz and
for a frame advance of R = 32 samples which corresponds
to 2 milliseconds. The relative computational complexity of
the proposed solution varies between 3.9 and 4.7 depending
on how frequently the short analysis window or the long
asymmetric analysis window is used. In case a, the system
delay is only 10 milliseconds. However, when applying the
short window set A to a noise reduction system the denoised
speech and the residual noise sound harsh and unnatural.
In case b, the system delay is also low, but during longer
stationary signal sections like vocals or speech pauses, the
long asymmetric window can be used, resulting in a more
natural sounding speech and residual noise. The short

Gswitch (dB)

O I 1 1 1 1 L 1
-15 -10 -5 0 5 10 5 15 20 25 30

a priori SNR & = % (dB)

N

— Rectangular windows
—-- Proposed tapered windows

FiGURE 3: Expected spectral power gain versus a priori SNR & for
using a short analysis window versus a long window during speech
onsets. The curves are labeled with the ratio of the lengths of short
and long windows, 2M/K. The solid line shows the results for
rectangular analysis windows, the dashed line the results for the
proposed window set. The envelope of the time domain signal is
idealized as a step function where the section with increased power
coincides with the boundaries of the short window.

window pair in case b should be applied during transitions
or during bursts of a stop. Since in speech, and in partic-
ular in speech pauses, stationary signal sections dominate
transient sections the long analysis-synthesis window set
will be more frequently used than the short window set so
that an effective relative computational complexity close to
4.7 can be expected. While the computational complexity
increases when using the proposed solution B instead of A,
it provides a considerably improved frequency bin spacing
(about 36 Hz/bin) which principally allows to resolve pitch
harmonics. A similar high resolution is obtained in case ¢
only at the price of a much greater system delay and an even
slightly higher computational complexity.

3. Detecting Stationarity Boundaries

In this section we develop a detector for stationarity
boundaries of data which controls the selection of windows
to be used for the spectral analysis of the current segment.
Since for a real-time application this decision has to be made
frame-by-frame, the detector is optimized for decisions with
very low latency. This is an important aspect in which our
solution differs from other approaches which use statistical
models whose free parameters need to be estimated over
several frames [4], or, in [11] a sufficient number of samples
is required, corresponding to at least 20 ms. The algorithm
presented in the following is operating on the time domain
sampled data. It gives also information on how reliable the
stationarity-decision is.

3.1. Task and Hypotheses. Given a stream of time domain
sampled data (see Figure 4) we want to decide whether the
latest K, samples (block 2) are likely to originate from the
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TasLE 1: Comparison of proposed window set (center column) with a standard analysis-synthesis system using short (left column) or long
(right column) standard analysis and synthesis windows. The values are indicated for a sampling frequency f,= 16 kHz and a frame advance
of R = 32 samples (2 ms). The effective complexity of the proposed solution varies between 3.9 and 4.7 depending on the rate of use of either
the short or the long analysis window. Typically, the long analysis window will be used more frequently than the short analysis window.

A) standard

B) proposed solution of switchable

C) standard

short symm. short symm.
short symm. analysis window analysis window analysis window long symm. analysis window
short symm. synthesis window short symm. long asymm. long symm. synthesis window
synthesis window  synthesis window
DFT length 128 512 512
Zero-padding 0 384 64 0
Effective window length 128 128 448 512
Complexity 1.0 3947 53
Temporal resolution 8 ms 8ms 32 ms 32 ms
Frequency bin spacing 125 Hz/bin 125 Hz/bin 36 Hz/bin 31.25Hz/bin
System delay (8+2) ms (8+2) ms (3242) ms
) Block 1 ~ Block2 of the detector the stationarity detection works well even in
| LS — these cases.
i i i
1 1 1
i i /\ i 3.2. Likelihood-based Hypothesis Test. The hypothesis is
; ! tested with a likelihood ratio test (LRT). This requires the
v VoV VY VYN V | \/! knowledge of the probability density function (pdf) which
1 1 1

Time

FIGURE 4: Definition of blocks 1 and 2, consisting of K; and K,
samples, respectively.

same statistical process as the K; preceding samples (block
1). Thus, we have the following hypotheses:

Hy: the samples in block 2 originate from the same
statistics as those ones in the preceding block 1, that is, the
data is stationary over both blocks;

Hi: the samples in block 2 are supposed to follow
different statistics than the samples in block 1 (detection of a
stationarity boundary between the two blocks of data).

The lengths K; and K; can be arbitrarily set. A necessary
condition for stationarity is that the process mean power
must be constant over time. We inherently assume ergodicity
of the random processes in the respective blocks of data
since we replace the ensemble mean by the mean over
the consecutive observations (e.g., squared time domain
samples) within the respective blocks.

Furthermore, it is assumed that the samples within each
of the two blocks are independent identically distributed
(i.i.d.) and are wide-sense stationary within each block. This
assumption may be violated, for example, during voiced
speech or when the boundary between block 1 and block 2
does not coincide with the stationarity boundary. In practice,
however, it turns out that with a proper parameter setting

describes the distribution of the squared samples in block 1
and 2 under hypothesis H, or H.

Assuming that the observed time domain samples, y(i),
are realizations of a zero-mean Gaussian random variable
with variance oy, then the squared observations, y(i), are
Xz distributed with N = 1 degree of freedom [19, Equations
(5.33), (5.65)]

1 W
pw(w) = \/WexP(_Zyw)’ w >0, (7)

and pw(w) = 0 for w =< 0. The mean of the squared
random variable, yw, is the variance of the noisy time-
domain samples, pw = o3

Given hypothesis Hy, the data in both blocks originate
from the same statistical process, so that the pdf describing
the distribution of the squared samples in block 2 can be
formulated using the variance of the noisy time-domain
samples in block 1, o¢ :

1 w
———exp|—-—=5 |, ©>0. (8)
210y, w ( 207, )

If, on the other hand, the data in block 2 originate from
a different statistics than the data in block 1 (hypothesis H; ),
the mean power has to be defined using only data of block 2:

pwin,(w | Ho) =

1 W
pwi (0 | Hy) = 2exp(2>, w > 0. 9)
2oy, W 20y,

Both conditional pdfs are zero for w < 0.
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The variance of the noisy observations in block 1 and 2
constitute random variables, which may be approximated by
their respective maximum likelihood estimates

1 K;—1
03 = — > yli—-k-K), (10)
KD
K—-1
&= — 3 yli-k). (11)
R Y

Given the squared observations in block 2, y%(i), a
likelihood ratio (LR) test is defined by

25" pwis, (@ | Ho)lw=y2(i-k) o,
ko >, (12)
2y pwim, (@ | Hi)lw=y2(i-k) Hi

:LR:szexp<—<)§2—1>) =N (13)
oy, 2 H

with A = 1'VK being the LR decision threshold to be set to
a reasonable value from the interval of possible LR values,
[0,1].

The LR value gives an indication whether the observed
mean energy 0y, could have originated from both distribu-
tions with equal or similar likelihood (LR > A1) or whether
the statistics are significantly different. In the latter case we
reject Hy and decide that a stationarity boundary has been
detected, in the former case we accept Hy as we have no
sufficient evidence that stationarity has been violated. The
LR value itself gives information on the reliability of the
decision. The more it approaches zero, the more reliable is
the decision for H;. Accordingly, values close to one indicate
a highly reliable decision for Hy.

The value of the decision threshold A controls the trade
off between detection and false alarm rates. The higher A the
more stationarity boundaries are detected at the cost of an
increased false alarm rate. In the next section we analyze the
LR expression and investigate the relation between threshold
A and the probabilities of detection and false alarm.

3.3. Analysis of the Likelihood Ratio. In the sequel an
expression will be derived for the likelihood ratio as a
function of the SNR in the first block of data and the change
of the SNR at the transition from block 1 to block 2. The
analysis of the expected LR values and their variance helps to
properly set the detection threshold A.

3.3.1. Expected LR Value. Assuming speech and noise being
statistically independent random variables with ¢4 and o%
being their respective variances, then the observed signal
y(i) = s(i) + n(i) has variance oy = 0g + ox. Therefore, the
variances in block 1 and 2 may be written as

oy, = 0 +ox, = (& + Dog,, ”
14
oy, = 0§, + o5, = (& + Doy,

with & = o5ox,(i = 1,2) being the a priori SNR . With
these relations the LR (13) can be written as a function of

40
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FiGgure 5: Contour plot of the simplified likelihood ratio (16). The
noise is assumed to be stationary (01312 = aﬁh ). &1 denotes the a priori
SNR in block 1, & ., the step of the a priori SNR at the transition
from block 1 to 2.

the a priori SNR in block 1, &, and the change of the SNR at
the transition from block 1 to block 2, & ., = &/&;:

&b +1on 1(& 26 +10%
LR = |22 0N (2 (5120 T ION ) )
E+1 on P\T2\ 541 &

(15)

If the additive noise is stationary over both blocks 1 and 2,
that is, oy, = oy, the likelihood ratio simplifies to

[&-28 +1 (&8 +1
LR = f1+1€Xp<—2<£1+1 - 1)) (16)

Figure 5 illustrates the LR (16). The following conclu-
sions can be drawn.

(i) Detection of an SNR increase (¢, -, > 0 dB):

(1) the more the SNR ¢&; is below 0 dB the
higher has the SNR step to be in order to
produce noticeable small LR values. However,
the steepness of the LR function, that is, the
decrease of the LR value as a function of the
SNR step at a constant SNR ¢&; is similar for all
SNR &;;

(2) at SNR &; > 5 dB, the LR shows similar sensitiv-
ity for SNR increases.

(ii) Detection of an SNR decrease (&1, < 0dB):

(1) below 0dB SNR &; a detection of an SNR
decrease is impossible. This is plausible as an
SNR decrease of a signal that is already severely
disturbed (¢; < 0dB) does not result in a con-
siderably lower power of the disturbed signal
which the detection is based on.
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FiGgure 6: Contour plot of the likelihood ratio (15) assuming a noise
power rise from block 1 to block 2 (a8, = 40%,). & denotes the
a priori SNR in block 1, &, the step of the a priori SNR at the
transition from block 1 to 2.

(2) for all SNR &; > 10 dB the LR values decrease in
a similar manner over & _. , but less steeply than
for the case of the detection of SNR increase;

(3) we observe a saturation of the LR values at a
level that increases with decrease in the SNR
&). For example, at an SNR of §; = 10dB an
expected LR value less than 0.48 is not possible,
irrespective of the magnitude of the SNR drop.

In (16) (cf. Figure 5) noise is assumed stationary over
blocks 1 and 2 which is not always the case, for example
in case of babble or cafeteria noise. Figure 6 shows the LR
function for an assumed noise power increase by 6 dB at the
transition from block 1 to block 2. During a speech pause
the SNR is already very low (e.g. & < —10dB) and a noise
burst further degrades the SNR (&, < 0dB). In this case
the LR function returns smaller values than in the case of
stationary noise (cf. Figure 5). Therefore, depending on the
level of the decision threshold A the detector might trigger
on the noise burst. This example illustrates that the detector
detects any instationarities and cannot distinguish between
speech or noise.

3.3.2. Variance of the LR Values. The variances of the mod-
elled random processes, o¢, and oy,, have to be estimated
from the given data (cf. (10), (11)). As a consequence the
LR is a random variable with mean and variance. Since LR
is a transcendental function of the random variables 65, and
0y,» an analytic expression for the pdf of the LR is difficult to
derive. In the following we therefore simulate the LR values
for normal distributed input data y(i) and determine the
histograms of the LR for a given SNR &, in block 1 and for
a given SNR step &; .5 at the transition from block 1 to block
2. In Figure 7 five histograms are plotted for five SNR steps,
& 5, and constant SNR &;. We observe that the variance of
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FiGure 7: Histograms of the LR values for constant SNR &; = 5dB.
The amplitudes of the time-domain signal are Gaussian i.i.d. The
distribution is broadest at an SNR increase between roughly 0 and
10 dB.

the data is particularly large for & ., = 6 dB (light blue) and
is small for the cases & ., = 0dB (green) and &, ., = 12dB
(dark blue).

We measured the variance of the distributions of the
LR values not only for the five exemplary distributions in
Figure 7, but for each pair of & € [-40,40] dBand &, €
[—40,40] dB with a resolution of 1 dB. The result is presented
as a contour plot in Figure 8. The crosses indicate the five
SNR combinations for which the distributions in Figure 7
have been shown. We notice that the variance is highest
(about 0.045) for SNR increases and LR values close to
0.5 (compare with Figure 5) while for an SNR decrease the
variance of the estimated LR is about one order of magnitude
smaller. Therefore, the distributions of the LR values that
are associated with the upper right quadrant in Figure 5 are
relatively broad as compared to those ones associated with
lower right quadrant (see also Figure 7). The impact of this
observation on detection and false alarm probabilities will be
discussed in Section 3.4.

3.3.3. Optimal Block Lengths Ky and K, . A result from
the preceding section is that for robust decisions the block
lengths K; and K, should be as large as possible in order to
reduce the variance of the estimates (10) and (11), therefore
reducing the variance of the LR (13). At the same time
block 2 should be short enough to span (in the majority
of cases) data from only one statistical process. If block 2
contains data from more than one statistical process the
power measurement via (11) would be misleading, resulting
in a wrong estimate of the SNR change.

For the low-delay detection of stops, for example, the
duration of block 2 should not exceed a few ms. This is
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the typical duration of the brief burst that is produced
after release of the vocal tract occlusion [20, Section 3.4.7].
Therefore, we set the duration of block 2 to 2 milliseconds.

In a frame-based implementation with a frame shift of
R samples we extend the length K; by the latest R samples
whenever H, (stationarity) was accepted in the preceding
frame. By this, the variance of the maximum likelihood
estimate 0y, (10) that is required in (13) can be reduced,
leading to more robust decisions. Whenever in the preceding
frame shift a nonstationarity boundary has been detected,
this extension is stopped and the data which 63, is based on
is reset to only the latest K; samples.

3.4. Detection Probability and False Alarm Probability. The
proposed detector can also be characterized by its detection
and false alarm probabilities. Using the probability density
function (pdf) of the LR values, for a given SNR & = 51
and a given change of the SNR, & ., = fl _, we define the
following.

(i) False alarm : a nonstationarity is detected although
the signals in block 1 and 2 originate from the same
statistical process, that is, the expected SNR difference
is &, = 0 dB. We denote the probability associated
with this event

PfazszLR(ﬁﬂgl,£1a2=0dB)dx. (17)

(ii) Missed detection: although the data in block 1 and
block 2 originate from different statistics, that is, the
expected SNR difference is &, ., # 0 dB, a nonstation-
arity is not detected. The associated probability is
denoted by

Pua = J;PLR (X | 51;§1~2>dx- (18)

The detection probability is defined as Py = 1 — Pyyq. In
the sequel we determine the detection probability and the
false alarm probability of the proposed detector. The pdf is
again approximated with histograms.

As an example let us first consider the detection of SNR
increases (e.g., bursts or speech onsets) of £;_., = 6dB at
& = 10dB SNR. We ask for the decision threshold that is
necessary to detect 95% of these SNR rises. The top plot in
Figure 9 shows for every SNR change &, _., (1 dB resolution)
the distribution of the LR values for the given SNR & =
10dB. The natural logarithm of the relative frequencies is
mapped to gray levels. The dashed lines show the 5%- and
the 95%-percentile of the distributions. The distributions are
broadest for &; ., € [5,8] dB. For &; ., > 15 dB the variances
of the distributions are very small.

The lower plot in Figure 9 shows the detection proba-
bilities as a function of the SNR step for three thresholds A.
With a threshold of A = 0.93 (thin line) almost 100% of the
SNR steps greater than 6 dB are detectable. However, the false
alarm rate which is found at &;_, = 0dB is 16%, which is
unacceptably high.
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Figure 8: Contour plot of the variance of the LR estimates. The

variance has been determined empirically (K; = 32, K, = 32,R =

32). & denotes the SNR in block 1, & _, the change in SNR at the

transition from block 1 to 2. The crosses illustrate the points for
which the LR histograms are plotted in Figure 7.

With a threshold of A = 0.84 about 95% of the SNR steps
& > = 6dB can be detected while detections at & ., = 0dB
are expected with probability Py, = 2.8%. Although this false
alarm probability is relatively small, we see that for every
small SNR step in the interval {;_., € ]0,6[ dB detections
occur with a considerable rate. In order to detect mainly
those SNR steps that exceed a certain SNR threshold the
decision threshold A has to be decreased. The thick solid line
shows the detection probability for A = 0.25. In this case
SNR increments between 0 and 5 dB SNR do not result in a
significant detection rate. Only if the SNR rise is larger than
5dB the detection rate increases and attains 95% for &; ., =
10 dB. The low threshold A = 0.25 is thus advantageous if
only considerable changes in the SNR of at least five to ten
dB should be detected.

While Figure 9 shows the detection probability for an
exemplary SNR & = 10dB, in the same way the detection
probabilities for a given threshold A can be determined for
all £ € [—40,40] dB. The result for A = 0.25 and 1dB
resolution is shown in Figure 10 as a contour plot. The dotted
red line indicates those cases where the detection probability
equals 0.95. Additionally, SNR decreases are detected in the
same fashion and can be distinguished from SNR rises by
comparison of the estimated variances (10), (11) in block 1
and 2.

3.5. Example. In Figure 11 we show the use of the detector
for the detection of strong phoneme onsets in continuously
spoken disturbed speech. The assumed Gaussianity of the
pdfs of speech and noise is approximately fulfilled, in
particular during unvoiced speech, like stops. The clean
speech [21] was mixed with speech-shaped noise to an SNR
of 10dB (bottom plot). The phonetic labels are printed on
the plot. In the upper part of the figure the LR values are
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FiGure 9: (a) Distributions of the LR for & = 10 dB. The gray scale represents the natural logarithm of the measured relative frequencies
of the LR values. The variance of the histograms is high during the decrease of the LR mean (dotted line). (b) Detection probabilities for
three-decision thresholds A as a function of the observed SNR change & _,.
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FIGURE 10: : Detection probability, P4, as a function of the SNR in
block 1 and the SNR change from block 1 to block 2. The dotted red
line highlights the cases where P; = 0.95.

given. The duration of block 2 was set to 2 milliseconds.
Whenever the LR falls below A (dashed line) the detector
fires. In this example bursts of stops are detected robustly and
in time. The phoneme [k] shortly before 0.6 seconds is not
detected. An analysis of the SNR reveals that §; = —9 dB and
the SNR increase is &, ., = 11.4 dB during the burst of the
phoneme. Regarding the preceding analysis of the detector
it is clear that a detection under these severe conditions is
not possible with the given threshold A (cf. Figure 5). The
decisions are obtained within only 2 ms delay (K, = 32,
sampling rate f; = 16 kHz).

3.6. Evaluation of Detection Performance. The proposed
detector was used in a framework to verify its performance. A
total number of 4200 clean speech sentences from the TIMIT
database [21] have been disturbed with stationary speech-
shaped noise, each at a mean segmental SNR of 10dB.

Then, using the phonetic labels of the TIMIT database, the
number of occurrences of each phoneme was counted. For
each occurrence of a phoneme it was recorded whether it
was detected by the proposed detector or not. In case of a
detection, the SNR increase, & _, and the SNR ¢; during
the detection have been recorded. If the detector did not
fire, the maximum SNR increase within the boundaries of
the phoneme, & _ 5, and the respective SNR, &, have been
recorded in order to document, at which SNR increase the
detector failed to fire. The detection threshold is set to A =
0.1.

Given these data, histograms of the occurrences of a
phoneme in the plane spanned by &; _. ; and &; can be created.
This is illustrated for the stop “t” in Figure 12. In the same
manner the detection counts and the missed detections are
illustrated in Figures 13 and 14, respectively.

It can be concluded from Figure 12 that under the given
measurement conditions during the closure of the stop “t”
the SNR ¢, is roughly —30dB and the SNR rise during
the burst is around 40 dB. If the SNR increase leads to an
SNR close to or less than 0 dB the stop cannot be detected
(Figure 14). In this case a multichannel spatial preprocessing
(e.g. [22]) can help to improve the SNR prior to the
detection.

Stop “t” whose (1,¢&;_,)-coordinates correspond to a
small LR value can be robustly detected (Figure 13). The
histogram thus confirms the theoretical considerations of the
preceding subsections.

The experiment could be repeated for a higher or a
lower input noise level. This would make the histograms
shift towards lower, respectively, higher SNR £, so that fewer,
respectively, more phonemes would be detected.

Since the detector is sensitive to any transient, in
nonstationary environments, like cafeteria noise, we expect
detections of noise bursts also. If this shall be prevented,
the detection threshold A could be lowered in nonstationary
environments. In a hearing instrument this can be triggered
by manually selecting a situation-specific hearing-aid pro-
gram, or could be controlled by an automatic classification
system as used in state-of-the-art hearing instruments [23].
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Figure 11: Example usage of the detector for low-delay detection of instationarities in continuously spoken disturbed speech (bottom,
“complexity of complete marketing planning”, [21]). The LR values are plotted on top, the decision threshold A = 0.25 is represented by the

dash-dotted line.
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Figure 12: Occurrences of phoneme “t” in sentences disturbed at
10 dB mean segmental SNR.

4. Modifications to the Noise Reduction System

With the ability of detecting instationarities in disturbed
speech the classical noise reduction system is extended as
illustrated in Figure 15. The detection of instationarities is
based on the highpass-filtered input signal, y(i). As many
noise types show a lowpass characteristic, highpass filtering
improves the SNR prior to the detection and hence helps to
improve the detection rate. Given the likelihood ratio, LR, at
the output of the detector, in the following paragraphs we
discuss three possible measures that can be applied on their
own or in combination.
In short we propose to

(i) switch the analysis (and synthesis) window of the
spectral analysis system for a better temporal resolu-
tion during transitional segments;

(ii) adapt the decision-directed estimator for the a priori
SNR [12] to allow for a faster and more precise
tracking of the a priori SNR during transitions;
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FiGure 13: Detected occurrences of phoneme “t” (A = 0.1).

(iii) amplify a segment that has been classified as transi-
tional to improve speech intelligibility [14, 15].

4.1. Window Switching. Figure 16 illustrates how the non-
stationarity detection is applied to the spectral analysis-
synthesis window sets presented in Section 2. Block 2 has a
length of K; = 32 samples (2 ms), centered on the short
analysis window, A!(i). Block 1 is initially also of length
K; = 32 samples but is growing by R samples per frame shift
as long as no nonstationarity is detected and a maximum
length of 5R samples is not exceeded. As argued before, this
strategy reduces effectively the variance of the LR estimate.
If a nonstationarity is detected, block 1 is reset to the last
K; = 32 samples.

4.2. Modified Decision-Directed Approach. In [12] the deci-
sion-directed estimator for the a priori SNR is proposed. It
estimates the a priori SNR via a weighted sum of the current
maximum a posteriori (MAP) estimate of the a priori SNR
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FIGURE 14: Missed detections of phoneme “t” (A = 0.1).

and an estimate which is built from the speech spectrum
estimated in the preceding frame, Sx(m — 1):

A~ 2
: [Setm — 1) Ye(m)P
fk(l’l’l) = (Xm + (1 — a)max(gl%](m) — 1,0),

ae [0,1].
(19)

The first estimate é;((m) after a speech onset is ruled by the
a posteriori SNR, IYk(m)Iz/UI%,(m), in the second term in

(19) since the feedback term |8k (m — 1)|2/0§,(m —1) is small
due to the speech pause in the preceding frame. Since the
second term in (19) is weighted with 1 — «, which is typically
of the order of —12dB to —17dB (« = 0.94 : 0.98), the
a priori SNR estimate considerably underestimates the true
a priori SNR during speech onsets [24]. As a consequence,
stops, which are normally of low intensity, are often severely
attenuated by noise reduction filters based on the decision-
directed approach.

By lowering the parameter «, the response time on fast
changes of the SNR can be improved, however, only at the
price of an increased distortion of the residual noise (musical
noise). Therefore it was proposed to make the parameter « of
the decision-directed approach time-dependent [25] or time-
and frequency-dependent [26]. In [27] the response time of
the a priori SNR estimator on SNR increases is improved with
a recursion step in which per frame advance a preestimate of
the clean speech spectrum is computed which is then used to
determine the decision-directed estimate of the a priori SNR.

While in [25, 26] the parameter « is modified frame-
by-frame, we propose to change it only if a speech onset is
detected. Whenever a significant power increase is reliably
detected (LR less than a threshold, LRthresh,), ak(m) is
reduced for those frequency bins k where speech activity
is likely. The latter is important, as broadband reduction
of ax(m) leads to audible musical noise in those frequency
bands that are not masked by the speech.
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To realize the desired behavior of ax(m) the maximum
likelihood estimate of the a priori SNR is smoothed along
frequency and is then linearly mapped to the range of values
of @ € [0, Amax] Where amax < 1 is typically 0.94 : 0.98.
Estimates of the a priori SNR greater or equal to 15dB
very likely indicate the presence of speech and are therefore
mapped to ax(m) = 0 to preserve the speech presence in
those frequency bins. Estimates less or equal to 0 dB are
very likely dominated by noise and are therefore mapped to
o (M) = Omax.

This procedure is applied for three consecutive frames
after the onset detection. After this time the feedback of
the estimated clean speech spectra §k(m — 1) in (19) will

have established more robust estimates, & (m), so that ay(m)
can be increased again to amax until the next onset will be
detected.

4.3. Amplification of Transients. In [13] the effect of adjusting
the consonant-vowel intensity ratio on consonant recog-
nition by hearing impaired subjects was investigated. The
recognition of stops was significantly improved when the
release burst of the stop was amplified. The improvement
reached a maximum when the consonant-vowel intensity
ratio was amplified by roughly 8 to 14 dB (depending on
the stop, the vowel environment, audiogram configuration,
etc.). While the results of this study relate to the undisturbed
case, in [14] speech material was used that was disturbed
to 6dB SNR with a 12-talker babble. The effects of three
modifications are compared: (1) increasing the duration of
consonants, (2) increasing the consonant-vowel intensity
ratio by 10dB, and (3) a combination of (1) and (2).The
most significant improvements are obtained from increasing
the consonant-vowel intensity ratio. Similar results are
obtained in [15] where bursts of plosives are amplified by
12 dB. As apposed to the studies presented before, in [15]
also sentence material was used as stimulus. In this case
less improvements from the amplification of the consonantal
region were observed compared to the case where consonant-
vowel-consonant stimuli were used. The clean speech was
disturbed with speech-shaped noise at —5, 0 and 5 dB SNR.
Based on these findings, in our proposed system, in
addition to the window switching, we amplify the samples
of those frames that most probably contain a speech onset.
To this end, the frame data is amplified with a gain Gians,
whenever the LR (13) falls below a threshold LRphresh,. In
the cited works, the point in time and the duration of
a consonant is perfectly known as annotated speech was
used in the investigations. In our case, speech onsets have
to be detected in the disturbed signal. To account for the
uncertainty of the detection we let the gain linearly increase
with increasing reliability of the nonstationarity-decision,
that is the smaller the values of LR the higher is Girans, cf.
Figure 17. As soon as the LR exceeds the threshold LR¢hresh,
we let the gain Gians decay exponentially to Gyans = 1
with a time constant of roughly 20 ms. This was found to
be perceptually advantageous over an abrupt decrease of
the gain. Strong consonant amplification as proposed in
the precedingly cited works results in unnaturally sounding
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FIGURE 17: Mapping the likelihood ratio LR to a frame amplifica-
tion Girans.

speech. A limitation of the maximum gain to 3.5 dB results
in a clearly perceptible amplification of transient sounds
like bursts of stops, but preserves the naturalness of the
speech. It is important to notice that the proposed increase
of the consonant-vowel intensity ratio becomes feasible only
with short analysis windows. The amplification of the data
captured under a classical long analysis window can produce
audible noise prior to the amplified speech onset if the onset
occurs only in the most recent samples of the frame. With
the concept of switched windows, however, the short analysis

and synthesis windows will be used whenever a speech onset
is detected, hence preventing audible prenoise.

5. Results

5.1. Example of Estimated Speech. To illustrate the con-
sequences of the measures proposed in Section 4, speech
disturbed with speech-shaped noise has been denoised using
a frequency domain Wiener filter and decision-directed esti-
mation of the a priori SNR. The spectral analysis is realized
using either permanently the asymmetric long window,
k! (i), or the short and long analysis window set, h (i), h'! (i),
switched according to the nonstationarity decisions taken by
the detector presented in Section 3. In another case, not only
the window set is switched, but also the parameter « of the
decision-directed approach is modified as proposed in 4.2.

Time-domain signals of the utterance “Poach the apples
in ...” are given in Figure 18. Figure 18(a) shows the clean
and the noisy signal at 10 dB SNR (speech-shaped stationary
noise). Figure 18(b) contains the output of a Wiener filter
single-channel noise reduction. Since only the long spectral
analysis window is used, the stops at 0.05 seconds or at
0.75 seconds are considerably distorted. In Figure 18(c) the
result obtained with a signal dependent switching between
long and short analysis windows is shown. At the bottom,
the window decision is plotted. By using the short analysis
window during transient sounds the distortion of these
sounds in the filtered output can be reduced. Finally, in
Figure 18(d) the result with additionally modified decision-
directed approach is plotted. It shows considerable improve-
ments of the transients. In particular the two stops at 0.05 s
and at 0.75 s are very well preserved in the filtered output.

In Figure 19 the spectrograms of the same example are
given. The spectra are obtained using a 128-point DFT of the
data weighted with a Hann window and 75 percent overlap.
As before we observe a better preservation of the phonemes
[p]. Additionally, the speech onset at frame index m = 50
is better preserved when the analysis window is switched
to the short window (Figure 19(d) and 19(e)) and is even
better preserved when the modified decision-directed is used
(Figure 19(e)).
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(c) Filter output using either short or long window set, switched according
to the window decision plotted at the bottom.
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(b) Filter output using only the long window set (k! (i), fI(i)).
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(d) As before, but additionally with modified decision-directed approach.

F1GURE 18: Time-domain signals of input and the results obtained after noise reduction with Wiener filter and the methods proposed in

Sections 4.1 and 4.2.
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(c) Filter output using only the long window set (k! (i), fI(i)).
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(b) Speech plus speech-shaped noise at 10 dB SNR.
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(d) Filter output using either short or long window set, switched
according to the window decision plotted at the top (high level means
short window set (I) is used, else long window set (II)).
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(e) As before, but additionally with modified decision-directed ap-

proach.

FIGURE 19: Spectrograms (dB) of input signals and the results obtained after noise reduction with Wiener filter and the methods proposed
in Sections 4.1 and 4.2. To create the spectrograms a 128-point DFT with 32 samples frame advance at 16 kHz sampling frequency and a

Hann data window was used.
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FIGURE 20: Spectra of clean, Si(m), noisy (speech-shaped additive
noise), Yi(m), and estimated clean speech, Se(m) of the phoneme
[p] in “poach” The estimated clean speech is obtained by Wiener
filtering using a spectral analysis based on either the asymmetric
long window only, A (i), or based on the window set h!(i) and
k' (i) from Figure 1. If the window set is used the window decision
is based on the nonstationarity decision. The thin solid black line
shows the result if additionally to the switched window set the
proposed modification of the decision-directed approach is applied.
Frame amplification (cf. 4.3) is not shown here. The above spectra
have been created using a 128-point DFT and Hann windowed data
(sampling frequency f; = 16 kHz).
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FIGURE 21: Relative frequencies of the improvements of log-spectral
distortion in 2792 occurrences of the phoneme [d]. Values less than
zero signify less distortion of the proposed system as compared to
a system using a square-root Hann window for spectral analysis-
synthesis that produces the same small system delay.

In Figure 20 we show sample spectra of the denoised
speech during articulation of the phoneme [p] in the word
“poach” For comparison, the spectra of the clean speech,
Sk(m) (thick solid green line), and of the noisy observation,
Yi(m) (dotted black line), are also plotted.
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At frequency bins k = 22...30 and k = 40...50
the speech spectrum is better preserved when using the
switched window set (dashed blue line) as compared to the
results obtained with the long asymmetric window only (red
solid line). The maximum gain observed in this example
is about 4 dB. If additionally the proposed modification of
the decision-directed estimator of the a priori SNR is realized
(thin solid black line), the estimated speech spectrum, on
average, much better preserves the actual speech spectrum.
As a consequence, the phoneme sounds sharper than without
modification of the decision-directed SNR estimator and
without window switching.

5.2. Instrumental Evaluation. In our experiment 4132 clean
speech utterances [21] disturbed with additive speech-
shaped noise at 10dB SNR have been processed with a
Wiener filter single-channel noise reduction using either
square-root Hann windows (length 8 ms) for spectral analy-
sis and synthesis or the proposed system. In terms of delay the
square-root Hann window is comparable with the proposed
system (cf. Table 1, A versus B). Then, for every occurrence
of a phoneme the intelligibility-weighted [28] mean log-
spectral distortions has been determined [29]. The mean is
computed over frames with a segmental SNR greater than
5 dB. A measurement frame is only 2ms long in order
to be able to resolve the short bursts of stops. Finally, the
differences between the spectral distortion produced by the
proposed system and the distortion produced by the square-
root Hann windows was determined. Figure 21 shows the
histogram of the differences for the example of the phoneme
[d]. A negative value signifies that the distortion obtained
with the proposed system is less than in case of the square-
root Hann windows. Below the histograms the mean and the
5%- and 95%-significance levels of the three distributions
are indicated. Using the long window without switching to
the short window (thick solid red line) produces on average
a similar distortion as obtained with the reference window.
We observe slightly less distortion when the window is
switched to the short window (thick blue dashed line). When
additionally the decision-directed approach is modified (thin
solid black line) the average distortion considerably reduces
(about 2.8dB less than the reference). The distribution
becomes bimodal because not all occurring phonemes [d]
are detected.

5.3. Listening Tests. Informal experiments conducted with
four expert listeners confirmed the improved reproduction
of stops with the proposed modification of the noise reduc-
tion system. Stationary speech-shaped noise and cafteria-
babble was used at 5 and 10 dB SNR. The amplification
Girans Of transient frames (see Section 4.3) was limited to
Grax. = 3.5dB because this resulted in natural sounding
speech. Note that in [13—-15] stronger amplifications of about
10 dB are proposed to achieve a higher speech intelligibility.

6. Conclusion

In this paper a new system for block-based speech enhance-
ment is proposed. The focus is on the preservation of stops,
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since their clarity is crucial for the preservation of speech
intelligibility. The main idea is to detect nonstationary
data in the signal segment under investigation. Given this
information, a signal adapted spectral analysis and synthesis
is performed. A short analysis window is used during plosive
sounds. It ensures a high temporal resolution and thus
helps to keep the impulsive energy of burst-like sounds
concentrated in their spectrotemporal representation. A
long analysis window is used when the signal is stationary.
The high spectral resolution obtained with that window
allows performing noise reduction in between spectral pitch
harmonics.

In addition to switching the window set for spectral
analysis and synthesis, the decision-directed SNR estimator
[12], is modified to yield less distortion of speech onsets
and stops. With the nonstationarity decision at hand, also
the amplification of stops becomes possible, which has been
shown to improve intelligibility [13-15].

To control the switching of the spectral analysis and
synthesis windows, a low-latency likelihood-based detector
for instationarities has been derived. Its properties have been
analyzed and the detection performance was verified exper-
imentally. The examples of the time-domain and spectral
representation of signals denoised with the proposed system
demonstrate that the signal dependent selection of the spec-
tral analysis-synthesis window set allows to better preserve
stops and speech onsets. Similarly, a considerably improved
reproduction of stops has been shown for the proposed
modification of the decision-directed SNR estimator. This is
confirmed also by informal listening tests. For the future,
formal listening tests are planned to check the proposed
approach for intelligibility and qualtity improvements.
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