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We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the
presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with
multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-
Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs
that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error
(SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel
estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean
square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem.
The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set.
This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design.
For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We
propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs).
Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the
robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs
outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
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1. Introduction

Multiuser multiple-input multiple-output (MIMO) wireless
communication systems have attracted considerable interest
due to their potential to offer the benefits of spatial diversity
and increased capacity [1, 2]. Multiuser interference limits
the performance of such multiuser systems. To realize the
potential of such systems in practice, it is important to devise
methods to reduce the multiuser interference. Transmit-
side processing at the base station (BS) in the form of
precoding has been studied widely as a means to reduce
the multiuser interference [2]. Several studies on linear pre-
coding and nonlinear precoding (e.g., Tomlinson-Harashima
precoder (THP)) have been reported in literature [3, 4].
Joint design of both transmit precoder and receive filter
can result in improved performance. Transceiver designs

that jointly optimize precoder/receive filters for multiuser
MIMO downlink with different performance criteria have
been widely reported in literature [5–11]. An important
criterion that has been frequently used in such designs is the
sum mean square error (SMSE) [6–9]. Iterative algorithms
that minimize SMSE with a constraint on total BS transmit
power are reported in [6, 7]. These algorithms are not
guaranteed to converge to the global minimum. Minimum
SMSE transceiver designs based on uplink-downlink duality,
which are guaranteed to converge to the global minimum,
have been proposed in [8, 9]. Non-linear transceivers, though
more complex, result in improved performance compared
to linear transceivers. Studies on nonlinear THP transceiver
design have been reported in literature. An iterative THP
transceiver design minimizing weighted SMSE has been
reported in [10]. The work in [8, 11], which primarily
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consider linear transceivers, presents THP transceiver opti-
mizations also as extensions. In [12], a THP transceiver
design minimizing total BS transmit power under SINR
constraints is reported.

All the studies on transceiver designs mentioned above
assume the availability of perfect channel state information
at the transmitter (CSIT). However, in practice, the CSIT
is usually imperfect due to different factors like estimation
error, feedback delay, quantization, and so forth. The perfor-
mance of precoding schemes is sensitive to such inaccuracies
[13]. Hence, it is of interest to develop transceiver designs
that are robust to errors in CSIT. Linear and nonlinear
transceiver designs that are robust to imperfect CSIT in mul-
tiuser multi-input single-output (MISO) downlink, where
each user is equipped with only a single receive antenna, have
been studied [14–19]. Recently, robust linear transceiver
designs for multiuser MIMO downlink (i.e., each user is
equipped with more than one receive antenna) based on
the minimization of the total BS transmit power under
individual user MSE constraints and MSE-balancing have
been reported in [20]. However, robust transceiver designs
for nonlinear THP inmultiuser MIMOwith imperfect CSIT,
to our knowledge, have not been reported so far, and this
forms the main focus of this paper.

In this paper, we consider robust THP transceiver designs
for multiuser MIMO downlink in the presence of imperfect
CSIT. We consider two widely used models for the CSIT
error [21], and propose robust THP transceiver designs
suitable for these models. First, we consider a stochastic
error (SE) model for the CSIT error, which is applicable in
TDD systems where the error is mainly due to inaccurate
channel estimation (in TDD, the channel gains on uplink
and downlink are highly correlated, and so the estimated
channel gains at the transmitter can be used for precoding
purposes). The error in this model is assumed to follow
a Gaussian distribution. In this case, we adopt a statistical
approach, where the robust transceiver design is based on
minimizing the SMSE averaged over the CSIT error. To solve
this problem, we propose an iterative algorithm, where each
iteration involves solution of two subproblems, one of which
can be solved analytically and the other is formulated as
a second order cone program (SOCP) that can be solved
efficiently. Next, we consider a norm-bounded error (NBE)
model for the CSIT error, where the error is specified in terms
of uncertainty set of known size. This model is suitable for
FDD systems where the errors are mainly due to quantization
of the channel feedback information [17]. In this case,
we adopt a min-max approach to the robust design, and
propose an iterative algorithm which involves the solution
of semidefinite programs (SDP). For the NBE model, we
consider three design problems: (i) robust minimum SMSE
transceiver design (ii) robust MSE-constrained transceiver
design, and (iii) robust MSE-balancing transceiver design.
We also consider the extension of the robust designs to incor-
porate per-antenna power constraints. Simulation results
show that the proposed algorithms are robust to imper-
fections in CSIT, and they perform better than nonrobust
designs as well as robust linear designs reported recently in
literature.

The rest of the paper is organized as follows. The system
model and the CSIT error models are presented in Section 2.
The proposed robust THP transceiver design for SE model
of CSIT error is presented in Section 3. The proposed
robust transceiver designs for NBE model of CSIT error are
presented in Section 4. Simulation results and performance
comparisons are presented in Section 5. Conclusions are
presented in Section 6.

2. SystemModel

We consider a multiuser MIMO downlink, where a BS com-
municates with M users on the downlink. The BS employs
Tomlinson-Harashima precoding for interuser interference
precancellation (see the system model in Figure 1). The BS
employs Nt transmit antennas and the kth user is equipped
with Nrk receive antennas, 1 ≤ k ≤ M. Let uk denote
the Lk × 1 data symbol vector for the kth user, where Lk,
k = 1, 2, . . . ,M, is the number of data streams for the kth
user. ( We use the following notation: Vectors are denoted by
boldface lowercase letters, and matrices are denoted by bold-
face uppercase letters. [·]T , [·]H , and [·]†, denote transpose,
Hermitian, and pseudo-inverse operations, respectively. [A]i j
denotes the element on the ith row and jth column of
the matrix A. vec(·) operator stacks the columns of the
input matrix into one column-vector. ‖ · ‖F denotes the
Frobenius norm, and E{·} denotes expectation operator.
A � B implies A − B is positive semidefinite.) Stacking the
data vectors for all the users, we get the global data vector
u = [uT1 , . . . ,u

T
M]

T . The output of the kth user’s modulo
operator at the transmitter is denoted by vk. Let Bk ∈ CNt×Lk
represent the precoding matrix for the kth user. The global
precoding matrix B = [B1,B2, . . . ,BM]. The transmit vector
is given by

x = Bv, (1)

where v = [vT1 , . . . , v
T
M]

T . The feedback filters are given by

Gk =
[
Gk,1 · · · Gk,k−1 0Lk×

∑M
j=k Lj

]
, 1 ≤ k ≤M, (2)

where Gk j ∈ CLk×Lj , perform the interference presubtrac-
tion. We consider only interuser interference presubtraction.
When THP is used, both the transmitter and the receivers
employ the modulo operator, Mod(·). For a complex
number x, the modulo operator performs the following
operation

Mod(x) = x − a
⌊
R(x)
a

+
1
2

⌋
− j a

⌊
I(x)
a

+
1
2

⌋
, (3)

where j = √−1, and a depends on the constellation [22]. For
a vector argument x = [x1 x2 · · · xN ]

T ,

Mod(x) =
[
Mod(x1) Mod(x2) · · · Mod(xN )

]T
. (4)

The vectors uk and vk are related as

vk =Mod

⎛
⎝uk −

k−1∑

j=1
Gk, jv j

⎞
⎠. (5)



EURASIP Journal on Advances in Signal Processing 3

GM

Mod

B1

BM

Mod

G1

HM

C1

CM

Mod

Mod

u1

uM

v1
H1

vM

v1

vM

uM

u1

...

...

...

... ...

Figure 1: Multiuser MIMO downlink system model with Tomlinson-Harashima Precoding.

The kth component of the transmit vector x is transmitted
from the kth transmit antenna. Let Hk denote the Nrk × Nt

channel matrix of the kth user. The overall channel matrix is
given by

H =
[
HT

1 HT
2 · · · HT

M

]T
. (6)

The received signal vectors are given by

yk = HkBv + nk, 1 ≤ k ≤M. (7)

The kth user estimates its data vector as

ûk =
(
Ckyk

)
mod a

= (CkHkBv + Cknk) mod a, 1 ≤ k ≤M,
(8)

where Ck is the Lk ×Nrk dimensional receive filter of the kth
user, and nk is the zero-mean noise vector with E{nknH

k } =
σ2nI. Stacking the estimated vectors of all users, the global
estimate vector can be written as

û = (CHBv + Cn) mod a, (9)

where C is a block diagonal matrix with Ck, 1 ≤ k ≤ M
on the diagonal, and n = [nT

1 , . . . ,n
T
M]

T . The global receive
matrix C has block diagonal structure as the receivers are
noncooperative. Neglecting the modulo loss, and assuming
E{vkvHk } = I, we can write MSE between the symbol vector
uk and the estimate ûk at the kth user as [10]

εk = E
{∥∥ûk − uk

∥∥2}

= tr
[(

CkHkB−Gk

)(
CkHkB−Gk

)H
+ σ2nCkCH

k

]
,

1 ≤ k ≤M,
(10)

where Gk = [Gk,1 · · ·Gk,k−1 ILk ,Lk 0Lk×
∑M

j=k+1 Lj
].

2.1. CSIT Error Models. We consider two models for the
CSIT error. In both the models, the true channel matrix of
the kth user,Hk, is represented as

Hk = Ĥk + Ek, 1 ≤ k ≤M, (11)

where Ĥk is the CSIT of the kth user, and Ek is the CSIT error
matrix. The overall channel matrix can be written as

H = Ĥ + E, (12)

where Ĥ = [ĤT
1 ĤT

2 · · · ĤT
M]

T , and E = [ET1 ET2
· · ·ETM]T . In a stochastic error (SE) model, Ek is the channel
estimation error matrix. The error matrix Ek is assumed to
be Gaussian distributed with zero mean and E{EkEHk } =
σ2EINrk

Nrk
. This statistical model is suitable for systems with

uplink-downlink reciprocity. We use this model in Section 3.
An alternate error model is a norm-bounded error (NBE)
model, where

‖Ek‖F ≤ δk, 1 ≤ k ≤M, (13)

or, equivalently, the true channel Hk belongs to the uncer-
tainty setRk given by

Rk =
{
ζ | ζ = Ĥk + Ek,‖Ek‖F ≤ δk

}
, 1 ≤ k ≤M,

(14)

where δk is the CSIT uncertainty size. This model is suitable
for systems where quantization of CSIT is involved [17]. We
use this model in Section 4.

3. Robust Transceiver Design with
Stochastic CSIT Error

In this section, we propose a transceiver design that mini-
mizes SMSE under a constraint on total BS transmit power
and is robust in the presence of CSIT error, which is assumed
to follow the SE model. This involves the joint design of the
precoder B, feedback filter G, and receive filter C. When E,
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the CSIT error matrix, is a random matrix, the SMSE is a
random variable. In such cases, where the objective function
to be minimized is a random variable, we can consider the
minimization of the expectation of the objective function. In
the present problem, we adopt this approach. Further, the
computation of the expectation of SMSE with respect to E
is simplified as E follows Gaussian distribution. Following
this approach, the robust transceiver design problem can be
written as

min
B,C,G

EE{smse}

subject to Tr
(
BBH

)
≤ Pmax,

(15)

where Pmax is the limit on the total BS transmit power,
and minimization over B,C,G implies minimization over
Bi,Ci,Gi, 1 ≤ i ≤ M. Incorporating the imperfect CSIT,
H = Ĥ + E, in (10), the SMSE can be written as

smse = E
{∥∥û− u

∥∥2}

=
M∑

k=1
tr
[(

Ck

(
Ĥk+Ek

)
B−Gk

)(
Ck(Ĥk+Ek)B−Gk

)H

+ σ2nCkCH
k

]
.

(16)

Averaging the smse over E, we write the new objective
function as

μ � EE{smse}

=
M∑

k=1
tr
[(

CkĤkB−Gk

)(
CkĤkB−Gk

)H

+
(
σ2Etr

(
BBH

)
+ σ2n

)
CkCH

k

]
.

(17)

Using the objective function μ, the robust transceiver design
problem can be written as

min
B,C,G

μ

subject to ‖B‖2F ≤ Pmax.
(18)

From (17), we observe that μ is not jointly convex in B, G,
and C. However, it is convex in B andG for a fixed value ofC,
and vice versa. So, we propose an iterative algorithm in order
to solve the problem in (18), where each iteration involves
the solution of a subproblem which either has an analytic
solution or can be formulated as a convex optimization
program.

3.1. Robust Design of G and C Filters. Here, we consider the
design of robust feedback and receive filters, G and C, that
minimizes the smse averaged over E. For a given B and Ck, as
we can see from (17), the optimum feedback filter Gk, j , 1 ≤
k ≤M, j < k, is given by

Gk, j = CkĤkB j . (19)

Substituting the optimal Gk, j given above in (17), the
objective function can be written as

μ =
M∑

k=1
tr
[(

CkĤkBk − I
)(

CkĤkBk − I
)H

+
M∑

j=k+1

(
CkĤkB j

)(
CkĤkB j

)H

+
(
σ2Etr

(
BBH

)
+ σ2n

)
CkCH

k

⎤
⎦.

(20)

In order to compute the optimum receive filter, we differen-
tiate (20) with respect to Ck, 1 ≤ k ≤ M, and set the result
to zero. We get

BH
k Ĥ

H
k = Ck

⎛
⎝Ĥk

⎛
⎝

M∑

j=k+1
B jBH

j

⎞
⎠ĤH

k +
(
σ2n + σ2E‖B‖2F

)
I

⎞
⎠,

1 ≤ k ≤M.
(21)

From the above equation, we get

Ck = BH
k H

H
k

⎛
⎝Ĥk

⎛
⎝

M∑

j=k+1
B jBH

j

⎞
⎠ĤH

k +
(
σ2n + σ2E‖B‖2F

)
I

⎞
⎠
−1

,

1 ≤ k ≤M.
(22)

We observe that the expression for the robust receive filter in
(22) is similar to the standard MMSE receive filter, but with
an additional factor that account for the CSIT error. In case
of perfect CSIT, σE = 0 and the expression in (22) reduces to
the MMSE receive filters in [10, 12].

3.2. Robust Design of B Filter. Having designed the feedback
and receive filter matrices, G and C, for a given precoder
matrix B, we now present the design of the robust precoder
matrix for given feedback and receive filter matrices. Towards
this end, we express the robust transceiver design problem in
(18) as

min
b,c,g

M∑

k=1

∥∥∥Dkĥk − gk
∥∥∥2 +

(
σ2E‖b‖2 + σ2n

)
‖ck‖2

subject to ‖b‖2 ≤ Pmax,

(23)

where Dk = (BT ⊗ Ck), ĥk = vec(Ĥk), b = vec(B), ck =
vec(Ck), gk = vec(Gk), and hk = vec(Hk). Minimization
over b, c, g denotes minimization over bi, ci, gi, 1 ≤ i ≤ M.
For given C and G, the problem given above is a convex
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optimization problem. The robust precoder design problem,
given C and G, can be written as

min
b

M∑

k=1

∥∥∥Dkĥk − gk
∥∥∥2 + σ2E‖b‖2‖ck‖2 + σ2n‖ck‖2

subject to ‖b‖2 ≤ Pmax.
(24)

As the last term in (24) does not affect the optimum value of
b, we drop this term. Dropping this term and introducing the
dummy variables tk, rk, 1 ≤ k ≤ M, the problem in (24) can
be formulated as the following convex optimization problem:

min
b,{ti}M1 ,{ri}M1

M∑

k=1
tk + σE‖ck‖2rk

subject to
∥∥∥Dkĥk − gk

∥∥∥2 ≤ tk,

‖b‖2 ≤ rk,

rk ≤ Pmax, 1 ≤ k ≤M.

(25)

The constraints in the above optimization problem are
rotated second order cone constraints [23]. Convex opti-
mization problems like that in (25) can be efficiently solved
using interior-point methods [23, 24].

3.3. Iterative Algorithm to Solve (15). Here, we present the
proposed iterative algorithm for the minimization of the
SMSE averaged over E under total BS transmit power
constraint. In each iteration, the computations presented
in Sections 3.1 and 3.2 are performed. In the (n + 1)th
iteration, the value of B, denoted by Bn+1, is the solution to
the following problem:

Bn+1 = argmin
B:Tr(BBH )≤Pmax

μ(B,Cn,Gn), (26)

which is solved in the previous subsection. Having computed
Bn+1, Cn+1 is the solution to the following problem:

Cn+1 = argmin
C

μ
(
Bn+1,C,Gn

)
, (27)

and its solution is given in (22). Having computed Bn+1 and
Cn+1, Gn+1 is the solution to the following problem:

Gn+1 = argmin
G

μ
(
Bn+1,Cn+1,G

)
, (28)

and its solution is given in (19). As the objective function
in (17) is monotonically decreasing after each iteration and
is lower bounded, convergence is guaranteed. The iteration
is terminated when the norm of the difference in the results
of consecutive iterations are below a threshold or when the
maximum number of iterations is reached. We note that
the proposed algorithm is not guaranteed to converge to the
global minimum.

4. Robust Transceiver Designs with
Norm-Bounded CSIT Error

When the receivers quantize the channel estimate and send
the CSI to the transmitter through a low-rate feedback
channel, we can model the error in CSI at the transmitter
by the NBE model [17]. In such cases, it is appropriate to
consider the min-max design, where the worst-case value
of the objective function is minimized. In this section, we
address robust transceiver designs in the presence of a norm-
bounded CSIT error. Specifically, we consider (i) a robust
SMSE transceiver design, (ii) a robust MSE-constrained
transceiver design, and (iii) a robust MSE-balancing (min-
max fairness) design.

4.1. Robust SMSE Transceiver Design. Here, we consider a
min-max design, wherein the design seeks to minimize the
worst case SMSE under a total BS transmit power constraint.
This problem can be written as

min
B,C,G

max
Ek :‖Ek‖≤δk ,∀k

smse(B,C,G,E)

subject to tr
(
BBH

)
≤ Pmax.

(29)

The above problem deals with the case where the true
channel, unknown to the transmitter, may lie anywhere in
the uncertainty region. In order to ensure, a priori, that
MSE constraints are met for the actual channel, the precoder
should be so designed that the constraints are met for
all members of the uncertainty set. This, in effect, is a
semiinfinite optimization problem [25], which in general is
intractable. We show, in the following, that an appropriate
transformationmakes the problem in (29) tractable. We note
that the problem in (29) can be written as

min
b,c,g,t

M∑

k=1
tk

subject to
∥∥∥Dk(ĥk + ek)− gk

∥∥∥2 + σ2n‖ck‖2 ≤ tk,

∀‖ek‖ ≤ δk, 1 ≤ k ≤M,

‖b‖2 ≤ Pmax,

(30)

where ek = vec(Ek). The first constraint in (30) is convex in
B andGk for a fixed value ofCk and vice versa, but not jointly
convex in B, Gk and Ck. Hence, to design the transceiver, we
propose an iterative algorithm, wherein the optimization is
performed alternately over {B,G} and {C}.

4.1.1. Robust Design of B and G Filters. For the design of
the precoder matrix B and the feedback filter G for a fixed
value of C, the second term in the left hand side of the first
constraint in (30) is not relevant, and hence we drop this
term. Invoking the Schur Complement Lemma [26], and
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dropping the second term, we can write the constraint in (30)
as the following linear matrix inequality (LMI):
⎡
⎢⎢⎣

tk
[
Dk(ĥk + ek)− gk

]H

[
Dk

(
ĥk + ek

)
− gk

]
I

⎤
⎥⎥⎦ � 0. (31)

Hence, the robust precoder and feedback filter design
problem, for a given C, can be written as

min
B,G,t

M∑

k=1
tk

subject to

⎡
⎢⎢⎣

tk
[
Dkhk − gk

]H

[
Dkhk − gk

]
I

⎤
⎥⎥⎦ � 0,

∀‖ek‖ ≤ δk, 1 ≤ k ≤M,

‖b‖ ≤
√
Pmax,

(32)

where hk = ĥk+ek. From (31), the first constraint in (32) can
be written as

A � PHXQ +QHXHP, (33)

where

A =

⎡
⎢⎢⎣

tk
[
Dkĥk − gk

]H

[
Dkĥk − gk

]
I

⎤
⎥⎥⎦, (34)

P = [0 DH
k ], X = ek, and Q = −[1 0]. Having

reformulated the constraint as in (33), we can invoke the
following Lemma [27] to solve the problem in (32).

Lemma 1. Given matrices P, Q, A with A = AH ,

A � PHXQ +QHXHP, ∀X : ‖X‖ ≤ ρ, (35)

if and only if ∃ λ ≥ 0 such that
⎡
⎣A− λQHQ −ρPH

−ρP λI

⎤
⎦ � 0. (36)

Applying Lemma 1, we can formulate the robust precoder
design problem as the following convex optimization prob-
lem:

min
B,G,t,β

M∑

k=1
tk

subject to Mk � 0, βk ≥ 0, ∀k,

‖b‖ ≤
√
Pmax,

(37)

where

Mk =

⎡
⎢⎢⎢⎢⎣

tk − βk
(
Dkĥk − gk

)H
0

(
Dkĥk − gk

)
I −δkDk

0 −δkDH
k βkI

⎤
⎥⎥⎥⎥⎦
. (38)

4.1.2. Robust Design of Filter Matrix C. In the previous
subsection, we considered the design of the B andGmatrices
for a fixed C. Here, we consider the robust design C for given
B and G. This design problem can be written as

min
C,t

M∑

k=1
tk

subject to
∥∥∥Dk(ĥk + ek)− gk

∥∥∥2 + σ2n‖ck‖2 ≤ tk,

∀‖Ek‖ ≤ δk, 1 ≤ k ≤M.

(39)

Applying the Schur Complement Lemma, we can represent
the first constraint in (39) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tk

⎡
⎣Dk(ĥk + ek)− gk

σnck

⎤
⎦
H

⎡
⎣Dk

(
ĥk + ek

)
− gk

σnck

⎤
⎦ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
� 0.

(40)

The second inequality in the above problem, like in the
precoder design problem, represents an infinite number of
constraints. To make the problem in (39) tractable, we again
invoke Lemma 1. Following the same procedure as in the
precoder design, starting with (40), we can reformulate
the robust receive filter design as the following convex
optimization problem:

min
C,t,λ

M∑

k=1
tk

subject to Nk � 0, ∀k,
(41)

where

Nk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tk − λk

⎡
⎣(Dkĥk − gk

σnck

⎤
⎦
H

0

⎡
⎣Dkĥk − gk

σnck

⎤
⎦ I −δkΓk

0 −δkΓHk λkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (42)

where Γk =
[
Dk

0

]
.

4.1.3. Iterative Algorithm to Solve (29). In the previous
subsections, we described the design of B and G for a
given C, and vice versa. Here, we present the proposed
iterative algorithm for the minimization of the SMSE under
a constraint on the total BS transmit power, when the CSIT
error follows NBE model. The algorithm alternates between
the optimizations of the precoder/feedback filter and receive
filter described in the previous subsections. At the (n + 1)th
iteration, the value of B, denoted by Bn+1, is the solution
to problem (37), and hence satisfies the BS transmit power
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constraint. Having computed Bn+1,Cn+1 is the solution to the
problem in (41). So J(Bn+1,Cn+1) ≤ J(Bn+1,Cn) ≤ J(Bn,Cn),
where

J(B,C) = max
‖Ek‖<δk ,∀k

{smse(B,C,G,E)}. (43)

The monotonically decreasing nature of J(Bn,Cn), together
with the fact that J(Bn,Cn) is lower-bounded, implies that
the proposed algorithm converges to a limit as n → ∞. The
iteration is terminated when the norm of the difference in
the results of consecutive iterations are below a threshold
or when the maximum number of iterations is reached.
This algorithm is not guaranteed to converge to the global
minimum.

4.1.4. Transceiver Design with Per-Antenna Power Constraints.
As each antenna at the BS usually has its own amplifier, it
is important to consider transceiver design with constraints
on power transmitted from each antenna. A precoder design
for multiuser MISO downlink with per-antenna power con-
straint with perfect CSIT was considered in [28]. Here, we
incorporate per-antenna power constraint in the proposed
robust transceiver design. For this, only the precoder matrix
design (37) has to be modified by including the constraints
on power transmitted from each antenna as given below:

min
b

M∑

k=1
tk

subject to Mk � 0 ∀k,
∥∥φkB

∥∥2 ≤ Pk, 1 ≤ k ≤M,

(44)

where φk = [01×k−1 1 01×Nt−k]. The receive filter can be
computed using (41).

4.2. Robust MSE-Constrained Transceiver Design. Transceiver
designs that satisfy QoS constraints are of interest. Such
designs in the context of multiuser MISO downlink with
perfect CSI have been reported in literature [29–31]. Robust
linear precoder designs for MISO downlink with SINR con-
straints are described in [32]. Here, we address the problem
of robust THP transceiver design for multiuser MIMO with
MSE constraints in the presence of CSI imperfections. THP
designs are of interest because of their better performance
compared to the linear designs.

When the CSIT is perfect, the transceiver design under
MSE constraints can be written as

min
B,G,C

tr
(
BBH

)

subject to εk ≤ ηk, 1 ≤ k ≤M,
(45)

where ηk is the maximum allowed MSE at kth user terminal.
This problem can be written as the following optimization
problem:

min
B,G,C,r

r

subject to
∥∥∥Dkhk − gk

∥∥∥2 + σ2n‖ck‖2 ≤ ηk , 1 ≤ k ≤M,

‖b‖2 ≤ r,
(46)

where r is a slack variable. With the NBE model of imperfect
CSI, the robust transceiver design with MSE constraints can
be written as

min
b,g,c,r

r

subject to
∥∥∥Dkhk − gk

∥∥∥2 + σ2n‖ck‖2 ≤ ηk,

∀hk ∈Rk, 1 ≤ k ≤M,

‖b‖2 ≤ r.

(47)

In the above problem, the true channel, unknown to the
transmitter, may lie anywhere in the uncertainty region. The
transceiver should be so designed that the constraints are met
for all members of the uncertainty set, Rk. This again, in
the present form, is a semiinfinite optimization problem. In
the following, we present a transformation that makes the
problem in (47) tractable.

The optimization problem in (47) is not jointly convex
in b, g, and c. But, for fixed c, it is convex in b and g, and
vice versa. So, in order to solve this problem, we propose an
alternating optimization algorithm, wherein each iteration
solves two subproblems. For the case of single antenna users
(i.e., MISO), a solution based on nonalternating approach
is presented in [19]. The first subproblem in the proposed
alternating optimization algorithm is given below, which
involves the optimization over {b, g} for fixed c:

min
b,g,r

r

subject to
∥∥∥Dkhk − gk

∥∥∥2 + σ2n‖ck‖2 ≤ ηk,

∀hk ∈Rk, 1 ≤ k ≤M,

‖b‖2 ≤ r.

(48)

The second subproblem involves optimization over {c} for
fixed {b, g}, as given below

min
c,s1,...,sM

sk

subject to
∥∥∥Dkhk − gk

∥∥∥2 + σ2n‖ck‖2 ≤ sk,

∀hk ∈Rk, 1 ≤ k ≤M,

(49)

where s1, . . . , sM are slack variables. The first subproblem can
be expressed as a semidefinite program (SDP), which is a



8 EURASIP Journal on Advances in Signal Processing

convex optimization problem that can be solved efficiently
[23]. Towards this end, we reformulate the problem in (48)
as the following SDP:

min
b,g,r

r

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ηk

⎡
⎣Dk(ĥk+ek)−gk

σnck

⎤
⎦
H

⎡
⎣Dk

(
ĥk+ek

)
− gk

σnck

⎤
⎦ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�0,

∀‖ek‖ ≤ δk, 1 ≤ k ≤M,

‖b‖ < r,
(50)

where r is a slack variable. In the reformulation given above,
we have transformed the first constraint in (48) into an LMI
using the Schur Complement Lemma [26].

We can show that the LMI in (50) is equivalent to

A � PHXQ +QHXHP, (51)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ηk

⎡
⎣Dkĥk − gk

σnck

⎤
⎦
H

⎡
⎣Dkĥk − gk

σnck

⎤
⎦ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (52)

P = [0 ΓHk ], X = ek, Q = −[1 0], and Γk =[
Dk

0

]
. Application of Lemma 1 to (51) and (50), as in

Section 4.1, leads to the following SDP formulation of the
first subproblem:

min
B,G,r,β

r

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηk − βk

⎡
⎣(Dkĥk − gk

σnck

⎤
⎦
H

0

⎡
⎣Dkĥk − gk

σnck

⎤
⎦ I −δkΓk

0 −δkΓHk βkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�0,

βk ≥ 0, ∀k,
‖b‖ ≤ r.

(53)

Following a similar approach, it is easy to see that the second
subproblem can be formulated as the following convex
optimization program:

min
c,s,μ

sk

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sk − μk

⎡
⎣(Dkĥk − gk

σnck

⎤
⎦
H

0

⎡
⎣Dkĥk − gk

σnck

⎤
⎦ I −δkΓk

0 −δkΓHk μkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0,

μk ≥ 0, ∀k.
(54)

The proposed robust MSE-constrained transceiver design
algorithm alternates over both subproblems. In the next
subsection, we show that this algorithm converges to a limit.

4.2.1. Convergence. At the (n + 1)th iteration, we compute
bn+1 and gn+1 by solving the first subproblem with fixed cn.
We assume that this subproblem is feasible, otherwise the
iteration terminates. The solution of this subproblem results
in bn+1 and gn+1 such that fk(bn+1, gn+1k , cnk) ≤ ηk, 1 ≤ k ≤
M, where

fk = max
hk :hk∈Rk

εk. (55)

Also, the transmit power Pn+1
T = ‖bn+1‖2 ≤ ‖bn‖2. Solving

the second subproblem in the n+1th iteration, we obtain cn+1

such that

fk
(
bn+1, gn+1k , cn+1k

)
≤ fk

(
bn+1, gn+1k , cnk

)
. (56)

Since the transmit power PT is lower-bounded and mono-
tonically decreasing, we conclude that the sequence {Pn

T}
converges to a limit as the iteration proceeds.

4.3. Robust MSE-Balancing Transceiver Design. We next
consider the problem of MSE-balancing under a constraint
on the total BS transmit power in the presence of CSI
imperfections.When the CSI is known perfectly, the problem
of MSE-balancing can be written as

min
B,G,C

max
k
εk

subject to tr
(
BBH

)
≤ Pmax.

(57)

This problem is related to the SINR-balancing problem due
to the inverse relationship that exists between the MSE and
SINR. The MSE-balancing problem in the context of MISO
downlink with perfect CSI has been addressed in [30, 33].
Here, we consider theMSE-balancing problem in amultiuser
MIMO downlink with THP in the presence of CSI errors.
When the CSI is imperfect with NBE model, this problem
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can be written as the following convex optimization problem
with infinite constraints:

min
b,g,c,r

r

subject to

∥∥∥∥∥∥

⎡
⎣Dkhk − gk

σnck

⎤
⎦
∥∥∥∥∥∥

2

≤ r, ∀hk ∈Rk,

1 ≤ k ≤M,

‖b‖ <
√
Pmax.

(58)

An iterative algorithm, as in Section 4.2, which involves
the solution of two subproblems in each iteration can be
adopted to solve the above problem. Transforming the first
constraint into an LMI by Schur Complement Lemma, and
then applying Lemma 1, we can see that the first subproblem
which involves optimization over b and g, for fixed c, is
equivalent to the following convex optimization problem:

min
b,g,r,μ

r

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r − μk

⎡
⎣(Dkĥk − gk

σnck

⎤
⎦
H

0
⎡
⎣Dkĥk − gk

σnck

⎤
⎦ I −δkΓk

0 −δkΓHk μkI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�0,

1 ≤ k ≤M,

‖b‖ <
√
Pmax.

(59)

The second subproblem which involves optimization over c,
for fixed b and g can be reformulated as in (49). By similar
arguments as in the MSE-constrained problem, we can see
that this iterative algorithm converges to a limit.

5. Simulation Results

In this section, we present the performance of the proposed
robust THP transceiver algorithms, evaluated through simu-
lations. We compare the performance of the proposed robust
designs with those of the nonrobust transceiver designs as
well as robust linear transceiver designs reported in the recent
literature. The channel is assumed to undergo flat Rayleigh
fading, that is, the elements of the channel matrices Hk, 1 ≤
k ≤ M, are assumed to be independent and identically
distributed (i.i.d) complex Gaussian with zeromean and unit
variance. The noise variables at each antenna of each user
terminal are assumed to be zero-mean complex Gaussian.
In all the simulations, all relevant matrices are initialized as
unity matrices. The convergence threshold is set as 10−3.

First, we consider the performance of the robust
transceiver design presented in Section 3 for the stochastic
CSIT error model. We consider a system with the BS
transmitting L = 2 data streams each to M = 3 users.
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Figure 2: SMSE versus BS transmit power (PT = ‖B‖2F) perfor-
mance of the proposed robust design in Section 3 for the SE model.
Nt = 8, 6, M = 3, Nr1 = Nr2 = Nr3 = 2, L1 = L2 = L3 = 2, σ2

n = 1,
and σ2

E = 0.1. Proposed robust design in Section 3 outperforms the
nonrobust design in [10].

In Figure 2, we present the simulated SMSE performances
of the proposed robust design and those of the nonrobust
design proposed in [10] for different numbers of transmit
antennas at the BS and receive antennas at the user terminals.
Specifically, we consider three configurations: (i) Nt = 6,
Nr = 2, (ii) Nt = 8, Nr = 2, and (iii) Nt = 8, Nr = 3. We
use σ2E = 0.1 in all the three configurations. From Figure 2,
it can be observed that, in all the three configurations, the
proposed robust design clearly outperforms the nonrobust
design in [10]. Comparing the results for Nt = 6 and
Nt = 8, we find that the difference between the nonrobust
design and the proposed robust design decreases when more
transmit antennas are provided. A similar effect is observed
for increase in number of receive antennas for fixed number
of transmit antennas. It is also found that the difference
between the performance of these algorithms increases as
the SNR increases. This is observable in (17), where the
second term shows the effect of the CSIT error variance
amplified by the transmit power. In Figure 3, we illustrate
the SMSE performance as a function of different channel
estimation error variances, σ2E , for similar system parameter
settings as in Figure 2. In Figure 3 also, we observe that the
proposed robust design performs better than the nonrobust
design in the presence of CSIT error; the larger the estimation
errorvariance, the higher the performance improvement due
to robustification in the proposed algorithm.

Next, we present the performance of the robust
transceiver designs proposed in Section 4 for the norm-
bound model of CSIT error. Figure 4 shows the SMSE
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E , higher is the performance improvement
due to the proposed design in Section 3 compared to the nonrobust
design in [10].

performance of the proposed design in Section 4.1 as a
function of the CSIT uncertainty size, δ, for the following
system settings: Nt = 6, 4, M = 2, Nr1 = Nr2 = Nr3 = 2,
L1 = L2 = L3 = 2, δ1 = δ2 = δ, Pmax = 15dB,
and σ2n = 0.1. It is seen that the proposed design
in Section 4.1 is able to provide improved performance
compared to the nonrobust transceiver design in [10], and
this improvement gets increasingly better for increasing
values of the CSIT uncertainty size, δ. In Figure 5, we
illustrate the performance of the robust MSE-constrained
design proposed in Section 4.2 for the following set of system
parameters: Nt = 4, 6, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2,
and δ1 = δ2 = δ = 0.05, 0.1. We plot the total BS transmit
power, PT = ‖B‖2F , required to achieve a certain maximum
allowed MSE at the user terminals, η1 = η2 = η. As expected,
as the maximum allowedMSE is increased, the required total
BS transmit power decreases. For comparison purposes, we
have also shown the plots for the robust linear transceiver
design presented in [20] for the same NBE model. It can be
seen that the proposed THP transceiver design needs lesser
total BS transmit power than the robust linear transceiver in
[20] for a given maximum allowed MSE. The improvement
in performance over robust linear transceiver is more when
the maximum allowed MSE is small.

Further, in Figure 6, we present the total BS transmit
power required to meet MSE constraints at user terminals
for different values of CSIT uncertainty size δ1 = δ2 = δ,
for Nt = 4, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2, and
maximum allowed MSEs η1 = η2 = η = 0.1, 0.2, 0.3. As can
be seen from Figure 6, the proposed robust THP transceiver
design in Section 4.2 meets the desired MSE constraints
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Figure 5: Total BS transmit power (PT = ‖B‖2F) required as a
function of maximum allowed MSE at the user terminals (η1 =
η2 = η) in the proposed robust design in Section 4.2 for the NBE
model. Nt = 4, 6, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2, CSIT
uncertainty range δ1 = δ2 = δ = 0.05, 0.1. Proposed robust THP
transceiver design in Section 4.2 requires lesser BS transmit power
to meet the MSE constraints at the user terminals than the robust
linear transceiver design in [20].
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Figure 8: Convergence behavior of the proposed robust THP
transceiver design in Section 4.2. CSIT uncertainty size δ1 = δ2 =
δ = 0.1. Nt = 4, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2, and
η1 = η2 = η = 0.1, 0.3.

with much less BS transmit power compared to the robust
linear transceiver in [20]. We note that infeasibility of robust
transceiver design for certain realizations of channels is an
issue in robust designs with MSE constraints. In Figure 7,
we show the performance of the proposed THP transceiver
design in Section 4.2, in terms of the fraction of channel
realizations for which the design is infeasible for Nt = 4,
M = 2, Nr1 = Nr2 = 2, and different values of δ and η. It is
seen that that the fraction of infeasible channel realizations in
case of the proposed THP transceiver is much less compared
to that in case of the linear transceiver in [20]. For example,
for CSIT uncertainty size δ1 = δ2 = δ = 0.08 and user
MSE η1 = η2 = η = 0.05, the linear transceiver design fails
to produce a feasible solution in about 44% cases, whereas
the proposed THP transceiver design fails only in about
24% cases. In Figure 8, we show the convergence behavior of
the proposed design. The number of iterations to converge
depends on the MSE constraints. Stricter MSE constraints
lead to larger number of iterations to converge. For example,
when the MSE constraint is η = 0.3, the algorithm converges
in around 6 iterations. Whereas, for η = 0.1, it takes around
12 iterations to converge.

Finally, in Figure 9, we present the performance of
the proposed robust MSE-balancing transceiver design in
Section 4.3 for Nt = 4, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2,
δ1 = δ2 = δ = 0.02, 0.1, 0.15. The min-max MSE plots as a
function of total BS transmit power constraint are shown.
The corresponding plots for the robust linear transceiver
in [20] are also shown. The results in Figure 9 show that,
for the same BS transmit power constraint, the proposed
robust design in Section 4.3 achieves lower min-max MSE
compared to the robust linear transceiver design in [20].
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in the proposed robust design in Section 4.3 for the NBE model.
Nt = 4, M = 2, Nr1 = Nr2 = 2, L1 = L2 = 2, δ1 = δ2 =
δ = 0.02, 0.1, 0.15. Proposed robust THP transceiver design in
Section 4.3 performs better than the robust linear design in [20].

6. Conclusions

We proposed robust THP transceiver designs that jointly
optimize the THP precoder and receiver filters in multiuser
MIMO downlink in the presence of imperfect CSI at the
transmitter. We considered these transceiver designs under
SE and NBE models for CSIT errors. For the SE model, we
proposed a minimum SMSE transceiver design. For the NBE
model, we proposed three robust designs, namely, minimum
SMSE design, MSE-constrained design, and MSE-balancing
design. We presented iterative algorithms to solve these
robust design problems. The iterative algorithms involved
solution of subproblems, which either have analytical
solutions or can be formulated as convex optimization
problems that can be solved efficiently. Through simulation
results we illustrated the superior performance of the
proposed robust designs compared to nonrobust designs
as well as robust linear transceiver designs that have been
reported recently in literature.
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