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This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm
by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the
challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to
efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability
function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in
hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the
probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID
2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the
proposed algorithm.
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1. Introduction

The latest developments in multimedia technology, com-
bined with a considerable growth in computer performance
and the expansion of the Internet, have provided people with
access to a tremendous amount of video information. Video
applications, currently expanding at a considerable rate, have
initiated an increasing demand for innovative technologies
and tools to index, browse, and retrieve video data efficiently.

Developed for automatic indexing, retrieval, and man-
agement of video, content-based video retrieval has become
the subject of much research throughout the last decade
[1, 2]. Structural analysis of video is a fundamental stage
in analyzing video content and developing techniques for
efficient access, classification, retrieval, and browsing of vast
video databases. Among the several structural levels (i.e.,
frame, shot, scene, etc.), shot level organization has been
deemed suitable for browsing and content-based retrieval
[3].

A sequence of frames captured by one camera in a
single continuous action in time and space is referred to
as a video shot [4]. Normally, it is a group of frames that

have constant visual attributes, (such as color, texture, and
motion). Depending on whether the transition from one
shot to another is abrupt or gradual, shot boundaries can be
classified into two types: cut and gradual transitions. The cut
transition is the typical abrupt change, where one frame is a
part of the disappearing shot and the next one is a part of the
appearing shot.

In contrast, gradual transitions can be categorized into
dissolve, wipe, fade out/in, and so forth, based on the
properties of various editing effects [5]. In the dissolve
transition, the last few frames of the disappearing shot
temporally overlap with the first few frames of the appearing
shot. Amid the overlap transition, the intensity of the
disappearing shot reduces from normal to zero (fade out),
whereas the intensity of the appearing shot rises from zero to
normal (fade in). In the fade transition, the disappearing shot
fades out into a blank frame, and then the blank frame fades
into the appearing shot. The wipe transition is in fact a group
of techniques for changing the shot in which the appearing
and disappearing shots exist at the same time in various
spatial areas of the intermediary video frames, and the region
taken up by the former develops until it completely takes the
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place of the latter. Many of the recent works have focused on
abrupt transitions; gradual transitions are normally harder
to identify, owing to camera and/or object motions in a shot.

Shot detection is not new to researchers in the content-
based video analysis community. During the past decade,
Shot Boundary Detection (SBD) has been actively studied
in video retrieval, video summarization, pattern recognition,
and multimedia communities [6]. Research on automatic
shot detection has been increasing rapidly over the past few
years. Since 2001, the TREC Video Retrieval (TRECVID)
evaluation test bed has been established to carry out
benchmark evaluations of video shot detection tasks [7],
and has notably contributed to the development of SBD
techniques. It shows that the detection of abrupt transitions
has been to some extent addressed successfully, whereas the
identification of gradual transitions is still a challenge [7].

In spite of recent improvements, SBD on large-scale
video data is still a very difficult task, with many unsolved
problems. Among them, the problem of how to devise an
effective, unified approach that can detect various types
of transitions and is less sensitive to the amount of cam-
era panning and zooming, video object motions, color,
and illumination variability within the shot. In order to
achieve this goal, we put forward a QR-decomposition-based
approach intended to be data content independent that will
be used to detect different types of transitions, maximize
the efficiency of SBD performance, and lessen the need
for more complicated computations. We have carried out
our solution and assessed it according to the TRECVID
benchmark dataset. Our method produced very hopeful
results, in comparison with the best results reported in the
TRECVID assessments.

Section 2 considers some modern works regarding SBD
which have been done over the past few years. Section 3
discusses the problems and demanding issues concerning
shot transition detection and demonstrates the reason for
which we have proposed this solution. In Section 4, a
brief description of QR-decomposition is given. Section 5
presents our SBD approach. Section 6 illustrates empirical
evaluations of our solutions and implementations on video
SBD tasks using the TRECVID test bed. Section 7 presents
our conclusions and considers some ideas that could enhance
the performance of our present solution.

2. RelatedWorks

In this section, we study some existing works concerning
video shot transition detection and explain, in short, some
common ranking approaches for shot detection, particularly
for those works that are connected with our proposed
approach. SBD, also known as temporal video segmentation,
is the process of detecting the transitions between the
adjoining shots [8]. Beginning in the early 1990s, several
organizations had already initiated projects such as QBIC
[9], Columbia VideoQ (object-oriented search engine) [10],
and the Virage [11], that have linked to digital video
libraries to intelligently manipulate video content. During
that period, research attempts were mainly centered on

video processing, such as SBD, video retrieval, video object
detection, and video summarization. In recent times, SBD
has become a more efficient component for all video retrieval
and video summarization systems.

To date, numerous approaches have been put forward for
the detection of shot boundaries, and have produced highly
acceptable results. After studying the literature regarding
these methods, we discovered that these methods could be
classified into two categories: compressed domain methods
and uncompressed domain methods. In compressed domain
methods, the only data obtained from the videos are those
directly accessible from the MPEG streams that are Discrete
Cosine Transform (DCT) coefficients, motion vectors, and
prediction directions for each block. Without the decoding
process the computation will be much faster, but less reliable,
particularly when high motion is at work. An example is the
work of Pei and Chou [12].

Early research on shot detection was primarily centered
on uncompressed domain methods. These methods are
compared in [2, 13]. Many of these methods have been put
forward for use in the detection of abrupt transitions. In
some of these approaches, an abrupt transition is identified
when a particular difference measure between successive
frames surpasses a threshold. The difference measure is cal-
culated at either a pixel level or the block level. Considering
the limitation of pixel difference algorithms (high sensitivity
to object and camera motions), a lot of researchers recom-
mended using some alternative measures that were on basis
of global information, such as intensity histograms or color
histograms [14–17]. The standard color histogram-based
algorithm and its variations are now vastly employed to
identify abrupt transitions. The authors of [18] have studied
the RGB color histograms for shot transition detection. They
have applied the singular value decomposition to analyze the
histograms.

Even these histograms do not clearly display the image
difference produced due to large camera motion, and
therefore are unable to distinguish between smooth camera
motion/parameter changes and gradual scene transitions.
Although using more intricate features, such as image edges,
histograms, or motion vectors [19] makes the situation
better, it will alleviate but not resolve this problem [20]. The
authors of [4] have developed a solution to this issue by
calculating information changes between adjoining images,
quantized by mutual information (MI) in gray-scale areas of
the images. They have also used affine image registration to
compensate for camera panning and zooming. This results in
an approach with much more complex computations. Also,
an efficient approach that is based on measures of informa-
tion theory has been proposed in [6]. The disadvantage of
this method is that it is susceptible to large camera panning
and zooming as well as flashlights.

Hence, the principal challenge in gradual transition
detection is that the comparison which is on the basis of
spatial features, such as color histogram, edge, motion vec-
tors, is not suitable without modeling the temporal relation
between frames. In order to overcome this problem, several
approaches explore large windows of frames. Contrary to
popular belief, these methods are not easy to do because the
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variation between two different shots can be mixed up with
the object motion variation in those shots.

In spite of these extensive research efforts, the problem
in other machine learning and pattern recognition tools
has not received enough attention. In [21], Vasconcelos and
Lippman evolved a Bayesian formulation for the problem
and expanded the standard thresholding model in an
adaptive and intuitive way. In [22], Lienhart determined a
number of key techniques that are the basis of the various
SBD schemes and studied their functions in identifying
abrupt cuts, fades, and dissolves. In [23], Ling et al. utilized
certain features, such as intensity pixel-wise difference, color
histograms in HSV space, and edge histograms in vertical
and horizontal directions as the input vectors to the support
vector machine (SVM). The SVM is used to classify the
frames into four categories: abrupt, dissolve, fade, and
wipe transitions. However, due to their inconsideration of
temporal features, their algorithms are sensitive to flashlights
and object motions in real-world applications.

In [24], Xu et al. propose an SBD method for news video
based on object segmentation and tracking. They combine
three main techniques: partitioned histogram comparison,
object segmentation, and tracking based on wavelet analysis.
The authors of [25] have developed a neural network
classifier for detecting transitions. The classifier is trained
with a dissolve synthesizer that produces synthetic dissolves.
The algorithm applies to contrast-based features, and color-
based features, and has provided satisfactory results in
comparison with standard techniques that are based on edge
change ratios. In [3], Cooper et al. suggested an SBD method
based on a supervised classification. They created some new
intermediate features from low-level features via pairwise
similarity. These features are used as input to an efficient
supervised classifier to identify shot boundaries. In [26], the
authors propose cohistograms to be used for video analysis,
which is a statistic graph created by counting the matching
pixel pairs of two images. However, their algorithm is
insensitive to camera zooming. A training-based approach is
also developed in [4], where a probabilistic-based algorithm
is put forward to detect both abrupt and gradual transitions.
After building priori likelihood functions through training
experiments, they take into consideration all related knowl-
edge to SBD, such as shot-length distribution and visual
discontinuity patterns at shot boundaries.

Recently, researchers have come to notice the significance
of the temporal modeling of features for video SBD tasks.
In [8], Grana and Cucchiara design a linear transition
model for SBD; their method is purely concentrated on
gradual transitions with a linear behavior, as well as abrupt
transitions. They utilized an accurate model which yields
more discriminative power than with common methods. In
[27], Yuan et al. conducted research on the SBD problem:
they present a general, formal framework in terms of
pattern recognition. They studied the major challenges
posed by the frameworks. Meanwhile, they present a unified
SBD system on the basis of the graph partition model.
In [28], Zelnik-Manor and Irani focused on comparing
temporal and spatial factorization. They discovered a dual
approach to factorization. They showed that some of the

latest SBD algorithms can be reformulated in terms of this
factorization.

We suggest the QR-decomposition and Gaussian
transition-based SBD method and demonstrate its efficiency
through a theoretical and practical analysis. As opposed to
the aforementioned approaches, our solution is capable of
detecting various types of gradual shots and is insensitive
to camera zooming and motion, object motions, and
illumination changes. Finally, we test our algorithm on the
TRECVID dataset.

3. Problems andMotivations

In this section, we discuss the problem of SBD and attend to
a number of exacting issues. Next, we discuss the motives and
philosophy of our approach for resolving these problems.

Recently, in [27], an SBD was defined as a pattern
recognition task, which formed a classification system with
three major modules: representation of visual content, con-
struction of continuity signal, and classification of continuity
values. The visual aspect of video signal was also studied. In
this perspective, video can be viewed as a three-dimensional
signal, in which two dimensions disclose the visual content
in the horizontal and vertical frame directions, and the
third dimension discloses variations of the visual content
over the time axes. This formulation extracts certain kinds
of visual features from each frame, obtains a compact
content representation, and then calculates the continuity
(similarity) values of adjacent features. In this fashion, the
visual content flow is converted into a 1-D temporal signal.
In the perfect condition, the continuity signal within the
same shot always maintains large quantities, while decreases
to low values around the positions of shot transitions.
Finally, the researchers differentiate the boundaries from the
nonboundaries and determine the types of transitions. This
formal research on SBD makes shot detection a much more
challenging task, especially compared to those of a traditional
SBD task. Some of these challenges are as follows.

(1) Representation of visual content and extraction of
appropriate features are the significant steps in SBD
approaches and affects the efficiency of other mod-
ules. The values of visual features need to be constant
values throughout a shot and must be irregular
during a shot transition. This poses a challenge in
the search of visual features that satisfy the previous
limitations.

(2) Only certain spatial features (pixel-wise intensity,
color histograms, edge, etc.) have recently been
studied. By utilizing these features, abrupt illumi-
nation changes such as flashlights within shots,
usually bring about considerable discontinuities of
interframe features, which are usually confused with
shot boundaries. A number of illumination-invariant
features and similarity metrics have been put forward
to address this issue. Nevertheless, these techniques
are not usually successful, because temporal depen-
dencies between the frames have not been considered.
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Therefore, collecting temporal features from video
sequences would be a challenge.

(3) The spatial features do not clearly represent the
image difference produced by large camera or object
motions, and are therefore unable to distinguish
between smooth camera motion/parameter changes
and gradual scene transitions. As of yet, there is no
complete solution to this problem.

In order to address the above challenges, we advise a
QR-decomposition and Gaussian transition-based approach
in a unified solution, which can considerably increase
the efficiency of shot detection tasks while simultaneously
reducing the need for more complicated computations. The
main ideas of our solution for dealing with these problems
can be outlined as follows.

(1) To deal with the representation of visual content,
we utilize three-dimensional histograms in the RGB
color space of each frame as spatial features. The
histogram reflects the overall perspective of each
frame and has increased stability, but overlooks local
information. In order to include spatial information
of the color distribution, we divide each frame
into 3×3 blocks, and create a three-dimensional
histogram for each of those blocks. We then use these
histograms as a feature vector of each frame in the
video.

(2) To solve the loss of temporal features, by using the
spatial feature vector of each frame as a column,
we construct a feature matrix. We apply the QR-
decomposition to this matrix and incorporate the QR
components of this matrix as temporal features along
the frames.

(3) To distinguish between the shot transitions and
the image differences caused by large camera or
object motions, we model each shot transition by
using a Gaussian model. At first, we employ a QR-
decomposition-based filter to identify the candidates
of shot transition. We then develop an iterative
algorithm which, given a frame of the candidate set,
attempts to locate the best center position for the
transition by minimizing an error function, which
computes the fitness of data to the Gaussian model.

4. Review of QR-Decomposition Technique

It is evident that the study of singular values of a matrix
represents valuable and useful information. The singular
value decomposition (SVD) of a matrix is a factorization of
the matrix into a product of three matrices. Given an m × n
matrix A, where m ≥ n, the SVD of A is defined as [29]

A = UΣVT , (1)

where U = [ui, j] is an m × n column-orthogonal matrix
whose columns are referred to as left singular vectors;
Σ = diag(σ1, σ2, . . . , σn) is an n × n diagonal matrix whose
diagonal elements are nonnegative singular values arranged

in descending order; V = [vi, j] is an n×n orthogonal matrix
whose columns are referred to as right singular vectors.
If rank(A) = r, then Σ satisfies

σ1 ≥ σ2 · · · ≥ σr > σr+1 = · · · = σn = 0. (2)

The SVD has been utilized by a great number of
researchers for rule base reduction [30, 31]. The main
reason for using SVD in complexity reduction is that SVD
decomposes a given system into different parts and specifies
the level of the importance of each decomposed part. We can
lower the size of the matrix by selecting its most important
columns, known as the subset selection problem [9]. In order
to do this, we can simply truncate the vectors that have the
least level of importance in accordance with SVD.

The QR-Decomposition of a matrix A of order m × n,
where m ≥ n is given as [30]:

A.Π = Q.R, (3)

where Π = [ρi, j] is a permutation matrix; Q = [qi, j] is an m×
n column-orthogonal matrix; and R = [ri, j] is an n×n upper
triangular matrix whose diagonal elements, the R-values, are
arranged in decreasing order and incline to track the singular
values of A.

If there is a well-defined gap in the singular values of A,
in other words if at an index r we have σr+1 � σr , then the
subset selection will tend to produce a subset containing the
most important columns (rules) of A. However the singular
values often decrease smoothly without any clear gap. In such
cases, the truncation index r is determined by counting the
number of (close to) zero singular values in the SVD of A
since it has been claimed that the smaller are the singular
values, the less important the associated rules will be. As for
the singular values, the R-values also help to determine the
number of to pick [20, 30].

In [18, 32, 33], the SVD has been utilized for SBD, and
video retrieval and summarization. Although their method
is claimed to be successful, the singular values usually reduce
smoothly without any clear gap and as a result calculating the
truncation index is not efficient. Also, the time complexity
of computing the SVD of a matrix is more than its QR-
Decomposition.

5. The Proposed SBDMethod

In order to design an efficient SBD algorithm, two pre-
sumptions are required, the first of which is that a feature
extraction method is both discriminating and nearly invari-
able within the shot. The second presumption is a distance
function in the feature space that detects the transitions
between shots.

In this section, we will present these two presumptions
in the proposed SBD algorithm. In order to decrease the
number of frames to be processed by QR-decomposition, the
input video sequence was initially sampled with a fixed rate
of 5 frames/second. Our experiments have demonstrated that
this rate is sufficient for video programs that are devoid of
dramatic motions.

Details of the feature extraction and distance function for
SBD are presented in the following subsections.
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5.1. Feature Extraction. We split each of the input frames into
N × N small blocks. For each block B(i), i = 1, 2, . . . ,N2,
in frame j, we created an m-dimensional feature vector

X (i)
j = [X (i)

1, j ,X
(i)
2, j , . . . ,X

(i)
m, j]

T
. Using X (i)

j as column vector j,

we obtained feature matrix X (i) as follows:

X (i) =
[
X (i)

1 ,X (i)
2 , . . . ,X (i)

t

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (i)
1,1 X (i)

1,2 · · · X (i)
1,t

X (i)
2,1 X (i)

2,2 · · · X (i)
2,t

...
... . . .

...

X (i)
m,1 X (i)

m,2 · · · X (i)
m,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4)

In order to extract spatial features of each block, from
a broad range of image features, we used color histograms
which are essential features for signifying the overall spatial
features of each block [34]. The combination of color
histograms and QR captures the temporal color distribution
for each shot.

It is essential to notice that according to the experimental
results, the number of blocks affects directly on the efficiency
of the proposed algorithm. Specially, we split each frame
into 5 × 5 blocks. For each block i in frame j, we created a

216-dimensional feature vector X (i)
j . To compute the feature

vector in our system implementation, we made three-
dimensional histograms in RGB color space with six bins for
R, G, and B, respectively, leading to a total of 216 bins. These
produced a 216-dimensional feature vector for the block.
Finally, utilizing the feature vector of block i in frame j as the
jth column, we generated the feature matrix X (i) for block i,
in the video sequence.

5.2. QR-Based Candidate Selection for Gradual Shot Transi-
tions. The SBD could be formulated as a binary classification
problem. In other words, a probability distribution function
such as P(S | xi) can model the type of each frame, for
example, intershot, and intrashot, where xi is the feature
value extracted from frame i, and S ∈ {intershot, intrashot}
represents the class of the frame. Estimating P(S | xi) is
one of the challenging aspects of this model in the literatures
[35, 36]. In this section, we estimate this probability function
using QR-Decomposition. In order to achieve this, we detect
the truncation index through analyzing the behavior of the
R-values of the feature matrix, and therefore based on this
index, we set the probability value at 0 or 1. More details are
given below.

Let F = {F1,F2, . . . ,Ft} be the sampling set of frames of
an arbitrary video sequence. We divided each input image
frame into n × n blocks, and following the proposed feature
extraction method in the previous section, we extracted the
feature matrix X (i) for block i, where i = 1, 2, . . . ,n2.

Next, by applying QR-Decomposition to matrix X(i), the
Q and R matrices are computed. Each R-value which is taken
from QR-Decomposition of matrix X (i) is connected with
one of the columns of X (i). As those columns of X (i) that
contain only intrashot data are nearly identical to each other,
the R-values matching these columns will be smaller than the
ones containing intershot data.

If we define the series Y (i) = {X (i)
f1

,X (i)
f2

, . . . ,X (i)
ft
} as an

ordered list of X (i) according to the decreasing order of R-
values, we can then calculate the intershot probability for the
ith block at the jth frame as follows:

P
(

intershot frame | Y (i)
j

)

=
⎧⎨
⎩

0 if j >
(
1− β

)
t,

1, otherwise,

, j = 1, 2, . . . , t, (5)

where β is a parameter computed using the training set. To
compute β, the training set is classified into two groups of
frames manually: intershot frames that belong to the shot
transition and intrashot frames that belong to the shots.
Therefore, β will be the percentage of intrashot frames.

Equation (5) shows the intershot probability for ith block
at frame j, where i = 1, 2, . . . ,n2. Here, we define the total
intershot probability for the jth frame:

P
(
j
) = 1

n2

n2∑

i=1

P
(

inter shot frame | Y (i)
j

)
. (6)

The intrashot frames are very similar, so the above prob-
ability function will be constant and close to zero. Also, we
expect the probability function to change gradually. Experi-
mental results reveal that in the shot boundaries (intershot
frames) the probability function has semi-Gaussian behavior
(see Figure 1(a)). The proposed algorithm detects the types
of shot boundary transitions through detail analysis of this
function’s behavior.

Experimental results further reveal that in the hard-cut
transitions, where one frame is part of the disappearing shot
and the next one is part of the appearing shot, the probability
function of (6) alters abruptly and its value is close to one
(see Figure 1(b)). Consequently, the hard-cut transitions
could be detected by using simple thresholding.

To detect the gradual shot transitions, we used an
algorithm comprised of two steps: finding the candidates for
the gradual transition centers and exploring the candidates
to find the correct transition. In the first step, the candidates
could be computed by applying a threshold to the probability
function of (6). The following pseudocode clarifies the afore-
mentioned method for hard-cut detection and candidate
selection of gradual shot centers (see Algorithm 1 ).

The values of HardCut Threshold and Gradual-
Transition Threshold are tuned using the training set. To
compute the HardCut Threshold, we consider all shots
of the training set with hard cut transitions. We select,
through exhaustive search, the largest real number in
[0, 1] that maximizes the sum of precision and recall as
HardCut Threshold. The GradualTransition Threshold is a
positive real number that is less than HardCut Threshold
and is determined similarly by using all gradual shots in the
training set.

5.3. Finding the Correct Gradual Shot Transitions. In order
to detect correct gradual transitions, we plot the probability
function of (6) for all gradual transitions in the training set.
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(1) for each frame f j in F = { f1, f2, . . . , ft} do
(a) Compute P( j) Using (6)
(b) if (P( j) > HurdCutt Threshold) then

Frame f j is a Hard Cut Transition
else

if (P( j) > GradualTransition Threshold) then
Frame f j is a candidate for Gradual Transition center

end
end

End

Algorithm 1
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Figure 1: The probability function of (6). (a) For a gradual transition which is semi-Gaussian and (b) for a hard cut transition.

After considering them, we find that the function exhibits
semi-Gaussian behavior during gradual transitions. Figure 2
shows some instances of these plots.

Ideally, an arbitrary Gaussian function is defined as.

G
η
σ2 (t) = 1√

2.π.σ
· exp

(
−
(
t − η

)2

σ2

)
, (7)

where σ is a real number defined as the variance value of the
function and t = η is the mean or center of the function.

After finding the candidates of gradual transition centers,
it is necessary to analyze them and to detect the correct
gradual transitions. In an ideal case, a connection between
the probability function of (6) and the Gaussian function of
(7) could adequately indicate the correct transition presence,
but realistically we must use an algorithm that explores the
candidates of the shot transition center and automatically
detects the correct transition.

For this reason, we designed an algorithm that uses the
probability function of (6) to find the correct transition.
It is imperative to observe that in the gradual shots, the
transition is not detectable in all blocks of the shot boundary
frames. Consequently, the probability function of (6) does
not increase to an absolute maximum at the center of the shot
transition. Due to the properties of QR-decomposition [29],
increasing the size of the window of shot transition (variance
in (6)) causes the values of the function to increase to an
absolute maximum. In this case, the length of transition,

defined as the number of frames in which the transition
is visible, is L = 2σ − 1. Therefore, we will utilize these
properties to detect correct transitions from the center
of shot transitions candidates that were obtained in the
previous section.

Let n be an obtained candidate for center of a gradual
shot. Then, the median parameter of (7) is set to η = n.
Next, a value for variance parameter σ in (7) that makes a
maximum adjustment with the probability function of (6)
must be found. To do this, the following measure is defined:

Wn
σ =

2σ∑

i=0

{∣∣∣Gn
σ2 (n− i)− P(n− i)

∣∣∣

+
∣∣∣Gn

σ2 (n + i)− P(n + i)
∣∣∣
}
.

(8)

The σ value that minimizes Wn
σ is defined as an optimum

value for variance parameter:

σ = arg min
0≤σ≤Σ

{
Wn

σ

}
, (9)

where Σ is the maximum size that a transition can presume.
In our experiments, we consider Σ = 24.

In typical conditions, the algorithm searches the appro-
priate variance parameter which leads to the expected
Gaussian shape and identifies the correct σ and hence the
length of the transition. If Z is the total number of candidates
of center of gradual shots, then because this part of the



EURASIP Journal on Advances in Signal Processing 7

1

Frame number

Fade transition

P
ro

ba
bi

lit
y

(a)

1

0
Frame number

Wipe transition

P
ro

ba
bi

lit
y

(b)

1

Frame number

Dissolve transition

P
ro

ba
bi

lit
y

(c)

Figure 2: The plots of the probability function of (6) for some gradual shot transitions of different types.

algorithm is run solely for the obtained candidate points,
the total number of computation is certainly less than the
product of Σ and Z.

Let the median and variance parameters be n and σ ,
respectively, as identified by the algorithm; then the function
Gn
σ2 (t) is a Gaussian function that has maximum adjustment

with the probability function P( j) in (6). Now, we need to
verify the importance of the transition and determine how
well the actual data corresponds to the Gaussian function:

Heightnσ = P(n)−min{P(n− 2σ),P(n + 2σ)}. (10)

This value is the height of the center value regarding the
lower of two values of P( j) in correspondence to the extremes
of the Gaussian function, and gives information about the
importance of the transition.

Experimental results illustrate that in real cases, object
and camera motions cause some semitransition behavior in
the probability function of (6). In order to address this effect,
we must find the hypothesis of having an isosceles Gaussian
function and define the fitting error measure as

Errornσ =
1

4σ

2σ∑

i=1

{∣∣∣Gn
σ2 (n− i)− P(n− i)

∣∣∣

+
∣∣∣Gn

σ2 (n + i)− P(n + i)
∣∣∣
}
.

(11)

This error sum is divided by the interval’s length to
achieve a measure that is not dependent on the length of the

Table 1: Video set used in our experiments.

Video Frames cuts gradual

News 95743 236 27

Cartoon 74384 142 39

Movie 85958 369 61

Sport 109381 187 17

Documentary 57491 93 9

transition. Also, a minimum threshold of the Heightnσ value,
TH , and a maximum threshold of the Errornσ value, TE,
are used to differentiate real gradual shot changes from
false ones. The final decision is made on the basis of
two parameters. Finally, the analysis of the candidates
and detection of the correct gradual transitions could be
summarized as in Algorithm 2.

Hence, the correct gradual transitions and the length of
the transitions could be extracted by using this algorithm.

5.4. Computational Complexity. The computational com-
plexity of the proposed SBD algorithm is reflected in the
need to calculate three histograms for each color component
R, G, B for each block of input frame. Let the size of input
image frame be M × N . We divide each input image frame
into n × n blocks, then make MN/n2 additions to calculate
one histogram for each block. We must first calculate three
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(1) for all n in the candidates for center of gradual shots do
(1.1) for all 0 ≤ σ ≤ Σ do

σ = arg min0≤σ≤Σ{Wn
σ} according to (9).

end
(1.2) Compute Heightnσ according to (10).
(1.3) Compute Errornσ according to (11).
(1.4) if (Heightnσ ≥ TH and Errornσ ≤ TE) then

Transition(n, σ) = TRUE
end

End

Algorithm 2

Table 2: Comparison of results of the different algorithms using our dataset.

Our method [37] [38]

Video Precision Recall Precision Recall Precision Recall

News 94 98 91 93 89 94

Cartoon 89 92 74 86 88 91

Movie 91 95 83 92 86 91

Sport 95 97 87 92 79 90

Documentary 90 92 92 94 93 95

Overall 91.8 94.8 85.4 91.4 87.0 92.2

histograms for each block, with (3MN)/n2 additions for
each block. Therefore, if we have t frames, we need a
total of (3MNt)/n2 additions to compute the feature matrix
for each block in the video sequence. We also need mt2

additional multiplication and addition operations [29] to
compute the QR-Decomposition of the feature matrix of
each block during the video sequence, wherem is the number
of dimensions of feature vector (number of histogram bins).
Thus, for calculating (5) for each t frame, we need a
total of ((3MNt)/n2 + mt2 + t) addition and multiplication
operations; therefore, calculation of (6) for each t frame with
n2 blocks will need ((3MNt)/n2 +mt2 + t)(n2t). It is obvious
that the complexity of the hard-cut detection algorithm in
Section 5.2 needs t comparisons, and finding the correct
gradual transition algorithm of Section 5.3 needs n(Σ2 +3Σ),
where n is the number of candidates for gradual transitions
and Σ is the maximum size of a transition. Consequently, the
proposed SBD algorithm has polynomial time complexity.
Thus, despite the existence of matrix computations in the
algorithm, we have tolerable time complexity.

6. Experimental Results

The proposed video shot transition detection algorithm is
evaluated by using a 4-hour video set. All videos have
been segmented manually through identifying hard cuts
and gradual transitions as well as their length. In all, 1180
shot transitions existed in these video sequences; of which,
1027 were hard-cut transitions, and 153 were gradual shot
boundaries. The video clips were obtained mainly from
the Internet and various television programs, and included
various movie formats, such as AVI, MPEG-7, and SGI. The

complete video database will be made available upon request.
The details of each video are shown in Table 1.

We employed recall and precision as the measures for
performance evaluation, which are defined below.

(i) The Recall measure, also known as the true positive
function or sensitivity, equals the ratio of correct
experimental detections over the number of all true
detections:

recall = number of correctly detected boundaries
number of true boundaries

. (12)

(ii) The Precision measure is defined as the ratio of
correct experimental detections over the number of
all experimental detections:

precision = number of correctly detected boundaries
number of totally detected bounaries

.

(13)

An excellent shot transition detector must possess both
high precision and high recall. We compared our algorithm
to the techniques proposed in [37, 38], which are shot
detection software that can be downloaded freely and
provide either MPEF-7 or XML formatted output. The
results of these algorithms used on similar video sequences
are shown in Table 2 (second and third columns). Because
of camera flashes, a number of false shot cut detections were
resulted. It is obvious that the proposed video SBD system
has obtained reasonable performance. Also, our algorithm is
efficient enough to detect shots with small length.



EURASIP Journal on Advances in Signal Processing 9

Table 3: The results of experiments on TRECVID 2006 data set.

All Cuts Gradual Frame

Recall Precision Recall Precision Recall Precision Recall Precision

a 0.6898 0.7425 0.7065 0.7868 0.6446 0.6541 0.7243 0.7850

b 0.8210 0.8986 0.9216 0.8507 0.7416 0.8355 0.8739 0.9261

c 0.5953 0.8317 0.5926 0.8387 0.6030 0.8101 0.8275 0.7984

d 0.6403 0.5723 0.7284 0.5954 0.4031 0.5276 0.5639 0.7834

e 0.8317 0.8217 0.9070 0.8873 0.6420 0.6507 0.8527 0.5637

f 0.5377 0.6044 0.7311 0.6036 0.0159 0.7416 0.2540 0.7056

g 0.3278 0.1595 0.3703 0.1431 0.2126 0.3778 0.4269 0.7766

h 0.7617 0.8687 0.8215 0.8888 0.6013 0.8024 0.7716 0.8486

i 0.7848 0.7344 0.7949 0.8170 0.7565 0.5711 0.7726 0.7000

QR 0.9252 0.8912 0.9306 0.9044 0.9054 0.8715 0.9285 0.8993

Table 4: The results of the experiments on different types of gradual transitions.

Computing thresholds and parameters Precision Recall

Fade and dissolve separately
Fade 94.4 97.14

Dissolve 89.1 94.2

Average 91.75 95.67

All gradual transitions 89.04 91.4

In the experiments, the video set is sampled with a fixed
rate of 5 frames/second. For feature extraction, each frame
is divided into 5 × 5 blocks. Also, the HurdCutt Threshold,
GradualTransition Threshold, and the TE, TH have been
adjusted using the “news 1.avi” as a training set. The
algorithm searches for hard cut transitions and candi-
dates for gradual transitions via HurdCutt Threshold and
GradualTransition Threshold, respectively. In order to detect
correct gradual transitions, the method presented in Sec-
tion 5.3 is used. The algorithm fits a Gaussian function with
maximum adjustment to the probability function of these
candidates, and then, computes the Heightnσ and Errornσ for
them. The correct gradual transitions are detected based on
these parameters. To do this, as discussed in Section 5.3,
it uses TE and TH thresholds. We chose the thresholds,
via comprehensive search so as to maximize the sum of
precision and recalls. Some of the examples of the detected
candidates for gradual shots are shown in Figure 3. Also, in
Figure 4, the Errornσ diagram for all different types of gradual
shot transitions is shown to justify the Semi-Gaussian
assumption of the appearance of probability function of
gradual transitions.

The newscasts from the reference video test set TRECVID
2006 were inserted into the testing set in order to make it
possible, in the future, to compare these techniques with
other SBD techniques. This set consists of over 6 hours of
video sequences that have been digitalized with a frame rate
of 29.97 fps and a resolution of 352× 264 pixels. To increase
the speed of our computations for our experiments, spatially
downsampled frames with resolutions of 176 × 132 pixels
were used. The ground truth given by TRECVID was utilized
for these video sequences.

The results of experiments are displayed in Table 3.
It is clear that the achieved results are better than those
reported in the TRECVID 2006 competition [7]. The best
reported hard cut detection results for recall and precision
for TRECVID are 90% and 88%, respectively, while our
approach yields 93% recall and 90% precision. Nearly all
false detections appeared because of flashlights and high-
speed camera motions. In some instances, false detections
emerged where artistic camera edits were applied, such as in
the case of commercials. The overlooked shot cut detections
were mostly caused due to either shot changes between two
images with highly similar spatial color distribution or shot
changes that happened in only a section of the video frame.

In Figure 5, the overall results of detection from
TRECVID 2006 participants are illustrated. The total num-
ber of groups that participated was 26, but only the best
20 are shown. The proposed algorithm has achieved great
results in the recall with 90.5%–96.0% properly detected
transitions using the same algorithm for all the various
kinds of transitions. As the QR-based algorithm has no
prediction for camera motions, light changes, or picture-in-
picture changes, the results concerning its accuracy are not as
satisfactory.

In our experiments, we examined the proposed algo-
rithm with identical parameters and thresholds for all dif-
ferent types of gradual transitions. To evaluate the efficiency
of the algorithm on different types of gradual transitions,
we classify the data set of Table 1 into two types: fade and
dissolve, and use 50 instances of each transition type which
would be 100 transitions in total. Then, we use 30 transitions
for training and 70 transitions for testing. We compute the
parameters and thresholds of the algorithm separately for
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Figure 3: Examples of the detected candidates for gradual transitions, and finding the correct gradual transitions: (a) as Heightnσ < TH , it is
an incorrect gradual transition. (b) As Errornσ > TH , it is an incorrect transition. (c) A correct gradual transition.
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Figure 5: Results on the overall detection (cuts and transitions)
based on the data provided by the organizers in TRECVID-2006.
Our approach is labeled QR.

each transition type. The results of the experiments are
displayed in Table 4. It is clear that when different types
of transitions are processed distinctly, the results are better.
Also, Figure 4 justifies these results. As shown in Figure 4, the
mean error between probability function of (6) and the best
fitted Gaussian function for dissolve transitions is greater
than the mean error for fade transitions. Consequently, if we
have previous knowledge about types of transitions in clips
of dataset, it would be better to categorize them into different
types, and then run the proposed algorithm separately.

7. Conclusion

In this paper, a new approach for shot boundary detection is
introduced. We put forward a novel technique for detecting
hard cut and gradual transitions through QR-decomposition
and Gaussian functions. The algorithm utilizes the properties
of QR-decomposition and extracts a block-wise probability
function that shows the probability of video frames to be
in shot transitions. The probability function has abrupt
changes in hard cut transitions and semi-Gaussian behavior
in gradual transitions. The algorithm detects the transitions
by analyzing this probability function. Through the use of
large-scale test sets provided by the TRECVID 2006, the
precision of our algorithm was empirically proved to be
very high. Also, our approach was successfully contrasted
with other approaches that have been reported in previous
literature.
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