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1. Introduction

The adaptive projected subgradient method (APSM) [1-
3] serves as a unified guiding principle of many existing
projection algorithms including the normalized least mean
square (NLMS) algorithm [4, 5], the affine projection
algorithm (APA) [6, 7], the projected NLMS algorithm
[8], the constrained NLMS algorithm [9], and the adaptive
parallel subgradient projection algorithm [10, 11]. Also,
APSM has been proven a promising tool for a wide range
of engineering applications: interference suppression in the
code-division multiple access (CDMA) and multi-input
multioutput (MIMO) wireless communication systems [12,
13], multichannel acoustic echo cancellation [14], online
kernel-based classification [15], nonlinear adaptive beam-
forming [16], peak-to-average power ratio reduction in
the orthogonal frequency division multiplexing (OFDM)
systems [17], and online learning in diffusion networks [18].
However, APSM does not cover the important family of
algorithms that are based on iterative projections with its
metric controlled adaptively for better performance. Such

a family of variable-metric projection algorithms includes the
transform-domain adaptive filter (TDAF) [19-21], the LMS-
Newton adaptive filter (LNAF) [22-24] (or quasi-Newton
adaptive filter (QNAF) [25, 26]), the proportionate adaptive
filter (PAF) [27-33], and Krylov-proportionate adaptive
filter (KPAF) [34-36]; it has been shown, respectively, in [34,
37] that TDAF and PAF perform iterative projections onto
hyperplanes (the same as used by NLMS) with variable met-
ric. The variable-metric projection algorithms enjoy signifi-
cantly faster convergence compared to their constant-metric
counterparts with reasonable computational complexity. At
the same time, however, the variability of metric causes
major difficulty in analyzing this family of algorithms. It is
of great interests and importance to reveal the convergence
mechanism.

The goal of this paper is to build a unified analytic
tool that encompasses the family of adaptive variable-
metric projection algorithms. The key to achieve this goal
is the assumption of small metric-fluctuations. We extend
APSM into the variable-metric adaptive projected subgradient
method (V-APSM) that allows the metric to change in time.



V-APSM includes TDAF, LNAF/QNAF, PAF, and KPAF as
its particular examples. We present a rigorous analysis of
V-APSM regarding several properties. First, we show that
V-APSM enjoys monotone approximation, which indicates
stable tracking capability. Second, we prove that the vector
sequence generated by V-APSM converges to a point in a
certain desirable set. Third, we prove that both the vector
sequence and its limit point minimize a sequence of cost
functions to be designed by the user asymptotically; each
cost function determines each iteration procedure of the
algorithm. The analysis gives us an interesting view that
TDAF, LNAF/QNAF, PAF, or KPAF asymptotically minimizes
the metric distance to the data-dependent hyperplane which
makes the instantaneous output-error be zero. The impacts
of metric-fluctuations on the performance of adaptive filter
are investigated by simulations.

The remainder of the paper is organized as follows.
Preliminary to the major contributions, we present a brief
review of APSM starting with a connection to the widely
used NLMS algorithm in Section 2. We present V-APSM
and its examples in Section 3, the analysis in Section 4,
the numerical examples in Section 5, and the conclusion in
Section 6.

2. Adaptive Projected Subgradient Method:
Asymptotic Minimization of a Sequence
of Cost Functions

Throughout the paper, R and N denote the sets of all real
numbers and nonnegative integers, respectively, and vectors
(matrices) are represented by bold-faced lower-case (upper-
case) letters. Let (-, -) be an inner product defined on the
N-dimensional Euclidean space RN and || - || its induced
norm. The projected gradient method [38, 39] is a simple
extension of the popular gradient method (also known
as the steepest descent method) to convexly constrained
optimization problems. Precisely, it solves the minimization
problem of a differentiable convex function ¢ : RN — R
over a given closed convex set C C RN, based on the metric
projection:

Pc:RNYN — C, x— Po(x) € arg minlla — x||. (1)

aeC
To deal with a (possibly nondifferentiable) continuous convex
function, a generalized method named the projected subgra-
dient method has been developed in [40]. For convenience,
a brief review of the projected gradient and projected
subgradient methods is given in Appendix A.

In 2003, Yamada has started to investigate the generalized
problem in which ¢ is replaced by a sequence of continuous
convex functions (@x)xen [1]. We begin by explaining how this
formulation is linked to the adaptive filtering.

2.1. NLMS from a Viewpoint of Asymptotic Minimization.
Let (-,-), and || - [l be the standard inner product and
the Euclidean norm, respectively. We consider the following
linear system [41, 42]:

dy = u,{h* +ng, keN, (2)
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FiGUure 1: Reduction of the metric distance function ¢i(x) :=
d(x, Hi) by the relaxed projection.

Here, uy := [ug, Uk_15..., uk,NH]T € RY is the input vector
at time k with (uy)ien being the observable input process,
h* € RN the unknown system, (7;)icn the noise process,
and (di)ren the observable output process. In the parameter
estimation problem, for instance, the goal is to estimate
h*. Given an initial hy € RN, the NLMS algorithm [4, 5]
generates the vector sequence (hy)cy recursively as follows:

h
i o= by — ) (3)
llugll3
=hi + p(Py,(he) —hi), keEN, (4)

where y € [0,2] is the step size (In the presence of noise,
¢ > 1 would never be used in practice due to its unacceptable
misadjustment without increasing the speed of convergence.)
and

ek(h) = (uk7h>2 - dk’ he RN; ke N: (5)

Hi:={he RV ;e (h) =0}, keN. (6)

The right side of (4) is called the relaxed projection due to the
presence of y, and it is illustrated in Figure 1. We see that for
any y € (0,2) the update of NLMS decreases the value of the
metric distance function:

¢r(x) := d(x,H) := min|x —af,, x¢€ RN, ke N. (7)
acHj

Figure 2 illustrates several steps of NLMS for ¢ = 1. In
noiseless case, it is readily verified that ¢ (h*) = d(h*, Hy) =
0, for all k € N, implying that (i) h* € ey Hi and
(ii) lhger —h*[l; =< |lhxy —h*[,, for all k € N, due to
the Pythagorean theorem. The figure suggests that (hi)icy
would converge to h*; namely, it would minimize (¢k)gen
asymptotically. In noisy case, the properties (i) and (ii)
shown above are not guaranteed, and NLMS can only
compute an approximate solution. APA [6, 7] can be viewed
in a similar way [10]. The APSM presented below is an
extension of NLMS and APA.

2.2. A Brief Review of Adaptive Projected Subgradient Method.
We have seen above that asymptotic minimization of
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FIGURE 2: NLMS minimizes the sequence of the metric distance
functions ¢x(x) := d(x,H) asymptotically under certain condi-
tions.

a sequence of functions is a natural formulation in the
adaptive filtering. The task we consider now is asymptotic
minimization of a sequence of (general) continuous convex
functions (@)ren> @k @ RY — [0,00), over a possible
constraint set (@ # )C c RN, which is assumed to be closed
and convex. In [2], it has been proven that APSM achieves
this task under certain mild conditions by generating a
sequence (hg)iey C RY (for an initial vector hy € RYN)
recursively by

hiot == Pefhi + 4 (Tpigo (he) = he) |, keN,  (8)

where A € [0,2], k € N, and Typ(y,) denotes the subgradient
projection relative to ¢x (see Appendix A). APSM reproduces
NLMS by letting C := RN and ¢(x) := d(x,Hi), x €
RN, k € N, with the standard inner product. A useful
generalization has been presented in [3]; this makes it
possible to take into account multiple convex constraints in
the parameter space [3] and also such constraints in multiple
domains [43, 44].

3. Variable-Metric Extension of APSM

We extend APSM such that it encompasses the family of
adaptive variable-metric projection algorithms, which have
remarkable advantages in performance over their constant-
metric counterparts. We start with a simplified version
of the variable-metric APSM (V-APSM) and show that it
includes TDAF, LNAF/QNAF, PAF, and KPAF as its particular
examples. We then present the V-APSM that can deal with a
convex constraint (the reader who has no need to consider
any constraint may skip Section 3.3).

3.1. Variable-Metric Adaptive Projected Subgradient Method
without Constraint. We present the simplified V-APSM
which does not take into account any constraint (The full
version will be presented in Section 3.3). Let (RN*N )Gy >
0, k € N; we express by A > 0 that a matrix A is
symmetric and positive definite. Define the inner product
and its induced norm, respectively, as (x,y)g, = x! Gyy, for

all (x,y) € RN X RV, and [|xlg, := +/(X,X)g,, forall x € RN,

For convenience, we regard Gi as a metric. Recalling the
definition, the subgradient projection depends on the inner

product (and the norm), thus depending on the metric Gy

(see (A.3) and (A.4) in Appendix A). We therefore specify the
metric Gx employed in the subgradient projection by Ts(pG ﬁ;k

The simplified variable-metric APSM is given as follows.

Scheme 1 (Variable-metric APSM without constraint). Let
¢r : RN — [0,0), k € N, be continuous convex functions.
Given an initial vector hy € R, generate (h)icn € RN by

hen = hic+ b (Tt (hi) —

where Ay € [0,2], forall k € N.

he), keN, (9

Recalling the linear system model presented in
Section 2.1, a simple example of Schemel is given as
follows.

Example 1 (Adaptive variable-metric projection algorithms).
An application of Scheme 1 to

or(x) := dg, (x, Hy) := irelgzllx —allg, x€RMkeN
(10)
yields
hen = by + A (P (hy) - i)
Lhk) ag,, keN. .

Equation (11) is obtained by noting that the normal vector
of Hj with respect to the Gg-metric is Gr 'ux because

= {h € RN ; (Gk_luk,h)(;k = di}. More sophisticated
algorithms than Example 1 can be derived by following the
way in [2, 37]. To keep this work as simple as possible
for better accessibility, such sophisticated algorithms will be
investigated elsewhere.

3.2. Examples of the Metric Design. The TDAF, LNAF/QNAF,
PAF, and KPAF algorithms have the common form of (11)
with individual design of Gy; interesting relations among
TDAF, PAF, and KPAF are given in [34] based on the so-
called error surface analysis. The Gi-design in each of the
algorithms is given as follows.

(1) Let V. € RN*N be a prespecified transformation
matrix such as the discrete cosine transform (DCT)
and discrete Fourier transform (DFT). Given s(()l) >0,

i= N, define s, := ps¢’ + (ii)?, where
T
y € (0 1) and [#, 27, 0] := Vuy is the

transform-domain input vector. Then, Gi for TDAF
[19, 20] is given as follows:

Gk —Vleag<sk L2 ..,s,((N))V. (12)

Here, diag(a) denotes the diagonal matrix whose
diagonal entries are given by the components of a
vector a € RN, This metric is useful for colored input
signals.



(4) Let R and p be the estimates of R

(2) Ggs for LNAF in [23] and QNAF in [26] are given by

Gy := Rk i~y and G := Rk QN> respectlvely, where for
some initial matrices RO N and Ro on their inverses
are updated as follows:

n-1 TR-1
R inucu Ry 1y )

N 1 [«
R} = —— | Rl - =
k+LLN *T 7 ( KN T oV at “ERE,]LN“k

ae (0,1),
p-1 Tp-1
Rl R 1 Ri onuet Rion
r+1L,QN = Rgon 'R - TR-1 :
Uy kQNuk W Ky onlik
(13)

The matrices Ry n and ﬁk,QN well approximate the
autocorrelation matrix of the input vector ux, which
coincides with the Hessian of the mean squared error
(MSE) cost function. Therefore, LNAF/QNAF is a
stochastic approximation of the Newton method,
yielding faster convergence than the LMS-type algo-
rithms based on the steepest descent method.

G)Let by = K02, k™)' k € N. Given
small constants ¢ > 0 and & > 0, define
L o= max{a,|h§j’|,|h,§2)|,...,|h;N)|} >0,y =
max{aLma",Ihk" [} >0,n = 1,2,...,N, and oc,((") =
yWSN Y n = .,N. Then, Gy for the
PNLMS algorithm [27, 28] is as follows:

Gy := diag™ (ock),oc,((z), .,oc,EN)). (14)

This metric is useful for sparse unknown systems
h*. The improved proportionate NLMS (IPNLMS)

algorithm [31] employs {7} == 2[(1 — @) |/l /N +
wlh|], w € [0,1), for n = 1,2,...,N in place of
y,(cn); || - |l; denotes the £ norm. IPNLMS is reduced
to the standard NLMS algorithm when w := 0.

Another modification has been proposed in, for
example, [32].

= E{uku,f}
and p := E{wd}. Also let Q € RNN be a
matrix obtained by orthonormalizing (from left to
right) the Krylov matrix [P, Rp,...,RN-1p]. Define
[% b ~2 ..,Z(N)]T := QThy, k € N. Given a
proportlonahty factor w € [0, 1) and a small constant

& >0, define
w o
(n) l-w _ ‘k
k = +w ~7 >0,
NN RO e (15)
n=12,...,N, keN.

Then, G for KPNLMS [34] is given as follows:

Gi = Qdiag ' (8,87, )Q%. (16)
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This metric is useful even for dispersive unknown
systems h*, as QT sparsifies it. If the input signal is
highly colored and the eigenvalues of its autocorrela-
tion matrix are not clustered, then this metric is used
in combination with the metric of TDAF (see [34]).
We mention that this is not exactly the one proposed
in [34]. The transformation Q" makes the optimal
filter into a special sparse system of which only a few
first components would have large magnitude and
the rest is nearly zero. This information (which is
much more than only that the system is sparse) is
exploited to reduce the computational complexity.

Finally, we present below the full version of V-APSM,
which is an extension of Scheme 1 for dealing with a convex
constraint.

3.3. The Variable-Metric Adaptive Projected Subgradient
Method—A Treatment of Convex Constraint. We generalize
Scheme 1 slightly so as to deal with a constraint set & ¢ RV,
which is assumed to be closed and convex. Given a mapping
T:RN — RN,Fix(T) := {x € RN : T(x) = x} is called
the fixed point set of T. The operator Pg;k), k € N, which
denotes the metric projection onto K with respect to the G-
metric, is 1-attracting nonexpansive (with respect to the G-
metric) with Fix(P%G")) = R, for all k € N (see Appendix B).
It holds moreover that P (x) € 8 for any x € R¥. For
generality, we let Ty, : RN — RN, k € N, be an g-attracting
nonexpansive mapping (r > 0) with respect to the Gi-metric
satistying

Ti(x) € & = Fix(Tx), Vke€N, Vxe RN, (17)

The full version of V-APSM is then given as follows.

Scheme 2 (The Variable-metric APSM). Let ¢ : RN —
[0,0), k € N, be continuous convex functions. Given an
initial vector hy € RN, generate (hy)ien € RY by

hyi —Tk[hkw%k( ((P)(hk) hk)] keN, (18)

where Ay € [0,2], forall k € N.

Scheme 2 is reduced to Scheme 1 by letting Ty := I
(R = RN), for all k € N, where I denotes the identity
mapping. The form given in (18) was originally presented
in [37] without any consideration of the convergence issue.
Moreover, a partial convergence analysis for Ty := I was
presented in [45] with no proof. In the following section,
we present a more advanced analysis for Scheme 2 with a
rigorous proof.

4. A Deterministic Analysis

We present a deterministic analysis of Scheme 2. In the
analysis, small metric-fluctuations is the key assumption
to be employed. The reader not intending to consider any
constraint may simply let £ := RV,
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4.1. Monotone Approximation in the Variable-Metric Sense.
We start with the following assumption.

Assumption 1. (a) (Assumption in [2]). There exists Ky € N
s.t.

of :=mingi(x) =0, Vk = Ky,
xeR

19
Q= (%9, (19)
kZKg
where
Q= {xeﬁmpk(x) :gol’:}, ke N. (20)

(b) There exist €1,& > 0s.t. Ay € [e1,2 — &] C (0,2),
k> K.

The following fact is readily verified.

Fact 1. Under Assumption 1(a), the following statements are
equivalent (for k = Ky):

(a) hy € Qy,

(b) hgyr = hy,

(c) pr(he) =0,
(d) 0 € dg, pr(hy).

V-APSM enjoys a sort of monotone approximation in the
Gr-metric sense as follows.

Proposition 1. Let (hi)ien be the vectors generated by
Scheme 2. Under Assumption 1, for any z} € Qy,

2 2
b= 2| = [bies -2t [ = ere
H k k G k+1 k G 12‘¢

(Vk = Ko s.t. he & Qu),

wmoll, e

2 2
b= 2|, = [[ben = 2]
H k k Gy k+1 k G

ne; 5 (22)
= mllhk —hpullg, V=K.
Proof . See Appendix C. O

Proposition 1 will be used to prove the theorem in the
following.

4.2. Analysis under Small Metric-Fluctuations. To prove the
deterministic convergence, we need the property of monotone
approximation in a certain “constant-metric” sense [2].
Unfortunately, this property is not ensured automatically for
the adaptive variable-metric projection algorithm unlike the
constant-metric one. Indeed, as described in Proposition 1,
the monotone approximation is only ensured in the Gx-metric

sense at each iteration; this is because the strongly attracting
k)

nonexpansivity of Ty and the subgradient projection TS(}?(W)

are both dependent on Gy. Therefore, considerably different
metrics may result in totally different directions of update,
suggesting that under large metric-fluctuations it would be
impossible to ensure the monotone approximation in the
“constant-metric” sense. Small metric-fluctuations is thus
the key assumption to be made for the analysis.

Given any matrix A € RV*N its spectral norm is defined
by [[All; := supycpnllAXIl2/[Ix][; [46]. Given A > 0, let
g™ > 0 and o™ > 0 denote its minimum and maximum
eigenvalues, respectively; in this case [|All, = o*. We
introduce the following assumptions.

Assumption 2. (a) Boundedness of the eigenvalues of Gy.
There exist min, Omax € (0, ) s.t. Omin < aai“ < 06" < Omax>
forall k € N.

(b) Small metric-fluctuations. There exist (RN*N )G >
0, Ki = Ky, 7 > 0, and a closed convex setI' € Q s.t. E; :=
Gy — G satisfies

e16,08M82

i1 +hg — 22" I, 1| Bkl .
(2 - SZ)ZUE;naXamax (23)

[Ther — hell,

(Vk = K; s.t. hy g Qp), Vz* eT.

We now reach the convergence theorem.

Theorem 1. Let (hi),cn be generated by Scheme 2. Under
Assumptions 1 and 2, the following holds.

(a) Monotone approximation in the constant-metric sense.
Foranyz* €T,

e = 2% = [Mhen - 2*[[g

2 _max 2
(2 _;) ag ¢k (hy) 5 (Vk =K st he & Qi)
min H(P;C(hk)HG
(24)
Ihe — 2*][§ — [[hyer — 2*[[5
(25)

T 2
= —hax [Thx — hiiallGs

oG

VkZK].

(b) Asymptotic minimization. Assume that (¢, (hi))ren is
bounded. Then,

Jlim @i (hy) = 0. (26)

(c) Convergence to an asymptotically optimal point.
Assume that T has a relative interior with respect to a

hyperplane T C RN; that is, there exists hellInTst

{xelIl:|lx—hll < e} CT forsomee.; > 0. (The norm
I - Il can be arbitrary due to the norm equivalency for finite-
dimensional vector spaces.) Then, (hi)ren converges to a point

he & In addition, under the assumption in Theorem 1(b),
l}{ﬁ; Pk (h) =0 (27)

provided that there exists bounded ((p;((ﬁ))keN where go,'((ﬁ) €
6, ¢k (h), forall k € N.



(d) Characterization of the limit point. Assume the exis-

tence of some interior point h of Q. In this case, under the
assumptions in (c), if for all e > 0, for allr >0, 36 > 0 s.t.

( inf ) pr(hg) = 6,

d(hg,leveogr )=,

o 28)

[ (
k=K,

then h € lim infr . o Qk, where liminfy . oQr :=
Urco Nusk Qn and the overline denotes the closure (see
Appendix A for the definition of lev<@i ). Note that the metric
for |l - || and d(-, -) is arbitrary.

Proof. See Appendix D. O

We conclude this section by giving some remarks on the
assumptions and the theorem.

Remark 1 (On Assumption 1). (a) Assumption 1(a) is
required even for the simple NLMS algorithm [2].

(b) Assumption 1(b) is natural because the step size is
usually controlled so as not to become too large nor small
for obtaining reasonable performance.

Remark 2 (On Assumption 2). (a) In the existing algo-
rithms mentioned in Example 1, the eigenvalues of Gi
are controllable directly and usually bounded. Therefore,
Assumption 2(a) is natural.

(b) Assumption 2(b) implies that the metric-fluctuations
[Ek |, should be sufficiently small to satisfy (23). We mention
that the constant metric (i.e., G = G > 0, for all
k € N, thus [|[Ekll, = 0) surely satisfies (23): note that
[lhg+1 — hill, # 0 by Fact 1. In the algorithms presented in
Example 1, the fluctuations of Gy tend to become small as
the filter adaptation proceeds. If in particular a constant step
size A, := A € (0,2), for all k € N, is used, we have ¢ = A
and &, = 2 — A and thus (23) becomes

by +hy — 22% || [ Bl (2 ) oanszs
<l=-1 mn _ 7 (29)
g1 — hyll )

08] ax 8max

This implies that the lower the value of A is, the larger amount
of metric-fluctuations would be acceptable in the adaptation.
In Section 5, it will be shown that the use of small A makes the
algorithm relatively insensitive to large metric-fluctuations.
Finally, we mention that multiplication of G by any scalar
& > 0 does not affect the assumption, because (i) 0{?1“, ag™s,
Omin> Omax> and [|Ex|l, in (23) are equally scaled, and (ii) the
update equation (23) is unchanged (as ¢} (x) is scaled by 1/¢
by the definition of subgradient).

Remark 3 (On Theorem 1). (a) Theorem 1(a) ensures the
monotone approximation in the “constant” G-metric sense;
that is, [lhg1 —z*llg < llhy —z*[lg for any z* € T.
This remarkable property is important for stability of the
algorithm.

(b) Theorem 1(b) tells us that the variable-metric adap-
tive filtering algorithm in (11) asymptotically minimizes
the sequence of the metric distance functions ¢(x) =
dg,(x,Hk), k € N. This intuitively means that the output
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error ex(hy) diminishes, since Hj is the zero output-error
hyperplane. Note however that this does not imply the
convergence of the sequence (hy)cy (see Remark 3(c)). The
condition of boundedness is automatically satisfied for the
metric distance functions [2].

(c) Theorem 1(c) ensures the convergence of the

sequence (hy).cy to a point h € & An example that the
NLMS algorithm does not converge without the assumption
in Theorem 1(c) is given in [2]. Theorem 1(c) also tells
us that the limit point h minimizes the function sequence
¢k asymptotically; that is, the limit point is asymptotically
optimal. In the special case where ny = 0 (for all k € N)
and the autocorrelation matrix of u is nonsingular, h* is
the unique point that makes ¢x(h*) = 0 for all k € N. The
condition of boundedness is automatically satisfied for the
metric distance functions [2].

(d) From Theorem 1(c), we can expect that the limit

point h should be characterized by means of the intersection
of Qgs, because Q) is the set of minimizers of ¢x on K.
This intuition is verified by Theorem 1(d), which provides

an explicit characterization of h. The condition in (28) is
automatically satisfied for the metric distance functions [2].

5. Numerical Examples

We first show that V-APSM outperforms its constant-metric
(or Euclidean-metric) counterpart with the design of G
presented in Section 3.2. We then examine the impacts of
metric-fluctuations on the performance of adaptive filter
by taking PAF as an analogy; recall here that metric-
fluctuations were the key in the analysis. We finally consider
the case of nonstationary inputs and present numerical
studies on the properties of the monotone approximation
and the convergence to an asymptotically optimal point (see
Theorem 1).

5.1. Variable Metric versus Constant Euclidean Metric. First,
we compare TDAF [19, 20] and PAF (specifically, IPNLMYS)
[31] with their constant-metric counterpart, that is, NLMS.
We consider a sparse unknown system h* € RN depicted
in Figure 3(a) with N = 256. The input is the colored
signal called USASI and the noise is white Gaussian with
the signal-to-noise ratio (SNR) 30dB, where SNR :=
lologlo(E{Z,%}/E{ni}) with zx := (ur,h*) (The USASI
signal is a wide sense stationary process and is modeled
on the autoregressive moving average (ARMA) process
characterized by H(z) := (1 — z72)/(1 — 1.70223z7" +
0.71902z72%), z € C, where C denotes the set of all complex
numbers. In the experiments, the average eigenvalue-spread
of the input autocorrelation-matrix was 1.20 x 10°.). We set
A = 0.2, for all k € N, for all algorithms. For TDAF, we set
y = 1 —107% and employ the DCT matrix for V. For PAF
(IPNLMS), we set w = 0.5. We use the performance measure
of MSE 10log,,(E{et}/E{z;}). The expectation operator is
approximated by an arithmetic average over 300 independent
trials. The results are depicted in Figure 3(b).

Next, we compare QNAF [26] and KPAF [34] with
NLMS. We consider the noisy situation of SNR 10dB and
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nonsparse unknown systems h* drawn from a normal
distribution N (0,1) randomly at each trial. The other
conditions are the same as the first experiment. We set 1, =
0.02, for all k € N, for KPAF and NLMS, and use the same
parameters for KPAF as in [34]. Although the use of A = 1.0
for QNAF is implicitly suggested in [26], we instead use
Ak = 0.04 with ﬁa, on = T'to attain the same steady-state error
as the other algorithms (I denotes the identity matrix). The
results are depicted in Figure 4.

Figures 3 and 4 clearly show remarkable advantages of the
V-APSM-based algorithms (TDAF, PAE, QNAF, and KPAF)
over the constant-metric NLMS. In both experiments, NLMS
suffers from slow convergence because of the high correlation
of the input signals. The metric designs of TDAF and QNAF
accelerate the convergence by reducing the correlation. On
the other hand, the metric design of PAF accomplishes it by
exploiting the sparse structure of h*, and that of KPAF does
it by sparsifying the nonsparse h*.

5.2. Impacts of Metric-Fluctuations on the MSE Performance.
We examine the impacts of metric-fluctuations on the MSE
performance under the same simulation conditions as the
first experiment in Section 5.1. We take IPNLMS because of
its convenience in studying the metric-fluctuations as seen
below. The metric employed in IPNLMS can be obtained by
replacing h* in

1. diag(/h*[)\"
G; ::2(—I+7) 30
AN e o
by its instantaneous estimate hy, where | - | denotes the

elementwise absolute-value operator. We can thus interpret
that IPNLMS employs an approximation of Gige,. For ease
of evaluating the metric-fluctuations [|Ell,, we employ a
test algorithm which employs the metric Gigea With cyclic
fluctuations as follows:

G;;l 1= Gi?iial + %diag(@,(;@), k e N. (31)

Here, (k) := (kmodN) +1 € {1,2,...,N},k e N,p =0
determines the amount of metric-fluctuations, and € i € RN
is a unit vector with only one nonzero component at the jth
position. Letting G := Gideal, we have
() \2
_ Q(gideal)
I Ell, = N 1 o0s®

elogiy), vken, (32
+ 08ideal

1

where gli..» # € {1,2,...,N}, denotes the nth diagonal
element of Gigear. It is seen that (i) for a given «(k), [|Ekll,
is monotonically increasing in terms of o > 0, and (ii) for a
given o, [|Exl, is maximized by gféﬁil = minlj\]:1 Sieal

First, we set Ay = 0.2, for all k € N, and examine the
performance of the algorithm for p = 0, 10,40. Figure 5(a)
depicts the learning curves. Since the test algorithm has
the knowledge about Gigeq (subject to the fluctuations
depending on the p value) from the beginning of adaptation,
it achieves faster convergence than PAF (and of course than
NLMS). There is a fractional difference between p = 0 and

o = 10, indicating robustness of the algorithm against a
moderate amount of metric-fluctuations. The use of p = 40,
on the other hand, causes the increase of steady-state error
and the instability at the end. Meanwhile, the good steady-
state performance of IPNLMS suggests that the amount of
its metric-fluctuations is sufficiently small.

Next, we set Ay = 0.1,0.2,0.4, for all k € N, and examine
the MSE performance in the steady-state for each value of
o € [0,50]. For each trial, the MSE values are averaged over
5000 iterations after convergence. The results are depicted in
Figure 5(b). We observe the tendency that the use of smaller
Ak makes the algorithm less sensitive to metric-fluctuations.
This should not be confused with the well-known relations
between the step size and steady-state performance in the
standard algorithms such as NLMS. Focusing on p = 25
in Figure 5(b), the steady-state MSE of Ax = 0.2 is slightly
higher than that of ;4 = 0.1, while the steady-state MSE
of \x = 0.4 is unacceptably high compared to that of
Ax = 0.2. This does not usually happen in the standard
algorithms. The analysis presented in the previous section offers
a rigorous theoretical explanation for the phenomena observed
in Figure 5. Namely, the larger the metric-fluctuations or
the step size, the more easily Assumption 2(b) is violated,
resulting in worse performance. Also, the analysis clearly
explains that the use of smaller A allows a larger amount of
metric-fluctuations ||Ex||, [see (29)].

5.3. Performance for Nonstationary Input. In the previous
subsection, we changed the amount of metric-fluctuations in
a cyclic fashion and studied its impacts on the performance.
We finalize our numerical studies by considering more prac-
tical situations in which Assumption 2(b) is easily violated.
Specifically, we examine the performance of TDAF and
NLMS for nonstationary inputs of female speech sampled at
8 kHz (see Figure 6(a)). Indeed, TDAF controls its metric to
reduce the correlation of inputs, whose statistical properties
change dynamically due to the nonstationarity. The metric
therefore would tend to fluctuate dynamically by reflecting
the change of statistics. For better controllability of the
metric-fluctuations, we slightly modify the update of s,(f)
in (12) into 5, = 5 + (1 = PE)? for § € (0,1),
i = 1,2,...,N. The amount of metric-fluctuations can be
reduced by increasing J up to one. Considering the acoustic
echo cancellation problem (e.g., [33]), we assume SNR 20 dB
and use the impulse response h* € RN (N = 1024)
described in Figure 6(b), which was recorded in a small
room.

For all algorithms, we set Ay = 0.02. For TDAF
we set (A) p = 1 —-107%4 B) y = 1 — 107* and
(C)p = 1-107°, and were employ the DCT matrix
for V. In noiseless situations, V-APSM enjoys the mono-
tone approximation of h* and the convergence to the
asymptotically optimal point h* under Assumptions 1 and
2 (see Remark 3). To illustrate how these properties are
affected by the violation of the assumptions due mainly to
the noise and the input nonstationarity, Figure 6(c) plots
the system mismatch 10log,,(Ilhk —h*ll%/llh*ll%) for one
trial. We mention that, although Theorem 1(a) indicates



the monotone approximation in the G-metric sense, G is
unavailable and thus we employ the standard Euclidean
metric (note that the convergence does not depend on the
choice of metric). For (B) y = 1 — 107*° and (C) y =
1 — 1073, it is seen that hy is approaching h* monotonically.
This implies that the monotone approximation and the
convergence to h* are not seriously affected from a practical
point of view. For (A) y =1 — 1074, on the other hand, hy is
approaching h* but not monotonically. This is because the use
of = 1 — 107* makes Assumption 2(b) violated easily due
to the relatively large metric-fluctuations. Nevertheless, the
observed nonmonotone approximation of (A) y = 1 — 1074
would be acceptable in practice; on its positive side, it yields
the great benefit of faster convergence because it reflects the
statistics of latest data more than the others.

6. Conclusion

This paper has presented a unified analytic tool named
variable-metric adaptive projected subgradient method (V-
APSM). The small metric-fluctuations has been the key
for the analysis. It has been proven that V-APSM enjoys
the invaluable properties of monotone approximation and
convergence to an asymptotically optimal point. Numerical
examples have demonstrated the remarkable advantages of
V-APSM and its robustness against a moderate amount
of metric-fluctuations. Also the examples have shown that
the use of small step size robustifies the algorithm against
a large amount of metric-fluctuations. This phenomenon
should be distinguished from the well-known relations
between the step size and steady-state performance, and our
analysis has offered a rigorous theoretical explanation for the
phenomenon. The results give us a useful insight that, in
case an adaptive variable-metric projection algorithm suffers
from poor steady-state performance, one could either reduce
the step size or control the variable-metric such that its
fluctuations become smaller. We believe—and it is our future
task to prove—that V-APSM serves as a guiding principle to
derive effective adaptive filtering algorithms for a wide range
of applications.

Appendices

A. Projected Gradient and Projected
Subgradient Methods

Let us start with the definitions of a convex set and a convex
function. A set C ¢ RN is said to be convex if vx + (1 —
y)y € C, for all (x,y) € Cx C, forall v € (0,1). A function
¢ : RN — Rissaid to be convex if p(vx+ (1 —v)y) < vo(x) +
(1 —)e(y), forall (x,y) € RN x R, forall v € (0, 1).

A.1. Projected Gradient Method. The projected gradient
method [38, 39] is an algorithmic solution to the following
convexly constrained optimization:

ming(h), (A1)
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where C € RV is a closed convex set and ¢ : RN — R a
differentiable convex function with its derivative ¢’ : RN —
RN being k-Lipschitzian: that is, there exists k > 0 s.t. || ¢'(x)—
¢ (y)ll < «xllx — yll, for all x,y € RN. For an initial vector
hy € RY and the step size A € (0,2/x), the projected gradient
method generates a sequence (hg)xeny C RN by

hii1 = Pe[he — A¢' (hy)],

It is known that the sequence (hi)icy converges to an
arbitrary solution to the problem (A.1). If, however, ¢
is nondifferentiable, how should we do? An answer to this
question has been given by Polyak in 1969 [40], which is
described below.

k € N. (A.2)

A.2. Projected Subgradient Method. For a continuous (but
not necessarily differentiable) convex function ¢ : R¥N — R,
it has been proven that the so-called projected subgradient
method solves the problem (A.1) iteratively under certain
conditions. The interested reader is referred to, for example,
[3] for its detailed results. We only explain the method itself,
as it is helpful to understand APSM.

What is subgradient, and does it always exist? The
subgradient is a generalization of gradient, and it always
exists for any continuous (possibly nondifferentiable) convex
function (To be precise, the subgradient is a generalization
of Gateaux differential.). In a differentiable case, the gradient
¢’ (y) at an arbitrary point y € RN is characterized as the
unique vector satisfying (x —y, ¢’ (y)) + ¢(y) < ¢(x), for all
x € RN. In a nondifferentiable case, however, such a vector
is nonunique in general, and the set of such vectors

99(y)

= {ae RN : (x —y,a) +¢(y) < 9(x),Vx € [RN}7E®
(A.3)

is called subdifferential of ¢ at y € RYM. Elements of the
subdifferential dg(y) are called subgradients of ¢ aty.

The projected subgradient method is based on sub-
gradient projection, which is defined formally as follows
(see Figure 7 for its geometric interpretation). Suppose that
leveop = {x € RN . ¢(x) < 0} # @. Then, the mapping
Top(p) : RY — RN defined as

P(x)

9
e GOII°
X otherwise

"(x) if (x) >0,

Tsp(q,) X — (A.4)

is called subgradient projection relative to ¢, where ¢’ (x) €
d¢(x), for all x € RY. For an initial vector hy € RV,
the projected subgradient method generates a sequence
(hi)ken € RY by

hir = Pe[ by + e (T (he) — ) ],

where Ay € [0,2], k € N. Comparing (A.2) with (A.4)
and (A.5), one can see similarity between the two methods.
However, it should be emphasized that ¢’(hy) is (not the
gradient but) a subgradient.

keN, (AS5)
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FIGURE 3: (a) Sparse impulse response and (b) MSE performance of NLMS, TDAF, and IPNLMS for A, = 0.2. SNR = 30 dB, N = 256, and
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FiGure 4: MSE performance of NLMS (A, = 0.02), QNAF (A
0.04), and KPAF (A = 0.02) for nonsparse impulse responses and
colored inputs (USASI). SNR = 10 dB, N = 256.

B. Definitions of Nonexpansive Mappings

(a) A mapping T is said to be nonexpansive if || T(x) —
Ty)ll < llx—yll, forall (x,y) € RN x RN; intuitively,
T does not expand the distance between any two
points x and y.

(b) A mapping T is said to be attracting nonexpansiveif T
is nonexpansive with Fix(T) # @ and || T(x) — f1? <
Ix — f]|3, for all (x,f) € [RN \ Fix(T)] x Fix(T);
intuitively, T attracts any exterior point x to Fix(T).

(c) A mapping T is said to be strongly attracting
nonexpansive or n- attracting nonexpansive if T is
nonexpansive with Fix(T) # @ and there exists 5 >
0 st oglx-T@I* < lIx—fI* - ITx) - £l

for all (x,f) € RN x Fix(T). This condition is
stronger than that of attracting nonexpansivity,
because, for all (x,f) € [RN \ Fix(T)] x Fix(T),
the difference ||x — f||* — I1T(x) — £]|? is bounded by
pllx = T2 > 0.

A mapping T : RN — RN with Fix(T) # @ is called
quasi-nonexpansive if || T(x) — T(f) || < [lx—f]| forall (x,f) €
RN x Fix(T).

C. Proof of Proposition 1

Due to the nonexpansivity of Ty with respect to the Gg-
metric, (21) is verified by following the proof of [2, Theo-
rem 2]. Noticing the property of the subgradient projection

Fix(TS(pG(k(;k)) = lev<o@k, we can verify that the mapping Ty :=
Till + (Tl = D1 is (2 = Mo)n/(2 = Ai(1 — 1)) -attracting

quasi-nonexpansive with respect to Gx with Fix(Ty) = &N
leveopr = Qi (cf. [3]). Because ((2 — A)n)/(2 — A (1 —
M) = [+ W/Q=2)™ = W+ -17 =
(ne2)/(e2 + (2 — €2)1), (22) is verified.

D. Proof of Theorem 1

Proof of (a). In the case of hy € Q, Fact 1 suggests hy; =
hy; thus (25) holds with equality. In the following, we assume

hy & Qi(< hyyy #hy). For any x € RN, we have

T
x'Gix = <YYH (D.1)
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inputs (USASI).

where y := GY?x and Hi
Assumption 2(a), we obtain

= G2GyG™2 > 0. By

max
O.max _ ||H ” < Gfl/Z ||G ” G—1/2 _ UGk < (Smax
Hy — k2 = 5 13k l2 2 O_énin O_énin
(o.min)7l
Hy
B B g/max gmax
=1, = 11672116611, |G"], = o < <
ko 1l2 217k 2 2

O.ain 8min ’
(D.2)
By (D.1) and (D.2), it follows that

8min 8max

2
e o X6

Ixlig < lIxIlg, < Vk = K;, Vx € RV
(D.3)

Noting EE = Ey, for all k > K; (because G,f = Grand GT =
G), we have, forallz* € T = Q C Qf and (for all k > K; s.t.
hy & Qy),

e = 2*[Jg — e —2*[Ig

I[he = 2*[g, — Il — 2*]Jg,

— (hy — 2°) "Ex(hy — 2%) + (hgyy — 2°) "By (hysy — 2*)

2
= oo P (b b - 22) B — )
o],
min 2
T
S AL

X [hger = hill,.
(D.4)

The first inequality is verified by Proposition 1 and the sec-
ond one is verified by (D.3), the Cauchy-Schwarz inequality,

and the basic property of induced norms. Here, dmin <
06" < (x"Gkx)/(x"x) implies

Iy = hiell3 < Gmin) ™ it — hiellg,
2 (hy)
2
i (o,

(2 — &)o@ ¢ (hy)
2 2
Omin oo

< (é\min)_l/li

(D.5)

where the second inequality is verified by substituting hy.; =
Ti[hy — lk(fpk(hk)/l\gofc(hk)||ZGk)<P;'<(hk)] and hy = Ty (hy) (=
hi € 8 = Fix(Ty); see (17)) and noticing the nonexpansivity
of Ty with respect to the Gg-metric. By (D.4), (D.5), and
Assumption 2(b), it follows that, for all z* € T, for all k >
Kl s.t. hk & Qk,

e = 2*[Jg = [Mhen — 2*[Ig

i 2
. <s1ezaam“ g + Ty — 227 [ | Eglly (2 - e2) o&“‘*)

Smax [hicer — hell Smin
b)) (2 &)o@ gi(hy)
TS 3 o2 ; 2
it min | gg o |

(D.6)

which verifies (24). Moreover, from (D.3) and (D.5), it is
verified that

o7 (he) N
oo, ~ 2ol

2

1 5min

> (28)2<0max> [hi — hk||2G~
—& G

By (D.6) and (D.7), we can verify (25). O

6min

2
Ihitr — hillg,

(D.7)
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Proof of (b). From Fact 1, for proving limy —. @ (hyx) = 0, it
is sufficient to check the case hi & Q(= ¢, (hg) #0). In this
case, by Theorem 1(a),

= 26 = s =2
(2*82)206““T 9 (hy)
2 2 =
i oo

For any z* € T, the nonnegative sequence (|lhy — z*[/g)x=x,
is monotonically nonincreasing, thus convergent. This
implies that

(D.8)

2
: ¢i(hy)
lim . 7 =Y (D.9)
iollcn]
(pk<hk>¢0H€"k klg
hence the boundedness of (¢ (hi))ren  ensures
limg . i (hg) = 0. O

Proof of (c). By Theorem 1(a) and [2, Theorem1], the
sequence (hg);.g, converges to a point h € RYM. The

closedness of (3 hy, for all k € N\ {0}) ensures he A
By the definition of subgradients and Assumption 2(a),
we obtain

0 < ¢c(h) < pe(he) - (he —h, ‘PL(}A‘»Gk

< gi(hy) + || — b 1Gil| (D.10)

gi(h),

gi(h)|| -

Hence, noticing (i) Theorem 1(b) under the assumption,
(ii) the convergence hy — h, and (iii) the boundedness of

< @k (hk) + 6max

he R

(gt)]'((ﬁ))keN, it follows that limy . ocq)k(ﬁ) =0. O
Proof of (d). The claim can be verified in the same way as in
[2, Theorem 2(d)]. O
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