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It is commonly acknowledged that word or phoneme intelligibility is an important criterion in the assessment of the
communication efficiency of a pathological speaker. People have therefore put a lot of effort in the design of perceptual intelligibility
rating tests. These tests usually have the drawback that they employ unnatural speech material (e.g., nonsense words) and
that they cannot fully exclude errors due to listener bias. Therefore, there is a growing interest in the application of objective
automatic speech recognition technology to automate the intelligibility assessment. Current research is headed towards the design
of automated methods which can be shown to produce ratings that correspond well with those emerging from a well-designed
and well-performed perceptual test. In this paper, a novel methodology that is built on previous work (Middag et al., 2008) is
presented. It utilizes phonological features, automatic speech alignment based on acoustic models that were trained on normal
speech, context-dependent speaker feature extraction, and intelligibility prediction based on a small model that can be trained
on pathological speech samples. The experimental evaluation of the new system reveals that the root mean squared error of the
discrepancies between perceived and computed intelligibilities can be as low as 8 on a scale of 0 to 100.
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1. Introduction

In clinical practice there is a great demand for fast and
reliable methods for assessing the communication efficiency
of a person with a (pathological) speech disorder. It is argued
in several studies (e.g., [1]) that intelligibility is an important
criterion in this assessment. Therefore several perceptual
tests aiming at the measurement of speech intelligibility have
been conceived [2-4]. One of the primary prerequisites for
getting reliable scores is that the test should be designed
in such a way that the listener cannot guess the correct
answer based solely on contextual information. That is why
these tests use random word lists, varying lists at different
trials, real words as well as pseudowords, and so forth.
Another important issue is that the listener should not be too
familiar with the tested speaker since this creates a positive
bias. Finally, if one wants to use the test for monitoring
the efficiency of a therapy, one cannot work with the same
listener all the time because this would introduce a bias

shift. The latter actually excludes the speaker’s therapist
as a listener, which is very unfortunate from a practical
viewpoint.

For the last couple of years there has been a growing
interest in trying to apply automatic speech recognition
(ASR) for the automation of the traditional perceptual tests
[5-8]. By definition an ASR is an unbiased listener, but is it
already reliable enough to give rise to computed intelligibility
scores that correlate well with the scores obtained from a
well-designed and well-performed perceptual test? In this
paper, we present and evaluate an automated test which
seems to provide such scores.

The simplest approach to automated testing is to let
an ASR listen to the speech, to let it perform a lexical
decoding of that speech, and to compute the intelligibility
as the percentage of correctly decoded words or phonemes.
Recent work [9, 10] has demonstrated that in case the
sketched approach is applied to read text passages of speakers
with a particular disorder (e.g., dysarthric speakers or



laryngectomies) it can yield intelligibilities that correlate well
with an impression of intelligibility, expressed on a 7-point
Likert scale [11].

In order to explore the potential of the approach in
more demanding situations, we have let a state-of-the-art
ASR system [12] recognize isolated monosyllabic words and
pseudowords spoken by a variety of pathological speakers
(different types of pathology and different degrees of severity
of that pathology). The perceptual intelligibilities against
which we compared the computed ones represented intelli-
gibility at the phone level. The outcome of our experiments
was that the correlations between the perceptual and the
computed scores were only moderate [13]. This is inline
with our expectations since the ASR employs acoustic models
that were trained on the speech of nonpathological speakers.
Consequently, when confronted with severely disordered
speech, the ASR is asked to score the sounds that are in
many respects very different from the sounds it was trained
on. This means that acoustic models are asked to make
extrapolations in areas of the acoustic space that were not
examined at all during training. One cannot expect that
under these circumstances a lower acoustic likelihood always
points to a larger deviation (distortion) of the observed
pronunciation from the norm.

Based on this last argument we have conceived an
alternative approach. It first of all employs phonological
features as an intermediate description of the speech sounds.
Furthermore, it computes a series of features used for
characterizing the voice of a speaker, and it employs a
separate intelligibility prediction model (IPM) to convert
these features into a computed intelligibility. Our first
hypothesis was that even in the case of severe speech
disorders, some of the articulatory dimensions of a sound
may still be more or less preserved. A description of the
sounds in an articulatory feature space may possibly offer a
foundation for at least assessing the severity of the relatively
limited distortions in these articulatory dimensions. Note
that the term “articulatory” is usually reserved to designate
features stemming from direct measurements of articulatory
movements (e.g., by means of an articulograph). We adopt
the term “phonological” for features that are also intended
to describe articulatory phenomena, although here they are
derived from the waveform. Our second hypothesis was
that it would take only a simple IPM with a small number
of free parameters to convert the speaker features into an
intelligibility score, and therefore that this IPM can be
trained on a small collection of both pathological and normal
speakers.

We formerly developed an initial version of our system
[13], and we were able to demonstrate that its computed
intelligibilities correlated well with perceived phone-level
intelligibilities [14] for our speech material. However, these
good correlations could only be attained with a system
incorporating two distinct ASR components: one working
directly in the acoustic feature space and one working in
the phonological feature space. In this paper we present
significant improvements of the phonological component
of our system, and we show that as a result of these
improvements we can now obtain high accuracy using
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phonological features alone. This means that we now obtain
good results with a much simpler system comprising only
one ASR comprising no more than 55 context-independent
acoustic models.

The rest of this paper is organized as follows. In Section 2,
we briefly describe the perceptual test that was automated
and the pathological speech corpus that was available for
the training and evaluation of our system. In Section 3
we present the system architecture, and we briefly discuss
the basic operations performed by the initial stages of the
system. The novel speaker feature extractor and the training
of the IPM are discussed in Sections 4 and 5, respectively.
In Section 6 we assess the reliability of the new system and
compare it to that of the original system. The paper ends with
a conclusion and some directions for future work.

2. Perceptual Test and Evaluation Database

The subjective test we have automated is the Dutch Intelligi-
bility Assessment (DIA) test [4], one which was specifically
designed with the aim to measure the intelligibility of
Dutch speech at the phoneme level. Each speaker reads
50 consonant-vowel-consonant (CVC) words but with one
relaxation, namely, those words with one of the two con-
sonants missing are also allowed. The words are selected
from three lists: list A is intended for testing the consonants
in a word initial position (19 words including one with a
missing initial consonant), list B is intended for testing them
in a word final position (15 words including one with a
missing final consonant), and list C is intended for testing
the vowels and diphthongs in a word central position (16
words with an initial and final consonant). To avoid guessing
by the listener, there are 25 variants of each list, and each
variant contains existing words as well as pronounceable
pseudowords. For each test word, the listener must complete
a word frame by filling in the missing phoneme or by
indicating the absence of that phoneme. In case the initial
consonant is tested, the word frame could be something like
“it” or “ol”. The perceptual intelligibility score is calculated
as the percentage of correctly identified phonemes. Previous
research [4, 15] has demonstrated that the intelligibility
scores derived from the DIA are highly reliable (an interrater
correlation of 0.91 and an intrarater correlation of 0.93
[15]).

In order to train and test our automatic intelligibility
measurement system, we could dispose of a corpus of
recordings from 211 speakers. All speakers uttered 50 CVC
words (the DIA test) and a short text passage.

The speakers belong to 7 distinct categories: 51 speakers
without any known speech impairment (the control group),
60 dysarthric speakers, 12 children with cleft lip or palate,
42 persons with pathological speech secondary to hearing
impairment, 37 laryngectomized speakers, 7 persons diag-
nosed with dysphonia, and 2 persons with a glossectomy.

The DIA recordings of all speakers were scored by
one trained speech therapist. This therapist was however
not familiar with the recorded patients. The perceptual
(subjective) phoneme intelligibilities of the pathological
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training speakers range from 28 to 100 percent with a mean
of 78.7 percent. The perceptual scores of the control speakers
range from 84 to 100 percent, with a mean of 93.3 percent.
More details on the recording conditions and the severity of
the speech disorders can be found in [14].

We intend to make the data freely available for research
through the Dutch Speech and Language Resources agency
(TST-centrale), but this requires good documentation in
English first. In the meantime, the data can already be
obtained by simple request (just contact the first author of
this paper).

3. An Automatic Intelligibility
Measurement System

As already mentioned in the introduction, we have conceived
a new speech intelligibility measurement system that is more
than just a standard word recognizer. The architecture of
the system is depicted in Figure 1. The acoustic front-
end extracts a stream of mel-frequency cepstral coefficients
(MFCC) [16] feature vectors from the waveform. At every
time t = 1,...,T which is a multiple of 10 milliseconds,
it computes a vector X; of 12 MFCCs plus a log-energy
(all derived from a segment of 30 milliseconds centered
around t). This MFCC feature stream is then converted into a
phonological feature stream. At each time ¢, the phonological
feature detector computes a vector Y; of 24 components each
representing the posterior probability P(A; | X¢—s,...,X¢s5)
that one of 24 binary phonological classes A; (i = 1,...,24)
is “supported by the acoustics” in a 110 milliseconds window
around time t. The full list of phonological classes can
be found in [17]. Some typical examples are the classes
voiced (= vocal source class), burst (= manner class), labial
(= place-consonant class), and mid-low (= vowel class).
The phonological feature detector is a conglomerate of four
artificial neural networks that were trained on continuous
speech uttered by normal speakers [17].

The forced alignment system lines up the phonological
feature stream with a typical (canonical) acoustic-phonetic
transcription of the target word. This transcription is
a sequence of basic acoustic-phonetic units, commonly
referred to as phones [18]. The acoustic-phonetic tran-
scription is modeled by a sequential finite state machine
composed of one state per phone. The states are context-
independent, meaning that all occurrences of a particular
phone are modeled by the same state. This is considered
acceptable because coarticulations can be handled in an
implicit way by the phonological feature detector. In fact, the
latter analyzes a long time interval for any given timeframe,
and this window can expose most of the contextual effects.
Each state is characterized by a set of canonical values A; for
the phonological classes A;. These values can either be 1 (=
on, present), 0 (= off, absent), or irrelevant (= both values
are equally acceptable). Self-loops and skip transitions make
it possible to handle variable phone durations and phone
omissions in an easy way.

The alignment system is instructed to return the state
sequence S = {sy,...,st} with the largest posterior proba-

bility P(S | Xi,...,Xr). This probability is approximated as
follows (see [17] for more details):

T
P(s; | s
P(S| Xi,...,X7) = [ [P(st |Xt—5>---;Xt+5)%,
=1 (st)
1/Np(s)
P(s¢ | Xi—sye oo Xegs) = [ 1_[ Yti:| ,
Aci(s)=1

(1)

with N, (s;) representing the number of classes with a positive
canonical value for state s;. The transition probabilities P(s; |
si—1) and the prior state probabilities P(s;) were trained
on normal speech. The probability P(s; | Xi—s,...,X¢s) is
hereafter shortnoted as P(s; | X;).

Once the 3 tuples (s, Yy, P(s; | X)) are available for all
frames of all utterances of one speaker, the speaker feature
extractor can derive from these 3 tuples (and from the
canonical values of the phonological classes in the different
states) a set of phonological features that characterize the
speaker. The Intelligibility Prediction Model (IPM) then
converts these speaker features into a computed phoneme
intelligibility score.

In the subsequent sections, we will provide a more
detailed description of the last two processing stages since
these are the stages that mostly distinguish the new from the
original system.

4. Speaker Feature Extraction

In [13], only context-independent speaker features were
derived from the alignments. In this work we will benefit
from the binary nature of the phonological classes to identify
an additional set of context-dependent speaker features that
can be extracted from these alignments.

The extraction of speaker features is always based on
averaging either P(s; | X;) or Y; over frames that were as-
signed to a particular state or set of states. The averaging
is not restricted to frames that, according to the alignment,
contribute to the realization of a phoneme that is being
tested in the DIA (e.g., the initial consonant of the word).
We let the full utterances and the corresponding state
sequences contribute to the feature computation because
we assume that this should lead to a more reliable (stable)
characterization of the speaker. However, at certain places,
we have compensated for the fact that not every speaker has
pronounced the same words (due to subtest variants), and
therefore, that the distribution of phonemes can differ from
speaker to speaker as well.

4.1. Phonemic Features (PMFs). A phonemic feature PMF( f)
for phone f is derived as the mean of P(s;| X;) over all frames
X, that were assigned to a state s; which is equal to f (there
is 1 state per phone). Repeating this for every phone in the
inventory then gives rise to 55 PMFs of the form

PME(f) = (P(s¢ | X)is=f  f =1,...,55,  (2)
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FIGURE 1: Architecture of the automatic intelligibility measurement system.

with (X)gelection representing the mean of x over the frames
specified by the selection.

4.2. Phonological Features (PLFs). Instead of averaging the
posterior probabilities P(s; | X;), one can also average the
phonological features Y;; (i = 1,...,24). In particular, one
can take the mean of Y;; (for some i) over all frames that
were assigned to one of the phones that are characterized by
a canonical value A.; = A for feature class A; (A can be either
1 or 0 here). This mean score is thus generally determined
by the realizations of multiple phones. Consequently, since
different speakers have uttered different word lists, the
different phones could have a speaker-dependent weight in
the computed means. In order to avoid this, the simple
averaging scheme is replaced by the following two-stage
procedure:

(1) take the mean of Yy; over all frames that were assigned
to a phone f whose A;(f) = A, denote this mean
as PLF(f,i,A), and repeat the procedure for all valid
combinations (f,i,A);

(2) compute PLF(i,A) as the mean over f of the
PLEF(f,i,A) that were obtained in the previous stage.

This procedure gives equal weights to every phone
contributing to PLF(i, A). Written in mathematical notation,
one gets

PLE(f,i,A) = (Yid o an(s)-a Y valid (.4 4),

PLF(i, A) = (PLF(f i, A)) g (f)a i= 1oons245 A= 0,1,
(3)

Since for every of the 24 phonological feature classes there
are phones with canonical values 0 and 1 for that class, one
always obtains 48 phonological features. The 24 phonological
features PLF(7, 1) are called positive features because they
measure to what extent a phonological class that was sup-
posed to be present during the realization of certain phones
is actually supported by the acoustics observed during these
realizations. The 24 phonological features PLF(i, 0) are called

negative features. We add this negative PLF set because
it is important for a patient’s intelligibility not only that
phonological features occur at the right time but also that
they are absent when they should be.

4.3. Context-Dependent Phonological Features (CD-PLFs). It
can be expected that pathological speakers encounter more
problems with the realization of a particular phonological
class in some contexts than in others. Consequently it makes
sense to compute the mean value of a phonological feature
Y;; under different circumstances that take not only the
canonical value of feature class A; in the tested phone
into account but also the properties of the surrounding
phones. Since the phonological classes are supposed to refer
to different dimensions of articulation, it makes sense to
consider them more or less independently, and therefore, to
consider only the canonical values of the tested phonological
class in these phones as context information. Due to the
ternary nature of the phonological class values (on, off,
irelevant), the number of potential contexts per (i,A) is
limited to 3x3 = 9. If we further include “silence” as a special
context to indicate that there is no preceding or succeeding
phone, the final number of contexts is 16. Taking into
account that PLFs are only generated for canonical values
A of 0 and 1 (and not for irrelevant), the total number of
sequences of canonical values (SCVs) for which to compute
a CD-PLF is 24 x 2 X 16 = 768. This number is however an
upper bound since many of these SCVs will not occur in the
50 word utterances of the speaker.

In order to determine in advance all the SCVs that are
worthwhile to consider in our system, we examined the
canonical acoustic-phonetic transcriptions of the words in
the different variants of the A, B, or C-lists, respectively.
We derived from these lists how many times they contain
a particular SCV. We then retained only those SCVs that
appeared at least twice in any combination of variants one
could make. It is easy to determine the minimal number of
occurences of each SCV. One just needs to determine the
number of times each variant of the A-list contains the SCV
and to record the minimum over these times to get an A-
count. Similarly one determines a B and a C-counts, and one
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takes the sum of these counts. For our test, we found that 123
of the 768 SCVs met the condition we set out.

If AL and AR represent the canonical values of feature
class A; in the left and right context phone, the compu-
tation of a context-dependent feature for the combination
(A, AL, AR) is obtained by means of a two-stage scheme:

(1) take the mean of Y; over all frames which were
assigned to a phone f having a canonical value
Ai(f) = A (A can be either 1 or 0 here) and
appearing between phones whose canonical values
of class A; are A and AR, denote this mean as
PLF(f,i, A, AL, AR), and repeat the procedure for all
combinations ( f,i, A, AL, AR) occurring in the data,

(2) compute PLF(i, A, AL, AR) as the mean over f of the
PLF(f,i, A, AL, AR) that were computed in the first
stage.

Again, this procedure gives equal weights to all the
phones that contribute to a certain CD-PLF. In mathematical
notation one obtains

PLE(f,i,A, A", AR)
= (Vi) yys,= f; Au=A; AL =AL; AR = AR
V occurring (f, i,A,AL,AR),
PLF(i, A, AL, AR)
= (PLF (f,i,A, AL, AR))

;occurring (f,i,A,AL,AR)
g

V occurring (i,A,AL,AR),
(4)

with A, AL, and AR being short notations for, respectively,
the canonical values of A; in the state visited at time ¢, in the
state from where this state was reached at some time before
t, and in the state which is visited after having left the present
state at some time after ¢.

Note that the context is derived from the phone sequence
that was actually realized according to the alignment system.
Consequently, if a phone is omitted, a context that was not
expected from the canonical transcriptions can occur, and
vice versa. Furthermore, there may be fewer observations
than expected for the SCV that has the omitted phone
in central position. In the case that no observation of a
particular SCV would be available, the corresponding feature
is replaced by its expected value (as derived from a set of
recorded tests).

5. Intelligibility Prediction Model (IPM)

When all speaker features are computed, they need to
be converted into an objective intelligibility score for the
speaker. In doing so we use a regression model that is trained
on both pathological and normal speakers.

5.1. Model Choice. A variety of statistical learners is available
for optimizing regression problems. However, in order to

avoid overfitting, only a few of these can be applied to our
data set. This is because the number of training speakers
(211) is limited compared to the number of features (e.g., 123
CD-PLFs) per speaker. A linear regression model in terms
of selected features, with the possible combination of some
ad hoc transformation of these features, is about the most
complex model we can construct.

5.2. Model Training. We build linear regression models
for different feature sets, namely, PMF, PLF, and CD-PLF,
and combinations thereof. A fivefold cross-validation (CV)
method is used to identify the feature subset yielding the
best performance. In contrast to our previous work, we no
longer take the Pearson Correlation Coefficient (PCC) as the
primary performance criterion. Instead, we opt for the root
mean squared error (RMSE) of the discrepancies between
the computed and the measured intelligibilities. Our main
arguments for this change of strategy are the following.

First of all, the RMSE is directly interpretable. In case the
discrepancies (errors) are normally distributed, 67% of the
computed scores lie closer than the RMSE to the measured
(correct) scores. Using the Lilliefors test [19] we verified that,
in practically all the experiments we performed, the errors
were indeed normally distributed.

A second argument is that we want the computed scores
to approximate the correct scores directly. Per test set, the
PCC actually quantifies the degree of correlation between
the correct scores and the best linear transformation of the
computed scores. As this transformation is optimized for the
considered test set, the PCC may yield an overly optimistic
evaluation result.

Finally, we noticed that if a model is designed to cover a
large intelligibility range, and if it is evaluated on a subgroup
(e.g., the control group) covering only a small subrange, the
PCC can be quite low for this subgroup even though the
errors remain acceptable. This happens when the rankings
of the speakers of this group along the perceptual and the
objective scores, respectively, are significantly different. The
RMSE results were found to be much more stable across
subgroups.

Due to the large number of features, an exhaustive search
for the best subset would take a lot of computation time.
Therefore we investigated two much faster but definitely
suboptimal sequential procedures. The so-called forward
procedure starts with the best combination of 3 features
and adds one feature (the best) at the time. The so-called
backward procedure starts with all the features and removes
one feature at the time.

Figure 2 illustrates a typical variation of RMSE versus the
number of features being selected. By measuring not only the
global RMSE but also the individual RMSEs in the 5 folds of
the CV-test, one can get an estimate of the standard deviation
on the global RMSE for a particular selected feature set. In
order to avoid that too many features are being selected we
have adopted the following 2-step procedure: (1) determine
the selected feature set yielding the minimal RMSE; (2)
select the smallest feature set yielding an RMSE that is not
larger than the minimal (best) RMSE augmented with the
estimated standard deviation on that RMSE.
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6. Results and Discussion

We present results for the new system as well as for a
previously published system that was much more complex
since it comprised two subsystems each containing a different
ASR and each generating a set of speaker features. The
first subsystem generated 55 phonemic features (PMF-tri)
originating from acoustic scores computed by state-of-the-
art triphone acoustic models in the MFCC feature space. The
second subsystem generated 48 phonological features (PLFs)
in the way described in Section 4.2. The speaker features
of the two subsystems could be combined before they were
supplied to the intelligibility prediction model.

6.1. General Results. We have used the RMSE criterion to
obtain three general IPMs (trained on all speakers) that
were based on the speaker features generated by our original
system. The first model only used the phonemic features
(PMF-tri) emerging from the first subsystem, the second one
applied the phonological features (PLF) emerging from the
other subsystem, and the third one utilized the union of these
two feature sets (PMF-tri + PLF). The number of selected
features and the RMSEs for these models are listed in the first
three rows of Table 1.

Next, we examined all the combinations of 1, 2, or 3
speaker feature sets as they emerged from the new system.
The figures in Table 1 show that all IPMs using the CD-
PLFs perform the same as our previous best system: PMF-
tri + PLE In the future as we look further into underlying
articulatory problems of pathological speakers, it will be
most pertinent to opt for an IPM based solely on articulatory
information such as PLF + CD-PLE.

Taking this IPM as our reference system, the Wilcoxon
singed-rank test [19] has revealed the following: (1) there

EURASIP Journal on Advances in Signal Processing

TaBLE 1: Number of selected features and RMSE for a number
of general models (trained on all speakers) created for different
speaker feature sets. The features with suffix “tri” emerge from our
previously published system. Results differing significantly from the
ones of our reference system PLF + CD-PLF are marked in bold.

Speaker features Selected features RMSE
PMF-tri 5 8.9
PLF 16 9.2
PMF-tri + PLF 19 7.7
PMF 11 10.1
PLF 16 9.2
CD-PLF 21 8.2
PLF + CD-PLF 27 7.9
PMF + CD-PLF 31 7.8
PMF + PLF 20 9.0
PMF + PLF + CD-PLF 42 7.8

TABLE 2: Root mean squared error (RMSE) for pathology specific
IPMs (labels are explained in the text) based on several speaker
feature sets. N denotes the number of selected features. The results
which differ significantly from the reference system PLF + CD-PLF
are marked in bold.

DYS  LARYNX  HEAR
CD.PLE RMSE 6.4 5.2 5.8
N 28 19 43
PME 4 PLE RMSE 7.9 7.3 8.1
N 12 8 22
PMF + CD_PLE RMSE 6.1 43 3.9
N 22 31 55
PLF + CD-PLF RMSE 6.1 5.3 4.8
N 28 17 52
PME + PLE + CD-PLE  \MSE 39 + 42
N 38 28 49
PMPF-tri + PLE RMSE 6.4 7.6 5.5
N 26 10 22

is no significant difference between the accuracy of the new
reference system and that of the formerly published system,
(2) the context-dependent feature set yields a significantly
better accuracy than any of the context-independent feature
sets, (3) the addition of context-independent features to
CD-PLF only yields a nonsignificant improvement, and
(4) a combination of context-independent phonemic and
phonological features emerging from one ASR (PMF +
PLF) cannot compete with a combination of similar features
(PMF-tri + PLF) originating from two different ASRs.
Although maybe a bit disappointing at first glance, the first
conclusion is an important one because it shows that the
new system with only one ASR comprising 55 context-
independent acoustic states achieves the same performance
as our formerly published system with two ASRs, one of
which is a rather complex one comprising about thousand
triphone acoustic states.
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FiGure 3: Computed versus perceptual intelligibility scores emerg-
ing from the systems PMF-tri + PLF (a) and PLF + CD-PLF
(b). Different symbols were used for dysarthric speakers (D),
persons with hearing impairment (H), laryngectomized speakers
(L), speakers with normal speech (N), and others (O).

Scatter plots of the subjective versus the objective intel-
ligibility scores for the systems PMF-tri + PLF and PLF +
CD-PLF are shown in Figure 3. They confirm that most of
the dots are in vertical direction less than the RMSE (about
8 points) away from the diagonal which represents the ideal
model. They also confirm that the RMSE emerging from our
former system is slightly lower than that emerging from our
new system.

The largest deviations from the diagonal appear for the
speakers with a low intelligibility rate. This is a logical
consequence of the fact that we only have a few such
speakers in the database. This means that the trained IPM
will be more specialized in rating medium to high-quality
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F1GURE 4: Computed versus perceptual intelligibility scores emerg-
ing from the PMF-tri + PLF (a) and PLF + CD-PLF (b) for
dysarthric speakers.

speakers. Consequently, it will tend to produce overrated
intelligibilities for bad speakers. We were not able to record
many more bad speakers because they often have other
disabilities as well and are therefore incapable of performing
the test. By giving more weight to the speakers with low
perceptual scores during the training of the IPM, it is possible
to reduce the errors for the low perceptual scores at the
expense of only a small increase of the RMSE caused by the
slightly larger errors for the high perceptual scores.

6.2. Pathology-Specific Intelligibility Prediction Models. If a
clinician is mainly working with one pathology, he is proba-
bly more interested in an intelligibility prediction model that
is specialized in that pathology. Our hypothesis is that since
people with different pathologies are bound to have different
articulation problems, pathology specific models should
select pathology-specific features. We therefore search for the
feature set offering the lowest RMSE on the speakers of the



validation group with the targeted pathology. However, for
training the regression coefficients of the IPM we use all
the speakers in the training fold. This way we can alleviate
the problem of having an insufficient number of pathology-
specific speakers to compute reliable regression coefficients.
The characteristics of the specialized models for dysarthria
(DYS), laryngectomy (LARYNX), and hearing impairment
(HEAR) can be found in Table 2. The results which differ
significantly from the reference results are marked in bold;
the reference results are themselves marked in italic. The
data basically support the conclusions that were drawn from
Table 1, with two exceptions: (1) for the HEAR model,
adding PMF to CD-PLF turns out to yield a significant
improvement now, and (2) for the LARYNX model, the
combination PMF + PLF is not significantly worse than
PMF-tri + PLE

Scatter plots of the computed versus the perceptual
intelligibility scores emerging from the former (PMF-tri +
PLF) and the new (PLF + CD-PLF) dysarthria model are
shown in Figure 4.

In [13] we already compared results obtained with our
former system to results reported by Riedhammer et al.
[9] for a system also comprising two state-of-the-art ASR
systems. Although a direct comparison is difficult to make,
it appears that our results emerging from an evaluation on a
diverse speaker set are very comparable to those reported in
[9], even though the latter emerged from an evaluation on a
narrower set of speakers (either tracheo-oesaphagal speakers
or speakers with cancer of the oral cavity).

7. Conclusions and Future Work

In our previous work [13], we showed that an alignment-
based method combining two ASR systems can yield
good correlations between subjective (human) and objective
(computed) intelligibility scores. For a general model, we
obtained Pearson correlations of about 0.86. For a dysarthria
specific model these correlations were as large as 0.94.
In the present paper we have shown that by introducing
context-dependent phonological features it is possible to
achieve equal to higher accuracies by means of a system
comprising only one ASR which works on phonological
features that were extracted from the waveform by a set of
neural networks.

Now that we have an intelligibility score which is
described in terms of features that refer to articulatory
dimensions, we can start to think of extracting more detailed
information that can reveal the underlying articulatory
problems of a tested speaker.

In terms of technology, we still need to conceive more
robust speaker feature selection procedures. We must also
examine whether an alignment model remains a viable
model for the analysis of severely disordered speech. Finally,
we believe that there exist more efficient ways of using the
new context-dependent phonological features than the one
adopted in this paper (e.g., clustering of contexts, better
dealing with effects of phone omissions). Finding such ways
should result in further improvements of the intelligibility
predictions.
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