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crosscomponents so that closely spaced components can be easily distinguished. The objective is the precise description of spectral
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been found developing steadily, with significant advances in the recent past.
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1. Introduction and Historical Perspective

The signals with time-dependant spectral content (STSC)
are commonly found in nature or are self-generated for
many reasons. The processing of such signals forms the
basis of many applications including analysis, synthesis,
filtering, characterization or modeling, suppression, can-
cellation, equalization, modulation, detection, estimation,
coding, and synchronization [1]. For a practical application,
the STSC can be processed in various ways, other than
time-domain, to extract useful information. A classical
tool is the Fourier transform (FT) which offers perfect
spectral resolution of a signal. However FT possesses intrinsic
limitations that depend on the signal to be processed. The
instantaneous frequency (IF) [2, 3], generally defined as
the first conditional moment in frequency 〈ω〉t, is a useful
concept for describing the changing spectral structure of the
STSC. A signal processing engineer is mostly confronted with
the task of processing frequencies of spectral peaks which
require unambiguous and accurate information about the
IFs present in the signals. This has made the IF a parameter
of practical importance in situations such as seismic, radar,
sonar, communications, and biomedical application [2–6].

The introduction of time-frequency (t-f) signal process-
ing has led to represent and characterize the STSC’ time-
varying contents using TFDs [7, 8]. The TFDs are two-
dimensional (2D) functions which provide simultaneously,
the temporal and spectral information and thus are used
to analyze the STSC. By distributing the signal energy
over the t-f plane, the TFDs provide the analyst with
information unavailable from the STSC’ time or frequency
domain representation alone. This includes the number of
components present in the signal, the time durations, and
frequency bands over which these components are defined,
the components’ relative amplitudes, phase information, and
the IF laws that components follow in the t-f plane. There
has been a great surge of activity in the past few years
in t-f signal processing domain. The pioneering work is
performed by Claasen and Mecklenbrauker [9–11], Janse and
Kaizer [12], and Bouachache [13]. They provided the initial
impetus, demonstrated useful methods for implementation,
and developed ideas uniquely suited to the t-f situation. Also,
they innovatively and efficiently made use of the similarities
and differences of signal processing fundamentals with
quantum mechanics. Claasen and Mecklenbrauker devised
many new ideas, procedures and developed a comprehensive
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approach for the study of joint distribtutions [9–11]. How-
ever Bouachache [13] is believed to be the first researcher,
who utilized various distributions for real-world problems.
He developed a number of new methods and particularly
realized that a distribution may not behave properly in all
respects or interpretations, but it could still be used if a
particular property such as IF is well described. Flandrin and
Escudie [14] and coworkers transcribed directly some of the
early quantum mechanical results, particularly the work on
the general class of distributions [15, 16] into signal analysis
language. The work by Janse and Kaizer [12] developed
innovative theoretical and practical techniques for the use
of TFDs and introduced new methodologies remarkable in
their scope.

Historically the spectrogram [17–23] has been the most
widely used tool for the analysis of time-varying spectra
and is currently the standard method for the study of
nonstationary signals, which is expressed mathematically as
the magnitude-square of the short-time Fourier transform
(STFT) of the signal, given by

S(t,ω) =
∣
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where x(t) is the signal and h(t) is a window function
(throughout the paper that follows, we use both i and j for√−1 depending on notational requirements and the limits
for

∫

are from −∞ to ∞, unless otherwise specified). The
spectrogram has severe drawbacks, both theoretically, since
it provides biased estimators of the signal IF and group
delay (GD), and practically, since the Gabor-Heisenberg
inequality [24] makes a tradeoff between temporal and
spectral resolutions unavoidable. However STFT and its
variation, being simple and easy to manipulate, are still
the primary methods for analysis of the STSC and most
commonly used today.

There are alternative approaches [7, 8, 25] with a
motivation to improve upon the important shortcomings
of the spectrogram, with an objective to clarify the physical
and mathematical ideas needed to understand time-varying
spectrum. These techniques generally aim at devising a joint
function of time and frequency, a distribution that will
be highly concentrated along the IFs present in a signal
and cross-terms (CTs) free thus exhibiting good resolution.
One form of TFD can be formulated by the multiplicative
comparison of a signal with itself, expanded in different
directions about each point in time. Such formulations
are known as quadratic TFDs (QTFDs) because the repre-
sentation is quadratic in the signal. This formulation was
first described by Wigner in quantum mechanics [26] and
introduced in signal analysis by Ville [27] to form what
is now known as the Wigner-Ville distribution (WD). The
WD is the prototype of distributions that are qualitatively
different from the spectrogram, and produces the ideal
energy concentration along the IF for linear frequency
modulated (FM) signals, given by

W(t,ω) � 1
2π
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where s(t) is the signal, the distribution is said to be bilinear
in the signal because the signal enters twice in its calculation.
It possesses a high resolution in the t-f plane, and satisfies a
large number of desirable theoretical properties [1, 28]. It can
be argued that more concentration than in the WD would
be undesirable in the sense that it would not preserve the t-f
marginals.

It is found that the spectrogram results in a blurred
version [1, 3], which can be reduced to some degree by
the use of an adaptive window or by the combination of
spectrograms. On the other hand, the use of WD in practical
applications is limited by the presence of nonnegligible
CTs, resulting from interactions between signal components.
These CTs may lead to an erroneous visual interpretation
of the signal’s t-f structure, and are also a hindrance to
pattern recognition, since they may overlap with the searched
t-f pattern. Moreover, if the IF variations are nonlinear,
then the WD cannot produce the ideal concentration. Such
impediments, pose difficulties in the STSC’ correct analysis,
are dealt in various ways and historically many techniques
are developed to remove them partially or completely. They
were partly addressed by the development of the Choi and
Williams distribution [29] in 1989, followed by numerous
ideas proposed in literature with an aim to improve the
TFDs’ concentration and resolution for practical analysis [3,
30–33]. Few other important nonstationary representations
among the Cohen’s class [1, 15, 34] of bilinear t-f energy
distributions include the Margenau and Hill distribution
[35], their smoothed versions [9–11, 36, 37] with reduced
CTs [29, 38–40] are members of this class. Nearly at the
same time, some authors also proposed other time-varying
signal analysis tools based on a concept of scale rather
than frequency, such as the scalogram [41, 42] (the squared
modulus of the wavelet transform), the affine smoothed
pseudo-WD (PWD) [43], or the Bertrand distribution
[44]. The theoretical properties and the application fields
of this large variety of these existing methods are now
well determined, and wide-spread [1, 9–11, 28]. Although
many other QTFDs have been proposed in literature (an
alphabatical list can be found in [45]), no single QTFD can
be effectively used in all possible applications. This is because
different QTFDs suffer from one or more problems.

Nevertheless, a critical point of these methods is their
readability, which means both a good concentration of the
signal components and no misleading interference terms.
This characteristic is necessary for an easy visual interpre-
tation of their outcomes and a good discrimination between
known patterns for nonstationary signal classification tasks.
An ideal TFD function roughly requires the following four
properties.

(1) High clarity which makes it easier to be analyzed.
This require high concentration and good resolution
along the individual components for the multicom-
ponent signals. Consequently the resultant TFDs are
deblurred.

(2) CTs’ elimination which avoids confusion between
noise and real components in a TFD for nonlinear t-f
structures and multicomponent signals.
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Table 1: Synthesis of main problems related to QTFDs.

Synthesis of major concerns Gabor transform WD Gabor-Wigner transform

Clarity Worst Best Reasonably Good

CTs Nil Present for multicomponent signals
and nonlinear t-f structures

Almost eliminated

Mathematical properties Unsatisfactory Satisfactory Good

Computational complexity Quite Low High Higher

(3) Good mathematical properties which benefit to its
application. This requires that TFDs to satisfy total
energy constraint, marginal characteristics and pos-
itivity issue, and so forth. Positive distributions are
everywhere nonnegative, and yield the correct uni-
variate marginal distributions in time and frequency.

(4) Lower computational complexity means the time
needed to represent a signal on a t-f plane. The
signature discontinuity and weak signal mitigation
may increase computation complexity in some cases.

A comparison of some popular TFD functions is pre-
sented in Table 1. To analyze the signals well, choosing
an appropriate TFD function is important. Which TFD
function should be used depends on what application it
applies on. On the other hand, the short comings make
specific TFDs suited only for analyzing STSC with specific
types of properties and t-f structures. An obvious question
then arise that which distribution is the “best” for a particular
situation. Generally there is an attempt to set up a set
of desirable conditions and to try to prove that only one
distribution fits them. Typically, however, the list is not
complete with the obvious requirements, because the author
knows that the added desirable properties would not be
satisfied by the distribution he/she is advocating. Also these
lists very often contain requirements that are questionable
and are obviously put in to force an issue. As an illustration,
by focusing on the WD and its variants, Jones and Parks [46]
have made an interesting comparative study of the resolution
properties and have shown that the relative performance of
the various distributions depends on the signal. The results
show that the pseudo-WD (PWD) is best for the signals with
only one frequency component at any one time, the Choi-
Williams distribution is most attractive for multicomponent
signals in which all components have constant frequency
content, and the matched filter STFT is best for signal
components with significant frequency modulation. Jones
and Parks have concluded that no TFD can be considered as
the best approach for all t-f analysis and both concentration
and resolution cannot be improved at one time.

In this paper, we will briefly discuss the basic concepts
and well-tested algorithms to obtain highly concentrated and
good resolution TFDs for an interested reader (although
new ideas are coming up rapidly, we cannot discuss all of
them due to space limitations). The emphasis will be on
the ideas and methods that have been developed steadily
so that readily understood by the uninitiated. Unresolved
issues are highlighted with stress over the fundamentals to
make it interesting for an expert as well. The approaches are

presented in a sequence developing the ideas and techniques
in a logical sequence rather than historical. The effort is on
making sections individually readable.

2. Time-Frequency Analysis

A clear distinction between concentration and resolution
is essential to properly evaluate the TFDs’ performance.
These concepts have generally been considered synonymous
or equivalent in literature, and terms are often used inter-
changeably. Although one intuitively expects higher concen-
tration to imply higher resolution, this is not necessarily
the case [46]. In particular, the CTs in the WD do not
reduce the auto-component concentration of the WD, which
is considered optimal, but they do reduce the resolution.
Although high signal concentration is always desired and is
often of primary importance, in many applications, signal
resolution may be more important, for example, in the
analysis of multicomponent dispersive waves and detection
and estimation of swell [47–49]. There have generally been
two approaches to estimate the time-dependent spectrum of
nonstationary processes.

(1) The evolutionay spectrum (ES) approaches [50–
53], which model the spectrum as a slowly varying
envelope of a complex sinusoid.

(2) The Cohen’s bilinear distributions (BDs) [3], includ-
ing the spectrogram, which provide a general for-
mulation for joint TFDs. Computationally, the ES
methods fall within Cohen’s class.

There are known limitations and inherent drawbacks
associated with these classical approaches. These pheneom-
ena make their interpretation difficult, consequently, esti-
mation of the spectra in the t-f domain displaying good
resolution has become a research topic of great interest.

2.1. The Methods Based on Evolutionary Spectrum. The ES
was first proposed by Priestley in 1965. The basic idea is
to extend the classic Fourier spectral analysis to a more
generalized basis: from sine or cosine to a family of orthog-
onal functions. In his evolutionay spectral theory, Priestely
represents nonstationary signals using a general class of
oscillatory functions and then defines the spectrum based
on this representation [54]. A special case of the ES used
the Wold-Cramer representation of nonstationary processes
[55–58] to obtain a unique definition of the time-dependent
spectral density function. According to the Wold-Cramer
decomposition, a discrete time nonstationary process x[n]
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can be interpreted as the output of a causal, linear, and time-
varying (LTV) system with an impulse response h[n,m], at
time n to an impulse at time m. It is driven by zero-mean
stationary white noise e[n] so that

x[n] =
n
∑

m=−∞
h[n,m]e[m],

H(n,ω) =
n
∑

m=−∞
h[n,m]e−iω(n−m)

(3)

is the Zadeh’s generalized transfer function (GTF) of the
system evaluated on the unit circle.

The Wold-Cramer ES of x[n] [56, 57] shows that the
time-varying power spectral density of output is equal to
the magnitude squared of time-varying frequency response
of the filter. It is defined as

SES(n,ω) = 1
2π
|H(n,ω)|2. (4)

This definition can be viewed as Priestley’s ES provided
that H(n,ω) is a slowly varying function of n [57]. This
restriction removes possible ambiguities in the definition
of the spectrum by selecting the slowest of all the possible
time-varying amplitudes for each sinusoid. Without this
condition, each signal can have an infinite number of
sinusoid/envelope combinations [57]. It has been shown that
the ES and the GTF are related to the spectrogram and
Cohen’s class of BDs [59]. The main objective in deriving and
presenting these relations in [59] was to show that the BDs
and the spectrogram can be considered estimators of the ES.

A great amount of work is found by Pitton and Loughlin
to investigate the positive TFDs and their potential appli-
cations [60–65]. Pitton and Loughlin utilized the ES and
Thompson’s multitaper approach [66, 67] to obtain positive
TFDs, but do not discuss the issue of TFDs’ concentration
and resolution.

Literature indicates that the pioneering work, remarkable
in its scope, is performed by Chaparro, Jaroudi, Kayhan,
Akan, and Suleesathira. These researchers have not only
focused on computing the improved evolutionary spectra
of nonstationary signals but also innovatively applied the
concepts to application in various practical situations [50–
53, 68–91]. Their major work includes, signal-adaptive
evolutionary spectral analysis and a parametric approach for
data-adaptive evolutionary spectral estimation. An interest-
ing work is performed by Jachan, Matz, and Hlawatsch on the
parametric estimations for underspread nonstationary ran-
dom processes. The necessary description of these methods
is presented next.

2.1.1. Signal-Adaptive Evolutionary Spectral Analysis.
Although it is well recognized that the spectra of most
signals found in practical applications depend on time,
estimation of these spectra displaying good t-f resolution
is difficult [3]. The problem lies in the adaptation of the
analysis methods to the change of frequency in the signal
components. Constant-bandwidth mehods, such as the

spectrogram and traditional Gabor expansion [92], provide
estimates with poor t-f resolution.

The earlier approaches by Akan and Chaparro to obtain
high-resolution evolutionary spectral estimates include:
averaging estimates obtained using multiple windows [75]
and maximizing energy concentration measure [53]. In [53],
the authors proposed a modified Gabor expansion that
uses multiple windows, dependent on different scales and
modulated by linear chirps. Computation of the ES with this
expansion provides estimates with good t-f resolution. The
difficulties encountered, however, were the choices of scales
and in the implementation of the chirping.

The Approach. Akan and Chaparro show that by generalizing
and implementing by separating the signal components
using evolutionary masking [75], a much improved spectral
estimate is obtained by an adaptive algorithm [68]. The
adaptation uses estimates of the IF of the signal components.
The signal is decomposed into its components by means of
masking on an initial spectrum of the signal. However, the
masking is implemented manually and there is requirement
to perform this action automatically. The estimation of
the IF of each of the signal component is accomplished
by an averaging procedure. It is shown that using the IF
information of the components in the Gabor expansion
improves the t-f localization.

Akan defines a finite-extent, discrete-time signal x(n) as
a combination of linear chirps with time-varying amplitudes
as

x(n) =
P−1
∑

p=0

K−1
∑

k=0

A
(

n,ωk, p
)

ein(ωk+(αp/2)n), (5)

where 0 ≤ n ≤ N − 1, ωk = 2πk/K , and αp is a parameter for
selection of scales and slopes for analysis chirps. The selection
of scales and slopes for the analysis chirps can be avoided by
considering a more general model for x(n) than the one given
in (5) as [68]

x(n) =
P−1
∑

p=0

K−1
∑

k=0

A
(

n,ωk, p
)

eiφp(n,k), (6)

where each of the signal component, xp(n), has a phase
φp(n, k) to which corresponds an IF ωp(n). Mathematically

the ES of x(n) comes out to be S(n,ωk) = |∑p A(n,ωk, p)|2.
Akan and Chaparro then implements the evolutionary
spectral computation using the multi-window warped Gabor
expansion [53] for each linear chirp:

x(n) = 1
J

J−1
∑

j=0

M−1
∑

m=0

K−1
∑

k=0

ap
(

j,m, k
)

hj(n−mL)einωk , (7)

here ap refers to Gabor coefficients. The synthesis functions
may be obtained by scaling a Gaussian window, g(n), as hj =
2 j/2g(2 jn), j = 0, 1, . . . , J −1, where J is the number of scaled
windows, and L < K is the time step in the oversampled
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Figure 1: Example 1. A signal consisting of two closely spaced quadratic FM components, (a) initial ES estimate of the signal, (b) the final
ES estimate (adopted from Akan [68]).

Gabor expansion. Necessary simplification of (7) results in
following expression for the evolutionary kernel:

A
(

n,ωk, p
) =

N−1
∑

l=0

x(l)ξ(n, l)e−ilωk , (8)

where ξ(n, l) is the time-varying window, defined as ξ(n, l) =
(1/J)

∑J−1
j=0

∑M−1
m=0 γ

∗
j (l − mL)hj(n − mL) with γj being an

analysis window biorthogonal to hj(n) [92]. However (8)
can be viewed as short-time chirp FT with a time-varying
window.

The adaptive algorithm given by Akan has the following
steps.

(1) Computation of an initial ES, S(n,ωk) = |A(n,ωk)|2
in (7) and (8) by avoiding the selection of scales and
slopes for the analysis chirps, that is, taking αp = 0.

(2) Spectral masking of the signal [75], using the initial
ES, to obtain signal components, xp(n). This masking
of the signal is accompished by multiplying its
evolutionary kernel A(n,ωk) by a masking function
defined using the initial ES. Thus to get a component
xp(n), a mask can be defined as

Mp(n, k) =
⎧

⎨

⎩

1, (n, k) ∈ Rp,

0, otherwise,
(9)

where Rp is a region in the initial ES containing a
single component. Consequently,

xp(n) =
∑

k∈Rp

A(n,ωk)Mp(n, k)einωk , (10)

this masking is however implemented manually and
should be done automatically.

(3) Once each component and its spectral representa-
tion, A(n,ωk, p) is obtained, the authors proceed

with the estimation of the IF of each monocompo-
nent, ω̂p(n), and corresponding phase φ̂p(n, k). This
is performed using numeric integration techniques.

(4) Computation of the final ES, where an estimate of
xp(n) in terms of its signal-adaptive Gabor expansion
can be given by

x̂p(n) = 1
J

J−1
∑

j=0

M−1
∑

m=0

K−1
∑

k=0

ap
(

j,m, k
)

hj(n−mL)ei(nωk+φ̂p(n)),

(11)

where the Gabor coefficients are calculated according
to

ap
(

j,m, k
) =

N−1
∑

n=0

x̂p(n)γ∗j (n−mL)e−i(nωk+φ̂p(n)). (12)

Akan terms the exponential e−iφ̂p(n) in (12) as demod-
ulating xp(n) along its IF, to obtain a signal that is
composed of sinusoids and well represented by Gabor
bases. After calculating the Gabor coefficients of each
component, their spectral representations as in (8)
can be obtained. Finally, the estimation of ES of x(n)
is possible after compensating for the demodulation
as

S(n,ωk) =
∣
∣
∣
∣
∣
∣

∑

p

A
(

n,ωk − ω̂p(n), p
)

∣
∣
∣
∣
∣
∣

2

. (13)

Akan shows by examples that using the IF information of
the components in the Gabor expansion, the t-f localization
is improved. The results are displayed in Figures 1 and 2
for signals composed of two closely packed quadratic FM
components and a smiling face consisting of a quadratic FM
component, two sinusoids at different time periods, and a
Gaussian function shifted in frequency.
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Figure 2: Example 2. A smiling face signal composed of a quadratic FM component, two sinusoids at different time periods, and a Gaussian
function shifted in frequency, (a) initial ES estimate of the signal, (b) the final ES estimate (adopted from Akan [68]).

2.1.2. Data-Adaptive Evolutionary Spectral Estimation—A
Parametric Approach. The ES theory is though mathemat-
ically well grounded, but has suffered from a shortage of
estimators. The initial work from Kayhan concentrates on
evolutionary periodogram (EP) as an estimator on the line
of BDs. His latest work, however, follows a parametric
approach in deriving the high-quality estimator for the ES
[50, 51]. Parametric approaches to model the nonstationary
signal using rational models with time-varying coefficients
represented as expansions of orthogonal polynomial have
been proposed by various investigators, for example, [93,
94]. However, the validity of their view of a nonstationary
spectrum as a concatenation of “frozen-time” spectra has
been questioned [57, 95].

In the earlier effort, Kayhan et al. in [50] proposed the
evolutionary periodogram (EP) as an estimator of the Wold-
Cramer ES. The EP is found to possess many desirable
properties and reduces to the conventional periodogram
in the stationary case. It is demonstrated by the authors
that the EP outperforms the STFT and various BDs in
estimating the spectrum of nonstationary signals. The EP
estimator can be interpreted as the energy of the output
of a time-varying bandpass filter centered around the
analysis frequency. To derive the EP, the spectrum at each
frequency is found, while minimizing the effect of the signal
components at other frequencies under the assumption
that these components are uncorrelated or white. Although
this assumption is analogous to the one used in deriving
the conventional periodogram [96], Kayhan and others
realized it to be somewhat unrealistic. The mathemati-
cal details and EP’s properties are discussed in detail in
[50, 97].

Data-Adaptive Evolutionary Spectral Estimator (DASE). In
order to improve performance, Kayhan et al. [51] further

propose a new estimator that uses information about the
signal components at frequencies other than the frequency of
interest. The DASE computes the spectrum at each frequency
while minimizing the interference from components at other
frequencies without making any assumptions regarding these
components. This estimator reduces to Capon’s maximum
likelihood method [98] in the stationary case. The DASE
has better t-f resolution than the EP and thus it possesses
many desirable properties analogous to those of Capon’s
method. In particular, it performs more robustly than
existing methods when the data is noisy.

The DASE’s mathematical derivation alongwith proper-
ties can be found in [51], and we present here the examples to
demonstrate the performance of the DASE in comparison to
other estimators like the EP and BDs. The first example signal
is composed of two chirps: one with increasing frequency
and one with decreasing frequency. Both components have
a quadratic amplitude. Figure 4(c) shows the DASE using
the Fourier expansion functions. Figure 4(b) shows the EP
spectrum using the same expansion functions. Figure 4(a)
shows the BD using exponential kernels. By comparing the
three plots, it is clear that the DASE approach produces the
best spectral estimate. It outperform the EP by displaying no
sidelobes, fewer spurious peaks, and a narrower bandwidth.
It also outperforms the BD by producing a nonnegative
spectrum with no artifacts and sharper peaks. In the second
example, the same signal is imbedded in additive Gaussian
white noise. All the parameters from the example above
remain unchanged, and the SNR is 24 dB. Figures 4(d)–
4(f) show the BD, the EP, and the DASE spectral estimates,
respectively. This example serves to demonstrate the effect
of noise on each of the methods. Again, the DASE spectrum
is found to be the least affected. The EP and the BD
spectra display many more spurious peaks than the DASE
spectrum.
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Figure 3: Time-varying parametric spectral analysis of the sum of
two bat echolocation signals: (a) time-domain signal; (b) smoothed
pseudo-Wigner distribution; (c) TFAR spectral estimate; (d) TFMA
spectral estimate; and (e) TFARMA spectral estimate. Logarithmic
gray-scale representations are used in (b)–(e) (all adopted from
Jachan et al. [76]).

2.1.3. Time-Frequency Models and Parametric Estimators
for Random Processes. Nonstationary random processes are
more difficult to describe than the stationary processes
because their statistics depend on time (or space) [77].
Parsimonious parametric models for nonstationary random

processes are useful in many applications such as speech
and audio, communications, image processing, computer
vision, biomedical engineering, and machine monitoring. A
parametric second-order description that is parsimonious
in that it captures the time-varying second-order statistics
by a small number of parameters is hence of particular
interest. Jachan et al. [76] propose the use of frequency
shifts in addition to time shifts (delays) for modeling
nonstationary process dynamics in a physically intuitive
way. The resulting parametric models are shown to be
equivalent to specific types of time-varying autoregressive
moving-average (TVARMA) models. They are parsimonious
for nonstationary processes with small high-lag temporal
and spectral correlations (underspread processes), which are
frequently encountered in applications. Jachan, Matz, and
Hlawatsch also propose efficient order-recursive techniques
for model parameter estimation that outperform existing
estimators for TVARMA (TVAR,TVMA) models with respect
to accuracy and/or complexity

Major Contributions. Jachan et al. [76] consider a spe-
cial class of TVARMA models that they term t-f ARMA
(TFARMA) models. Extending time-invariant ARMA mod-
els, which capture temporal dynamics and correlations by
representing a process as a weighted sum of time-shifted
(delayed) signal components, TFARMA models additionally
use frequency shifts to capture a process’ nonstationarity
and spectral correlations. The lags of the t-f shifts used in
the TFARMA model are assumed to be small. This results
in nonstationary processes with small high-lag temporal
and spectral correlations or, equivalently, with a temporal
correlation length that is much smaller than the duration
over which the time-varying second-order statistics are
approximately constant. Such underspread processes [78, 79]
are encountered in many applications. The TFARMA model
and its special cases, the TFAR and TFMA models, are shown
to be specific types of TVARMA (AR,MA) models. They
are attractive because of their parsimony for underspread
processes, that is, nonstationary processes with a limited t-
f correlation structure.

The underspread assumption results in parsimony which
allows an “underspread approximation” that leads to new,
computationally efficient parameter estimators for the
TFARMA, TFAR, and TFMA model parameters. The authors
develop two types of TFAR and TFMA estimators based on
linear t-f Yule-Walker equations and on a new t-f cepstrum.
Further, it is shown how these estimators can be combined to
obtain TFARMA parameter estimators. In particular, TFAR
parameter estimation can be accomplished via underspread
t-f Yule-Walker equations with Toeplitz/block-Toeplitz struc-
ture that can be solved efficiently by means of the Wax-
Kailath algorithm [80]. Simulation results demonstrate that
the proposed methods perform better than existing TVAR,
TVMA, and TVARMA parameter estimators with respect
to accuracy and/or complexity. For processes that are not
underspread (called “overspread” [78, 79]), the proposed
models by Jachan et al. will not be parsimonious and
those estimators that involve an underspread approximation
exhibit poor performance.
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TFARMA models are physically meaningful due to their
definition in terms of delays and frequency (Doppler) shifts.
This delay-Doppler formulation is also convenient since
the nonparametric estimator of the process’ second-order
statistics that is required for all parametric estimators can
be designed and controlled more easily in the delay-Doppler
domain. Furthermore, TFARMA models are formulated in
a discrete-time, discrete-frequency framework that allows
the use of efficient fast FT algorithms. They can be applied
in a variety of signal processing tasks, such as time-
varying spectral estimation (cf. [81]), time-varying predic-
tion (cf. [82–84]), time-varying system approximation [85],
prewhitening of nonstationary processes, and nonstationary
feature extraction.

Simulation Results. Jachan et al. check the accuracy of the
proposed TFAR, TFMA, and TFARMA parameter estimators
by applying them to signals synthetically generated accord-
ing to the respective model. Here the application of the
TFAR, TFMA, and TFARMA models is presented for time-
varying spectral analysis of the quasi-natural signal shown
in Figure 3(a). The considered signal is the sum of two
echolocation chirp signals emitted by a Daubenton’s bat
(http://www.londonbats.org.uk). A smoothed pseudo-WD
(SPWD) [86, 87] of this signal is shown in Figure 3(b).

The analysis based on TFAR, TFMA, and TFARMA is
performed on this signal using the parameter estimators.
From the estimated TFAR, TFMA, or TFARMA parame-
ters, the corresponding parametric spectral estimates are
computed, that is, estimates of the ES (TFMA case) or of
its underspread approximation (TFAR and TFARMA cases,
resp.). The authors estimate the model orders by means of
the AIC [88, 89] and stablize all parameters by means of the
technique described in [88], with an appropriate stabilization
parameter.

The spectral estimates are depicted in Figures 3(c)–
3(e). It is seen that the TFAR spectrum displays the two
chirp components fairly well, although there are some
spurious peaks (this effect is well known from AR models
[90]) and the overall resolution is poorer than that of the
nonparametric SPWD in Figure 3(b). The TFMA spectrum,
as expected, is unable to resolve the timevarying spectral
peaks of the signal. Finally, the TFARMA spectrum exhibits
better resolution than the SPWD, and it does not contain
any CTs as does the SPWD [87]; on the other hand, the t-
f localization of the components deviates slightly from that
in the SPWD. As indicated, the important point to note is
that these parametric spectra involve only 30 (TFAR and
TFARMA) or 42 (TFMA) parameters.

2.1.4. Miscellaneous Approaches. We find a considerable
amount of work by a number of researchers in achieving
good resolution ES and applying the results and related
theory to many fields, specially where nonstationary signals
arise. The purpose of their work has ranged from the
simple graphic presentation of the results to sophisticated
manipulations of spectra. The authors in [70] propose a
new transformation for discrete signals with time-varying

spectra. The kernel of this transformation provides the
energy density of the signal in t-f with good resolution
qualities. With this discrete evolutionary transform a clear
representation for the signal as well as its t-f energy density
is obtained. The authors suggest the use of either the Gabor
or the Malvar discrete signal representations to obtain the
kemel of the transformation. The signal adaptive analysis
is then possible using modulated or chirped bases, and can
be implemented with either masking or image segmentation
on the t-f plane. An interesting approach is a piecewise
linear approximation of the IF, concentrated along the
individual components of signal, using the Hough transform
(used in image processing to infer the presence of lines or
curves in an image) and the evolutionary spectrum (ES)
[71]. The efficiency and practicality of this approach lie
in localized processing, linearization of the IF estimate,
recursive correction, and minimum problems due to CTs
in the TFDs or in the matching of parametric models.
This procudere is innovatively used in jammer excision
techniques, where unambiguous IF for a jammer composed
of chirps can be estimated, using ES and Hough transform.
Also Barbarossa in [72] proposed a combination of the
WD and the Hough transform for detection and parameter
estimation of chirp signals in a problem of detection of
lines in an image, which is the WD of the signal under
analysis. This method provides a bridge between signal
and image processing techniques, is asymptotically efficient,
and offers a good rejection capability of the CTs, but it
has an increased computational complexity. Barbarossa et
al. further proposed an adaptive method for suppressing
wideband interferences in spread spectrum communications
based on high-resolution TFD of the received signal [73].
The approach is based on the generalized Wigner-Hough
Transform as an effective way to estimate the clear picture
of the IF of parametric signals embedded in noise. The
proposed method provides the advantages like, (1) it is able
to reliably estimate the interference parameters at lower SNR,
exploiting the signal model, (2) the despreading filter is
optimal and takes into account the presence of the excision
filter. The disadvantage of the proposed method, besides the
higher computational cost, is that it is not robust against
mismatching between the observed data and the assumed
model.

Chaparro and Alshehri [74], innovatively obtain better
spectral esimates and use it for the jammer excision in direct
sequence spread spectrum communications when the jam-
mers cannot be parametrically characterized. The authors
proceed by representing the nonstationary signals using the
t-f and the frequency-frequency evolutionary transforma-
tions. One of the methods, based on the frequency-frequency
representation of the received signal, uses a deterministic
masking approach while the other, based in nonstationary
Wiener filtering, reduces interference in a mean-square
fashion. Both of these approaches use the fact that the
spreading sequence is known at the transmitter and the
receiver, and that as such its evolutionary representation
can be used to estimate the sent bit. The difference in
performance between these two approaches depends on the
support rather than on the type of jammer being excised.
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Figure 4: Example signals [51]. Signal 1 composed of two chirps, (a) BD using exponential kernels, (b) EP spectral estimate, and (c) DASE
spectral estimate. Signal 2 composed of two chirps with additive Guassian white noise (SNR = 24 dB), (d) BD using exponential kernels, (e)
EP spectral estimate, and (f) DASE spectral estimate (all adopted from Kayhan et al. [51]).
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Figure 5: TFD of a Gaussian chirp signal: (a) the WD, (b) the LWD, and (c) the SD distribution with L = 8 (adopted from Stanković [108]).
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The frequency-frequency masking approach is found to work
well when the jammer is narrowly concentrated in parts of
the frequency-frequency plane, while the Wiener masking
approach works well in situations when the jammer is spread
over all frequencies.

Shah et al. [99] developed a method for generating
an informative prior when constructing a positive TFD by
the method of minimum cross-entropy (MCE). This prior
results in a more informative MCE-TFD, as quantified via
entropy and mutual information measures. The procedure
allows any of the BDs to be used in the prior, and the TFDs
obtained by this procedure are close to the ones obtained by
the deconvolution procedure at reduced computational cost.
Shah along with Chaparro [91, 97] considered the use of the
TFDs for the estimation of GTF of an LTV filter with a goal
that once it is blurred, it produces the TFD estimate. They
used the fact that many of these distributions are written as
blurred versions of the GTF and made use of deconvolution
technique to obtain the deblurred GTF. The technique is
found general and can be based on any TFD with many
advantages like (i) it estimates the GTF without the need
for orthonormal expansion used in other estimators of the
ES, (ii) it does not require the semistationarity assumption
used in the existing deconvolution techniques, (iii) it can be
used on many TFDs, (iv) the GTF obtained can be used to
reconstruct the signal and to model LTV systems, and (v) the
resulting ES estimate out performs the ES obtained by using
the existing estimation techniques and can be made to satisfy
the t-f marginals while maintaining positivity.

The Power Spectral Density of a signal calculated from
the second-order statistics can provide valuable information
for the characterization of stationary signals. This informa-
tion is only sufficient for Gaussian and linear processes.
Whereas, most real-life signals, such as biomedical, speech,
and seismic signals may have non-Gaussian, nonlinear, and
nonstationary properties. Addressing this issue, Unsal Artan
et al. [100] have combined the higher-order statistics and
the t-f approaches and present a method for the calculation
of a Time-Dependent Bispectrum based on the positive
distributed ES. This idea is particularly useful for the analysis
of such signals and to analyze the time-varying properties of
nonstationary signals.

2.2. The Methods Based on Cohen’s Bilinear Class. In 1966
a method was devised that could generate in a simple
manner an infinite number of new ones [3, 15]. The
approach characterizes TFDs by an auxiliary function and
by the kernel function. We will discuss the significant
contributions on high spectral resolution kernels later in this
paper. The properties of distribution are reflected by simple
constraints on the kernel, and by examining the kernel one
readily can ascertain the properties of the distribution. This
allows one to pick and choose those kernels that produce
distributions with prescribed desirable properties. All TFDs
can be obtained from a general expression

C(t,ω) = 1
4π2

∫∫∫

s∗
(

μ− 1
2
τ
)

s
(

μ +
1
2
τ
)

Ω(θ, τ)

× e−iθt−iτω+iθμdμdτdθ,
(14)

where C(t,ω) is the joint distribution of signal s(t), and
Ω(θ, τ) is called the kernel. The term kernel was coined
by Classen and Mecklenbrauker [9–11]. These two made
extensive contributions to general understanding in signal
analysis context along with Janssen [101]. Another term,
which is brought in (14), is the ambiguity function (AF),
for which there are a number of minor differences in
terminology. We will use the definition given by Rihaczek,
who defines AF as [102]

A(t, τ) =
∫

s∗(t − τ)s(t)eiθtdt, (15)

consequently (14) may be expressed as the FT of product of
ambiguity and kernel functions, given as

C(t,ω) = F {A(θ, τ) ·Ω(θ, τ)}, (16)

where A(θ, τ) is Woodward AF [103], which has been
an important tool in analyzing and constructing signals
associated with radar [102]. By constructing signals having
a particular AF, desired performance characteristics are
achieved. A comprehensive discussion of the AF can be
found in [102], and shorter reviews of its properties and
applications are found in [104, 105]. Also a number of
excellent articles exploring the relationship between AF and
the TFDs can be found in [11, 106, 107].

Many divergent attitudes toward the meaning, inter-
pretation and use of Cohen’s BDs have arisen over the
years, with extensive research for obtaining good resolution
and high concentration along the individual components.
The divergent viewpoints and interests have led to a better
understanding and implementation. The subject is evolving
rapidly and most of the issues are open. However it is
important to understand the ideas and arguments that have
been given, as variations and insights of them have led way
to further developments.

2.2.1. The Scaled-Variant Distribution—A TFD Concentrated
along the IF. In an important set of papers, Stankovic et
al. [33, 108–110] innovatively used the similarities and
differences with quantum mechanics and originated many
new ideas and procedures to achieve the good resolution and
high concentration of joint distributions. Their initial work
suggests the use of the polynomial WD [30, 111] to improve
the concentration of monocomponent signals, taking the IF as
polynomial function of time. A similar idea for improving
the distribution concentration of the signal whose phase is
polynomial up to the fourth order was presented in [25].
In order to improve distribution concentration for a signal
with an arbitrary nonlinear IF, the L-Wigner distribution
(LWD) was proposed and studied in [25, 112–115]. The
polynomial WD, as well as the LWD, are closely related to
the time-varying higher-order spectra [111, 114–116]. They
were found to satisfy only the generalized forms of marginal
and unable to preserve the usual marginal properties [1, 28].

Variant of LWD. Lately Stankovic proposed a variant of LWD
obtained by scaling the phase and τ axis by an integer L
while keeping the signals’ amplitudes unchanged [33, 108].
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Figure 6: TFD of a signal with fast amplitude variations: (a) the WD, (b) the LWD with L = 2, and (c) the SD distribution with L = 2
(adopted from Stanković [108]).

He terms this new distribution as the scaled variant of the
LWD (SD) of a signal x(t). It is defined, in its pseudo form,
as

SDL(t,ω) =
∫

ωL(τ)x[L]
(

t +
τ

2L

)

x[L]∗

(

t − τ

2L

)

e−iωτdτ.

(17)

The word “pseudo” is used to indicate the presence of the
window ωL(τ) where x[L](t) is the modification of x(t)
obtained by multiplying the phase function by L while
keeping the amplitude unchanged:

x[L](t) = A(t)eiLφ(t). (18)

The distribution achieves high concentration at the IF—
as high as the LWD—while at the same time satisfying time
marginal and unbiased energy condition for any L. The
frequency marginal is satisfied for asymptotic signals as well.

Simulation Results. The original idea for this distribution
stems from the very well-known quantum mechanics forms.
There is a partial formal mathematical correspondence
between quantum mechanics and signal analysis. Relation-
ship between quantum mechanics and signal analysis may
be found in [1] and is beyond the scope of this paper.
Historically, work on joint TFDs has often been guided by
corresponding developments in quantum mechanics. The
similarity comes about because in quantum mechanics the
probability distribution for finding the particle at a certain
position is the absolute square of the wave function, and
the probability for finding the momentum is the absolute
square of the FT of the wave function. Thus one can associate
the signal with the wave function, time with position, and
frequency with momentum. The marginal conditions are
formally the same, although the variables are different.

Consequently for a signal x(t) = A(t)eiφ(t), a function
Ψ(λ) = A(λ)eiLφ(λ) can be formed that corresponds (with
L = 1/�) to the Wentzel solution of the Schroedinger’s
equation or to the Feynman’s path integral [108]. This form
applied to the original quantum mechanics form of the WD
WD(λ, p) = ∫

Ψ(λ + �τ/2)Ψ∗(λ − �τ/2)e−ipτdτ produces
the proposed SD exactly. It is shown that significant benefit
with respect to the distribution concentration is possible

with uncertainty of the order of 1/L2 while at the same time
keeping other important properties of the TFD invariant by
keeping L slightly greater than 1 (L = 2, 4, . . .). It is shown
through example of Gaussian chirpsignal and a noisy signal
with same order of amplitude and phase variations (see Figures
5 and 6) that the SD produces the ideal concentration at the
IF.

Realization of the SD. A method for the direct realization
of the SD, based on the straightforward application of a
distribution definition, is presented in [110]. In the case
of multicomponent signals, it may be equal to the sum
of the SDs of each component separately. For the SD in
(17), signal x(t) is modified into xL(t), oversampled L times,
while the number of samples that are used for calculation
is kept unchanged. This method is not computationally
much more demanding than the realization of any ordinary
(L = 1) distribution. In the case of multicomponent
signals, this method produces signal power concentrated
at the resulting IF, according to the theorem presented
in [108]. Theory is illustrated on the numerical examples
of multicomponent real signal, real noisy multicomponent
signal, and a multicomponent signal whose components
intersect (see Figures 7 and 8). The proposed distributions
may achieve arbitrary high concentration at the IF, satisfying
the marginal properties. Till the publication of [110], this
was possible only in a very special case of the linear frequency
modulated signal using the WD.

2.2.2. Reassigned TFDs. Some TFDs were proposed to adapt
to the signal t-f changes. In particular, an adaptive TFD can
be obtained by estimating some pertinent parameters of a
signal-dependant function at different time intervals [45].
Such TFDs provide highly localized representations without
suffering QTFDs’ CTs. The tradeoff is that these TFDs
may not satisfy some desirable properties such as energy
preservation. Examples of adaptive TFDs include the high
resolution TFD [117], the signal-adaptive optimal-kernel
TFDs [118, 119], the optimal radially Gaussian TFD [120],
and Cohen’s nonnegative distribution [34]. Reassigned TFDs
also adapt to the signal by employing other QTFDs of the
signal such as the spectrogram, the WD, or the scalogram
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[121–127]. The former types of adaptive TFDs are discussed
under the name Optimal-kernel TFDs in Section 2.2.3.

The method of reassignment improves considerably the
t-f concentration and sharpens a TFD by mapping the data
to t-f coordinates that are nearer to the true region of support
of the analyzed signal. The method has been independently
introduced by several researchers under various names [121–
127], including method of reassignment, remapping, t-f
reassignment, and modified moving-window method. In
the case of the spectrogram or the STFT, the method of
reassignment sharpens blurry t-f data by relocating the data
according to local estimates of the IF and GD. This mapping
to reassigned t-f coordinates is very precise for signals that are
separable in time and frequency with respect to the analysis
window.

The Reassignment Method. Pioneering work on the method
of reassignment was first published by Kodera et al. under
the name of modified moving window method [124]. Their
technique enhances the resolution in time and frequency
of the classical moving window method (equivalent to the
spectrogram) by assigning to each data point a new t-f
coordinate that better reflects the distribution of energy
in the analyzed signal. This clever modification of the
spectrogram unfortunately remained unused because of
implementation difficulties and because its efficiency was
not proved theoretically. Later on, Auger and Flandrin [121]
showed that this method, which they called the reassignment
method, can be applied advantageously to all the bilinear t-f
and time-scale representations, and can be easily computed
for the most common ones. Independently of Kodera et
al., Nelson arrived at a similar method for improving
the t-f precision of short-time spectral data from partial
derivatives of the short-time phase spectrum [125]. It is
easily shown that Nelson’s cross-spectral surfaces compute
an approximation of the derivatives that is equivalent to the
finite differences method.

In the classical moving window method [128], a time-
domain signal, x(t), is decomposed into a set of coefficients,
∈ (t,ω), based on a set of elementary signals, hω(t), defined
as

hω(t) = h(t)e jωt, (19)

where h(t) is a (real-valued) low-pass kernel function, like
the window function in the STFT. The coefficients in this
decomposition are defined as

∈ (t,ω) =
∫

x(τ)h(t − τ)e− jω(τ−t)dτ

= e jωt
∫

x(τ)h(t − τ)e− jωτdτ

= e jωtX(t,ω)

= Xt(t,ω) =Mt(ω)e jϕτ (ω),

(20)

where Mt(ω) is the magnitude, and ϕτ(ω) is the phase, of
Xt(ω), the FT of the signal x(t) shifted in time by t and
windowed by h(t).

However x(t) can be reconstructed from the moving
window coefficients by

x(t) =
∫∫

Xτ(ω)h∗ω(τ − t)dωdτ

=
∫∫

Xτ(ω)h(τ − t)e− jω(τ−t)dωdτ

=
∫∫

Mτ(ω)e jϕτ (ω)h(τ − t)e− jω(τ−t)dωdτ

=
∫∫

Mτ(ω)h(τ − t)e j[ϕτ (ω)−ωτ+ωt]dωdτ.

(21)

For signals having magnitude spectra, M(t,ω), whose time
variation is slow relative to the phase variation, the maxi-
mum contribution to the reconstruction integral comes from
the vicinity of the point t, ω satisfying the phase stationarity
condition

∂

∂ω

[

ϕτ(ω)− ωτ + ωt
] = 0,

∂

∂τ

[

ϕτ(ω)− ωτ + ωt
] = 0,

(22)

or equivalently, around the point t̂, ω̂ defined by

t̂(τ,ω) = τ − ∂ϕτ(ω)
∂ω

= −∂ϕτ(τ,ω)
∂ω

,

ω̂ = ∂ϕτ(ω)
∂τ

= ω +
∂ϕτ(τ,ω)

∂τ
.

(23)

The t-f coordinates thus computed are equal to the local
GD, t̂g(t,ω), and local IF, ω̂i(t,ω), and are computed from
the phase of the STFT, which is normally ignored when
constructing the spectrogram. These quantities are local in
the sense that they are represent a windowed and filtered
signal that is localized in time and frequency, and are not
global properties of the signal under analysis.

The modified moving window method, or method of
reassignment, changes (reassigns) the point of attribution
of ∈ (t,ω) to this point of maximum contribution tg(t,ω),
ωi(t,ω), rather than to the point t, ω at which it is computed.
This point is sometimes called the center of gravity of the
distribution, by way of analogy to a mass distribution.
This analogy is a useful reminder that the attribution of
spectral energy to the center of gravity of its distribution
only makes sense when there is energy to attribute, so the
method of reassignment has no meaning at points where the
spectrogram is zero valued.

Efficient Computation of Reassigned Times and Frequencies.
The reassignment operations proposed by Kodera et al.
cannot be applied directly to the discrete STFT data, because
partial derivatives cannot be computed directly on data that
is discrete in time and frequency, and it has been suggested
that this difficulty has been the primary barrier to wider use
of the method of reassignment.
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Figure 7: TFD of a multicomponent signal: (a) the spectrogram, (b) the WD, (c) the S-method, (d) the S-distribution with L = 2, including
marginal properties, (e) the S-distribution with L = 2, (f) the S-method of noisy signal, (g) the S-distribution with L = 2 of noisy signal
(adopted from Stanković [110]).

Auger and Flandrin [121] showed that the method of
reassignment, proposed in the context of the spectrogram
by Kodera et al., could be extended to any member of
Cohen’s class of TFDs by generalizing the reassignment
operations. Auger and Flandrin’s starting point of the
efficient reassignment method is

TFD(x; t,ω) =
∫∫

φTF(u,Ω)WD(x; t − u,ω−Ω)du
dΩ

2π
,

(24)

which shows the 2D low-pass filtering of the WD, leading to
a TFD of the Cohen’s class [3, 15]. However, this smoothing
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Figure 8: TFD of a multicomponent signal whose components intersects: (a) spectrogram, (b) S-distribution with L = 2 (adopted from
Stanković [110]).

also produces a less accurate t-f localization of the signal
components. Its shape and spread must therefore be properly
determined so as to produce a suitable tradeoff between
good interference attenuation and good t-f concentration
[1, 28, 29]. Interesting examples of smoothings are the PWD
[9–11], the SPWD [36], and all the reduced interference dis-
tributions [29, 39, 40]. As a complement to this smoothing,
other processings can be used to improve the readability
of a signal representation. A kind of signal representation
processing, to which the reassignment method belongs, is to
perform an increase of the signal components concentration.

The above expression shows that the value of a TFD at
any point (t,ω) of the t-f plane is the sum of all the terms
φTF(u,Ω)WD(x; t−u,ω−Ω), which can be considered as the
contributions of the weighted WD values at the neighboring
points (t − u,ω − Ω). TFD(x; t,ω) is then the average of
the signal energy located in a domain centered on (t,ω)
and delimited by the essential support of φTF(u,Ω). This
averaging leads to the attenuation of the oscillating CTs, but
also a signal components broadening. The TFD can hence be
nonzero on a point (t,ω) where the WD indicates no energy,
if there are some nonzero WD values around. Therefore, one
way to avoid this is to change the attribution point of this
average, and to assign it to the center of gravity of these
energy contributions, whose coordinates are

t̂(x; t,ω)= t−
∫∫

u·φTF(u,Ω)WD(x; t−u,ω−Ω)du(dΩ/2π)
∫∫

φTF(u,Ω)WD(x; t−u,ω−Ω)du(dΩ/2π)
,

ω̂(x; t,ω)=ω−
∫∫

Ω·φTF(u,Ω)WD(x; t−u,ω−Ω)du(dΩ/2π)
∫∫

φTF(u,Ω)WD(x; t−u,ω−Ω)du(dΩ/2π)
,

(25)

rather than to the point (t,ω) where it is computed. This
reassignment leads to the construction of a modified version
of this TFD, whose value at any point (t′,ω′) is therefore the
sum of all the representation values moved to this point:

MTFD(x; t′,ω′) =
∫∫

TFD(x; t,ω)δ
(

t′ − t̂(x; t,ω)
)

× δ(ω′ − ω̂(x; t,ω))dt
dω

2π
,

(26)

where δ(t) denotes the Dirac impulse. It should be noticed
that the aim of the reassignment method is to improve the
sharpness of the localization of the signal components by
reallocating its energy distribution in the t-f plane. Thus,
when the representation value is zero at one point, it is useless
to reassign it. Equations (25), the reassignment operators,
have therefore neither sense nor use in this case. It should
be also noticed that if the smoothing kernel φTF(u,Ω) is real
valued, the reassignment operators (25) are also real valued,
since the WD is always real valued.

Simulation Results. In order to evaluate the benefits of the
reassignment method in practical applications, a comparison
of the experimental results provided by some TFDs and
their modified versions is shown in this section, adopted
from Auger and Flandrin [121]. Auger and Flandrin ana-
lyze a 256-point computer-generated signal made up of
one sine wave component, one chirp component, one
chirped Gaussian packet, and one signal with constant
amplitude and an instantaneous frequency describing half
a sine period. Figure 9(a) shows the SPWD, adding a time-
direction smoothing to PWD. There are very few CTs, but the
signal components concentration is still weaker. Its modified
version (shown in Figure 9(b)) is nearly ideal: all CTs are
removed by the smoothings, and the signal components
are strongly localized by the reassignment method. If the
time and frequency smoothing windows are equal, the
representation becomes then the spectrogram (Figure 9(c)),
whose modified version (Figure 9(d)) perfectly localizes the
chirp component. Finally, the next figures show time-scale
representations. The affine PWD performs a scale-invariant
frequency direction smoothing of the WD. Its modified
version yields much more concentrated signal components,
but still retains some CTs. An additional scale-invariant
time direction smoothing removes nearly all CTs, yielding
an affine SPWD (Figure 9(e)) with less concentrated signal
components, and a nearly ideal modified affine SPWD
(Figure 9(f)). Figure 9(g) now shows a scalogram whose
window length was chosen to provide the same frequency
direction smoothing, but (consequently) an approximately
two times longer time direction smoothing than the previous
affine SPWD. All the WD CTs have been removed, but
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Figure 9: Numerical examples for reassignment method for a 4-component signal made up of a sine wave component, a chirp component,
a chirped Gaussian packet, and one signal with constant amplitude and an IF describing half a sine period, (a) SPWD. h : 79-point Gaussian
window, (b) modified version of the SPWD, (c) spectrogram. h : 31-point Gaussian window, (d) modified version of the spectrogram,
(e) affine SPWD. h: Gaussian window with F0 · Th = 4.24, (f) modified version of affine SPWD, (f) scalogram. h: Gaussian window with
F0 · Th = 3.0, (h) modified version of the scalogram (all adopted from Auger and Flandrin [121]).

the time resolution is really inadequate, especially at low
frequencies. Its modified version is much easier to interpret,
but the localization of the component with sinusoidal
frequency modulationcy seems weaker than on the affine
SPWD.

2.2.3. Optimal-Kernel TFDs. The result in (14) to (16)
indicate that a quadratic TFD is obtained by first smoothing
the symmetric AF (using the kernel function) and then by
taking a 2D FT of the result. This result is equivalent to
a 2D filtering in the ambiguity domain. The properties of
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distribution are reflected by simple constraints on the kernel
and have been used advantageously to develop practical
methods for analysis and filtering, as was done by Eichmann
and Dong [129]. Excellent reviews relating the properties
of the kernel to the properties of the distribution have
been given by Janse and Kaizer [12], Janssen [101], Claasen
and Meclenbrauker [11], and Boashash [7]. By examining
the kernel one readily can ascertain the properties of the
distribution. This allows one to pick and choose those
kernels that produce distributions with prescribed desirable
properties. Thus, by a proper choice of kernel function,
one can reduce or remove the CTs in the analysis of
multicomponent signal. This unified approach is simple with
an advantage that all distributions can be studied together in
a consistent way. Since for any given signal some TFDs are
“better than others,” kernel design has become an important
research area. Generally the optimum kernel TFDs can be
achieved by three different approaches to optimizing the
kernel with an aim to improve the resolution of resulting
TFDs, which are

(1) high resolution TFDs based on high spectral resolu-
tion kernels;

(2) high resolution TFDs based on signal-independant
kernels;

(3) high resolution TFDs based on signal-dependant
kernels;

High Resolution TFDs-High Spectral Resolution Kernels.
TFDs along with their temporal and spectral resolutions
are uniquely defined by the employed t-f kernels. Potential
kernels seek to map, at every time sample, the time-
varying signals in the data into approximately fixed fre-
quency sinusoids in the local autocorrelation function (LAF).
Applying the FT to the LAF, therefore, provides a peaky
spectrum where the location of the peaks is indicative
to the signals’ instantaneous power concentrations. The
sinusoidal components in the LAF, however, generally
appear with some type of amplitude modulations (AMs),
which are highly dependent on the kernel composition
[130]. Such modulation presents a limitation on spectral
resolution in the t-f plane, as it is likely to spread both
the auto and CTs to localizations over a wide range of
frequencies.

A. Improving TFDs’ Spectral Resolution. Because of the
kernel modulation effects on the various terms, closely
spaced frequencies may not be resolved. Further, since TFDs
are Fourier based, then in addition to the AM imposed by
the kernels, the spectral resolution is limited by and highly
dependent on the extent of LAF, that is, the lag window
employed [130]. However, increasing the length of the LAF
will not always yield improved resolution. Events occurring
over short periods of time do not require large kernels, which
may only lead to increased CT contributions from distant
events and obscure the local autoterms. Limited availability
of data samples may also provide another reason for using
small extent kernels. In these cases, improving spectral reso-
lution of a TFD can be achieved by parameterizing its local

autocorrelation function via autoregressive (AR) modeling
techniques [131–135]. Such parameterization seeks to fit a
least-squares random model to the second-order statistics
of the LAF at different time instants. The AR modeling
techniques, however, view the LAF as a stationary process
along the lag dimension. Since t-f distribution kernels
translate deterministic signals into others of deterministic
nature, it will be more appropriate to fit a deterministic,
rather than a stochastic, model to the LAF. Further, all
modeling techniques applied in the TFD context mostly have
only dealt with PWD or the SPWD kernels.

Amin and Williams [130] have maintained that in addi-
tion to PWD and SPWD of separable time and lag windows,
there exists a large class of t-f kernels for which the LAF
is amenable to high spectral resolution techniques. The
members of this class satisfy the desirable t-f properties for
power localization in nonstationary environment, yet they
produce local autocorrelation functions that are amenable
to exponential deterministic modeling during periods of
stationarity. The proposed high spectral resolution ker-
nels are, however, required to meet two basic conditions
[130]:

(1) the frequency marginal,

(2) an exponential behavior in the ambiguity domain for
constant values of few parameters.

In dealing with sinusoidal data, the first property
guarantees that the autoterm sinusoids in the LAF are
undamped. The second property enforces an exponential
damping on all CTs. As a result, the sinusoidal components
in the data translate into damped/undamped sinusoids in the
local autocorrelation function. High-resolution techniques
such as reduced rank approximation of the backward linear
prediction data matrix can then be applied for frequency esti-
mation. The authors use Prony’s method and its least squares
reduced-order approximation based on the singular value
decomposition (SVD) [136, 137] in the t-f context. This
method is shown to be applicable to high spectral resolution
TFD problems, specifically when the underlying LAF is made
up of a sum of exponentially damped/undamped sinusoids
or chirp-like signals. The authors derive a class of TFD
kernels in which the autoterms and the CTs of the sinusoidal
components in the data are, respectively, mapped into
undamped and damped sinusoids. By using the backward
linear prediction frequency estimation approach [136], these
two sets of components produce a linear predictor error filter
whose zeros lie on and outside the unit circle, respectively.
With the extraneous zeros of the polynomial lying inside
the unit circle, fitting a deterministic model to the LAF of
the proposed class of t-f kernels not only yields accurate
estimates of the frequencies of the sinusoids but also provides
a mechanism to distinguish between the true and false
distribution terms.

B. Simulation Results. The simulations in Figures 10 and
11 high spectral resolution kernels illustrate the effectiveness
of the high-resolution TFDs achieved by the high spectral
resolution kernels. A test signal is constructed that consisted
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of two complex exponentials as

x(n) = ei2π12.8(n−30)/128 + ei2π51.2n/128, n = 0, 1, 2, . . . , 127.
(27)

These two signals’ components have normalized frequencies
of 0.1 and 0.4 Hz, respectively. First, the authors compute
the binomial TFD using the alias free formulation [39]
for comparison. The LAF, which extended to 128 points,
is computed, and the binomial kernel is applied to it.
Applying an FFT across the lags produced the result shown
in Figure 10(a). The two components are well resolved, and
the CT interference is low. Figure 10(b) shows the high-
resolution TFD result using the binomial kernel. Only even
lag terms are used in the LAF. The results are similar to
the binomial TFD, but the resolution is higher. In addition,
the CTs are small and generally fall between the autoterms
and are not spread, as is the case for the binomial TFD.
Figure 11(a) shows the results obtained using the raw LAF
values, which is equivalent to the PWD. The autoterms are
well resolved, but the CTs are as large as in the conventional
PWD and fall between the CTs. A 20-point analysis window
is used to find the Hankel structure for the odd positive lags
obtained from the same LAF used to form the binomial TFD.
The authors limit the number of terms included from the
SVD computation by excluding all terms with magnitudes
less than 15% of the largest singular value. The effectiveness
of the approach with a nonstationary chirp is shown in
Figure 11(b). The authors analyze a complex exponential
with a starting frequency of 0.05 Hz and a positive chirp rate
of 0.6 × 10−4 Hz/sample using the alias-free binomial LAF.
Here, 0.1 Hz spans 100 frequency samples. We can see that
the method provides a very nice estimate of the t-f course of
the signal.

A High-Resolution QTFD—Signal-Independent Kernel. A
signal independent kernel for the design of a high-resolution
and CTs free quadratic TFD is proposed in [138]. The
filtering of the CTs in the ambiguity domain that reduces
(or removes) the CTs in the t-f domain results in a lower t-f
resolution. That is, there is tradeoff between CTs suppression
and t-f resolution in the design of a given quadratic TFD.
Barkat and Boashash propose a kernel that allows retaining
as many autoterms energy as possible while filtering out as
much CTs energy as possible. The kernel is defined in the
time lag domain keeping in view the implementation of the
resultant TFD.

Beginning from a time function (1/cosh2(t)) whose
spectrum presents the narrowest mainlobe compared with
many other considered time function for the same signal
duration. Barkat and Boashash extend it to a 2D quantity
(|τ|/cosh2(t)) and then taking it to a power α; they obtain
two desirable characteristics. First, its FT (kernel function),
which is centered around the origin, presents sharp cutoff
edges. Second, the volume beneath it can be controlled by
varying the value of α. Consequently, the proposed time-lag

kernel is given by

G(t, τ) =
[

|τ|
cosh2(t)

]α

, (28)

further it can be written as 2D ambiguity domain filter, given
by

g(υ, τ) =
∫

G(t, τ)e−i2πυtdt, (29)

where υ and τ are the two usual variables in the ambiguity
domain. Using (29) in the general formula of the QTFDs, the
authors come up with the following discrete-time version of
the proposed TFD on simplification:

ρz
(

n, f
) =

M
∑

m=−M

M
∑

p=−M
G
(

p,m
)

z
(

n + p + m
)

× z∗
(

n + p −m
)

e−i2πm f ,

(30)

where z(t) is the analytic multicomponent signal under
consideration, and the discrete-time expressions G(n,m) and
z(n) are obtained by sampling G(t, τ) and z(t) at a frequency
fs = 1/T such that t = n·T and τ = m·T . The resulting TFD
in (30) is alias-free and periodic in f with a period equal to
unity.

Simulation Results. The distribution in (29) is claimed to
solve problems that the WD or the spectrogram cannot. In
particular, the proposed distribution is shown to resolve two
close signals in the t-f domain that the two other distribu-
tions cannot. Further synthetic and real data collected from
real-world applications are used to validate the proposed
distribution (see Figures 12–14).

Adaptive TFDs—Signal-Dependant Kernel. Adaptive TFDs
are highly localized t-f representations without suffering
from CTs, and they can generally be obtained by esti-
mating some pertinent parameters of time-varying signal-
dependant function. A great amount of work is performed
by Baraniuk and Jones, who have developed several different
approaches optimizing the signal-dependant kernel t-f anal-
ysis [118–120, 139], including the following:

(1) 1/0 optimal kernel TFD [118] formulation in which
the optimal kernel turns out to have a special binary
structure: it takes on only the values 1 and 0;

(2) optimal radially Gaussian kernel TFD [120] temper-
ing the “1/0 kernel” optimization formulation with
an additional smoothness constraint that forces the
optimal kernel to be Gaussian along radial profiles;

(3) signal adaptive optimal kernal TFDs [119].

Baraniuk and Jones have made use of the fact that sym-
metric AF is the characteristic function of the WD. The
mathematical and possible physical analogy between the two
enhances the interpretation of the properties of the AF. As
an illustration, consider the example of the AF of the bat
chirp in Figure 15(a). The FT maps the WD autocomponents
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Figure 10: TFD results for x(n): (a) bionomial TFD (b) high-resolution bionomial TFD (adopted from Amin and Williams [130]).
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Figure 11: (a) High-resolution TFD for x(n) using the raw LAF values (PWD equivalent). (b) High-resolution result for a complex
exponential signal over 128 time samples (adopted from Amin and Williams [130]).

to a region centered on the origin of the AF plane, whereas
it maps the oscillatory WD cross-components away from
the origin. In the AF image 15(a), the AF autocomponents
corresponding to the three harmonics of the bat chirp lie
superimposed at the center of the AF image, while the AF
cross-components lie to either side. The components slant in
the AF because the bat signal is chirping. The fact that the
auto- and cross-components are spatially separated in the
AF domain facilitates optimization of the kernel function,
which is used as a masking function to the AF to suppress
the CTs. The two later concepts based on optimal radially
Gaussian and signal adaptive optimal kernels are discussed
next to illustrate the work of Baraniuk and Jones.

A. The Optimal Radially Gaussian TFD. The signal-
dependent TFD proposed in [120] is based on kernels with
Gaussian radial cross section:

Φ(θ, τ) = exp

(

− θ2 + τ2

2σ2
(

ψ
)

)

, (31)

where Φ(θ, τ) is the kernel function, and the σ(ψ) is the
spread function that controls the spread of the Gaussian at
radial angle ψ. The angle ψ ≡ arctan(τ/θ) is measured
between the radial line through the point (θ, τ) and the θ
axis. Radially Gaussian kernels can be expressed in polar
coordinates, using ξ =

√
θ2 + τ2 as radius variable:

Φ
(

ξ,ψ
) = exp

(

− ξ2

2σ2
(

ψ
)

)

. (32)

A high-quality TFD results when the kernel is well
matched to the components of a given signal. This technique
is in contrast to the approach considered by Barkat and
Boashash [138] described in the last section. This is because
the radially Gaussian kernel is adapted to a signal by solving
the following optimization problem:

max
Φ

∫ 2π

0

∫∞

0

∣
∣A(ξ,ψ)Φ(ξ,ψ)

∣
∣2
ξdξdψ (33)
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Figure 12: Slices taken at the same time instant n = 3 (signal start time instant) of the WD, the spectrogram, and the proposed TFD for a
multicomponent signal composed of two parallel linear FM components using (a) a small size window length, (b) a medium size window
length, and (c) a large size window length (adopted from Barkat and Boashash [138]).

subject to (32) and

1
4π2

∫ 2π

0

∫∞

0

∣
∣Φ(ξ,ψ)

∣
∣2
ξdξdψ

= 1
4π2

∫ 2π

0
σ2(ψ

)

dψ ≤ α, α ≥ 0,

(34)

where A(ξ,ψ) represent the AF of the signal in polar
coordinates. The solution to the above optimization problem
is denoted by Φopt. The constraints and performance index
are motivated by a desire to suppress cross-components
and to pass autocomponents with as little distortion as
possible. The performance measure in (33) determines the
shape of the pass-band of the optimal radially Gaussian

kernel. By this, it is desired that as much autocomponent
energy as possible can be passed into the TFD for a kernel
of fixed volume thus autocomponent distortion can be
minimized. In most cases, authors have preferred this TFD
to the 1/0 optimal-kernel TFD [118]. The optimal Radially
Gaussian kernel of the bat chirp is well matched to the AF
autocomponents as shown in Figure 15(b). As a result a high-
resolution TFD is obtained shown in Figure 15(c).

B. Signal-Adaptive Optimal-Kernel TFD. In another
approach by Jones and Baraniuk, it is argued that TFDs
with fixed windows or kernels figure prominently in many
applications but perform well only for limited classes of
signals [119]. Representations with signal-dependent kernels
can overcome this limitation. However, while they often
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Figure 13: (a) WVD, (b) the spectrogram, and (c) the proposed TFD for a real-life automotive signal (adopted from Barkat and Boashash
[138]).

perform well, most existing schemes are block-oriented tech-
niques unsuitable for online implementation or for tracking
signal components with characteristics that change with
time. By adapting the radially gaussian kernel over time to
maximize performance, the resulting adaptive optimal-kernel
(AOK) TFD [119] is found suitable for online operation with
long signals whose t-f characteristics change over time. The
method employs a short-time AF (STAF) both for kernel
optimization and as an intermediate step in computing
constant-time slices of the representation.

Jones and Baraniuk adopt a general approach by deriving
time-dependant spectra through generalizing the relation-
ship between the power spectrum and the autocorrelation
function. The concept of a local autocorrelation function was
developed by Fano [140] and Schroeder and Atal [141], and
the relationship of their work to time-varying spectra was
considered by Ackroyd [142, 143]. A local autocorrelation
method was used by Lampard [144] for deriving the
Page distribution, and subsequently other investigators have
pointed out the relation to other distributions. The basic idea
is to write the joint TFD, as

P(t,ω) = 1
2π

∫

Rt(τ)e−iωτdτ, (35)

where Rt(τ) is a time-dependant or local autocorrelation
function. Many expressions for Rt(τ) have been proposed.
Jones and Baraniuk chose the instantaneous correlation of
signal s(t) as

R(t, τ) ≡ s∗
(

u− τ

2

)

s
(

u +
τ

2

)

, (36)

which also gives the WD and is argued by Mark [145] for
symmetry. The authors give the time localized STAF by

A(t; θ, τ) ≡
∫

R(u, τ)ω∗
(

u− t − τ

2

)

ω
(

u− t +
τ

2

)

eiθudu

=
∫

s∗
(

u− τ

2

)

ω∗
(

u− t − τ

2

)

s
(

u +
τ

2

)

· ω
(

u− t +
τ

2

)

eiθudu,

(37)

where ω(u) is a symmetrical window function equal to zero
for |u| > T . The variables τ and θ are the usual ambiguity
plane parameters; the variable t indicates the center position
of the signal window. Only the portion of the signal in the
interval [t − T , t + T] with |τ| < 2T is incorporated into
A(t; θ, τ) [119].
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Figure 14: (a) WVD, (b) the spectrogram, and (c) the proposed distribution of a real-life acoustic signal (adopted from Barkat and Boashash
[138]).

(a) (b) (c)

Figure 15: (a) Ambiguity function of bat chirp, (b) optimal radially Gaussian kernel, and (c) the optimal radially Gaussian TFD (all adopted
from Baraniuk [120]).

Conceptually, the algorithm presented in [119] computes
the STAF centered at time in both rectangular and polar
coordinates and solves the optimization problem in (33) and
(34) to obtain the optimal kernel. Once the optimal kernel
has been determined, a single, current-time slice of the AOK
TFD is computed as one slice (at time t only) of the 2D FT of
the STAF-kernel product:

PAOK(t,ω) = 1
4π2

∫∫

A(t; θ, τ)Φopt(t; θ, τ)e−iθt−iτωdθdτ.

(38)

Jones and Baraniuk also suggest that certain enhance-
ments, such as cone-kernel constraints and approximate
retention of marginals, are easily incorporated with little
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additional computation. While somewhat more expensive
than fixed-kernel representations, this new technique often
provides much better performance, as shown in Figures 16-
17; however, it is limited to processing relatively short signals
in an offline fashion.

One of the recent application based on AOK-based
technique is source detection and classification in over-
the-horizon radar (OTHR) systems [147]. The application
makes use of a data-dependent kernel in the ambiguity
domain to capture the target signal components, which are
then resolved using coherent spectrum estimation. By using
the different time-Doppler signatures, important target
maneuvering information, which is difficult to extract using
other linear and bilinear t-f representation methods, can be
easily revealed.

2.2.4. Dispersive Class TFDs. These TFDs are also termed
warping-based TFDs which provide a very good concentra-
tion for STSC having nonlinear t-f characterstics, such as
dolphin and whale whistles, radar and sonar waveforms, and
shock waves in fault structures. To improve the processing
of such signals, QTFDs that satisfy the dispersive GD shift
covariance property are designed by Papandreou, Hlawatsch
and Boudreaux-Bartels in [148–152]. The dispersive GD shift
covariance property for a QTFD Qx(t, f ) is defined as [45]

QRcX
(

t, f
) = Qx

(

t − cτ
(

f
)

, f
)

with

(RcX)
(

f
) = e j2πcξ( f / fr)X

(

f
)

,
(39)

where Rc,X( f ), f , fr , τ( f ), and ξ( f / fr) are the dispersive
GD shift operator, FT of the signal x(t), frequency variable,
positive normalization frequency, the change in GD, and the
phase spectrum or characteristic basis function, respectively.

This property, defined in (39), is important for ana-
lyzing signals propagating through systems with dispersive
characteristics or equivalently, with nonlinear GD functions.
If the signal spectrum X( f ) is passed through an all pass
dispersive system with output Y( f ) = e− j2πξ( f / fr )X( f ), then
the change in GD, τ( f ) = (d/df )ξ( f / fr), is proportional
to the derivative of the one-to-one phase function ξ( f / fr).
Because GD is a measure of the time delay introduced in
each sinusoidal component of the signal at frequency f , the
ideal QTFD should preserve this change in GD or frequency-
dependent time shift τ( f ) as indicated in (39). Different
dispersive GD shifts can be obtained by fixing ξ( f / fr) in
(39). In particular, Papandreou, Hlawatsch, and Boudreaux-
Bartels obtain the following.

(1) Linear dispersive GD shift [148] τ( f ) = (2/ fr)| f / fr|.
(2) Hyperbolic dispersive GD shift [153] τ( f ) = 1/ f .

(3) The kth power dispersive GD shift [154] τ( f ) =
(k/ fr)| f / fr|k−1.

(4) Exponential dispersive GD shift [150] τ( f ) =
(k/ fr)ek f / fr .

Dispersive GD shift covariant QTFD classes are unitarily
equivalent to known QTFD classes because they can be

obtained by warping existing time shift convariant classes
such as Cohen’s class or the affine class. The dispersive class
QTFDs Q(D) may be obtained by warping Cohen’s class
QTFDs Q(C) or affine class QTFDs Q(A) using [148–152, 155]

Q(D)
X

(

t, f
) = QWξX

(

t

frτ
(

f
) , frξ

(

f

fr

))

with

(

WξX
)(

f
) =

∣
∣
∣
∣
∣
frτ

(

frξ
−1

(

f

fr

))∣
∣
∣
∣
∣

−1/2

X

(

frξ
−1

(

f

fr

))

,

(40)

where Wξ is the warping operator. A list of properties that
different dispersive QTFDs satisfy is provided in [156].

Matched Time-Frequency Processing. Papandreou and Boud-
reaux-Bartels prove that, for successful t-f analysis, it is
advantageous to match the specific time shift of a QTFD
in (39) with changes in the GD of the signal. In some
applications, signals with known GD, τ( f ) = (d/df )ξ( f / fr),
need to be processed. As a result, a matched QTFD can be
designed as in (40) with a characteristic function. When
the signal GD is not known a priori, some preprocessing is
necessary before designing a well-matched QTFD. A rough
GD estimate can be obtained by fitting a curve through
the spectrogram of the signal or by using one of the many
porposed algorithms to estimate GD or IF characteristics
[2, 31, 157–159]. Because the phase function of the signal
needs to be one-to-one for designing its matched QTFD
by appropriately warping the WD or its smoothed versions,
approximations of the GD function can also be used.

Warping-Based TFDs—Theoretical Examples and Advantages.
Different dispersive QTFDs can be obtained simply by
choosing the function ξ( f / fr) or its derivative τ( f ) in (40).
Once the function is fixed, the resulting QTFDs can be useful
in analyzing signals whose GD characteristics are the same
or approximately the same as τ( f ). Some examples of these
classes include the linear chirp class (warped affine class)
with linear GD, the hyperbolic class (warped Cohen’s class)
with hyperbolic GD, the kth power class (warped affine class)
with kth order power GD, and the exponential class (warped
affine class) with exponential GD.

Papandreau, Boudreaux-Bartels, and coworkers [160–
163] demonstrate the effectiveness of dispersive class QTFDs
and the importance of matching STSC with QTFDs using
various simulations including constant and linear, constant
and hyperbolic, constant and exponential, and constant
and power t-f structures and power t-f structures with real
data. QTFDs in all these cases show better resolution and
CT suppression. For example, it is demonstrated that the
dispersive WD is highly localized for the time modulation

signal G( f ) =
√

|τ( f )|e− j2πcξ( f / fr ). Specifically, it is found
that dispersive WD is a dirac delta function at GD τ( f ) of the

signal, that is, WD(D)
G (t, f ) = |τ( f )|δ(t− cτ( f )). This means

that the dispersive WD is ideally matched to time modulation
signals when the τ( f ) in the dispersive WD formulation
matches the GD of the signal. It is important to note that
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Figure 16: Comparison of several state-of-the-art TFDs of the synthetic test signal of three impulses, two simultaneous sinusoidal pulses,
a Gaussian pulse, and two parallel linear chirps: (a) WD; (b) spectrogram computed with a 27-point Gaussian window; (c) Choi-Williams
distribution with smoothing parameter α = 1 [29]; (d) cone-kernel representation with τ-extent parameter = 33 [146]; (e) radially Gaussian
optimal-kernel TFD computed using volume α = 2 [118–120, 139] (adopted from Jones and Baraniuk [119]).

0 100 200

Time

−0.5

0

0.5

Fr
eq

u
en

cy

(a)

0 100 200

Time

−0.5

0

0.5

Fr
eq

u
en

cy

(b)

Figure 17: New adaptive TFDs of the synthetic test signal of three impulses, two simultaneous sinusoidal pulses, a Gaussian pulse, and two
parallel linear chirps: (a) adaptive optimal-kernel (AOK) TFD computed using volume α = 1.4, window width 2T = 32, and one kernel
optimization iteration per input time sample, (the AOK TFD is quite insensitive to these values); (b) AOK TFD with additional time-support
(cone) constraint [146] (adopted from Jones and Baraniuk [119]).

a dual dispersive class can be similarly obtained to match the
dispersive FM signals by preserving dispersive IF shift [164].

Another example is the affine class that is actually the
power class with k = 1. When k = 2, the corresponding
power class is the linear chirp class that is well matched
to signals with linear t-f characteristics. Two QTFDs from
the linear chirp class are the linearly warped WD and
the chirpogram. These are obtained when the WD and

the spectrogram, respectively, are warped as in (40) with
quadratic characteristics function. The linearly warped WD
is found to provide high localized representations when
analyzing linear time mudulation signals. On the other hand,
the chirpogram has a definite t-f resolution advantage over
the spectrogram when analyzing multicomponent signals
with linear characteristics. This is because the smoothing
operation of the chirpogram is performed along lines of
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Figure 18: TFD of a signal with highly nonlinear IF. Spectrogram (a), (d), WD (b), (e), complex-lag distribution (c), (f). (a), (b), and (c)
signals with a relatively high noise SNR = 10 dB. (d), (e), and (f) signals with a small noise SNR = 30 dB (all adopted from Stankovic [165]).

any slope in the t-f plane whereas the smoothing of the
spectrogram is only along horizontal or vertical lines [166].

Through various examples, Hlawatsch et al. prove the
power QTFDs as ideal for signals that propagate through
linear systems with specific power GD characteristics such
as when a wave propagates through a dispersive medium
[160]. Other signals that are matched to kth power QTFDs
include the dispersive propagation of shock wave in a steel
beam (k = 0.5) [167, 168], transionospheric signals mesured
by satellites (k = −1) [169], acoustical waves reflected
from a spherical shell immersed in water [170], some
cetacean mammal whistles [171], and diffusion equation-
based waveforms (k = 0.5) [172] (e.g., waves from uni-
form distinbuted radio communication transmission lines
[173]).

Limitations. Warping-based or Dispersive QTFDs could be
computationally intensive when implemented directly using
numerical integration as in the case of warping WD to
obtain power WD. Hlawatsch et al. suggest an alternative
implementation scheme based on the warping formulation
in (40) that allows the use of existing efficient algorithms
for computing Cohen’s class or Affine class QTFDs as done
by them in [160] for power QTFDs. However the increased
computational complexity of the dispersive QTFDs is the

trade-off for the improved performance in analyzing signals
with matched dispesive GD characteristics.

2.2.5. TFDs with Complex Arguments. One of the most
important concept to improve concentration in case of
nonlinear structures is the complex argument distributions
(CADs) introduced by Stankovic [165] and generalized
later by Cornu et al. [174]. The purpose is to develop a
distribution highly concentrated along the GD or the IF
for the mono- and multicomponent signals. The CADs use
complex-frequency argument (in the Laplace domain) and
a corresponding complex-lag argument in the time domain
[165]. These two new forms are able to produce almost
completely concentrated representations along the GD or
the IF. Since the signal is available along the real time axis
only, the tools for calculation of a complex-valued argument
form of the signal are also considered and proposed by
Stankovic in [165]. These tools make use of the relation
between the FT and the Laplace transform and the analytic
extension of the signal [175]. Stankovic [165] also presents
a procedure for application of CADs on the t-f analysis of
multicomponent signals, which may produce CTs reduced
forms of the CADs. The procedure is shown to be efficient
in reducing the noise influence on the t-f representation of
monocomponent noisy signals. Stankovic further analyzes
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the CADs as an IF estimator in the noisy signal cases and
derives the estimator’s variance and bias.

Complex Argument Distribution—Definitions. A. Complex-
frequency distribution. It is defined as [165]

CADF(t.ω) = 1
2π

∫

X
(

jω + j
π

4

)

X∗
(

jω− j
π

4

)

× X j
(

jω +
θ

4

)

X− j
(

jω − θ

4

)

e jθtdθ,

(41)

where x(t), X( jω) = A(ω)e jϕ(ω) and X( jω ± j(π/4)) are the
signal, its FT pair, and its Laplace transform at s = ±θ/4 +
jω. Stankovic numerically proves that the CAD of a signal
X( jω) is concentrated along the GD tg(ω) = −ϕ′(ω) with
the lowest spreading term being of the fifth order. This means
that a completely concentrated distribution for the phase of
up to the fourth-order polynomial function of time can be
obtained.

B. Complex-Lag Distribution. The IF is more commonly
used signal parameter than the GD. Stankovic [165] intro-
duces the TFD producing improved concentration along the
IF by replacing frequency with time since any definition
in frequency domain can be reintroduced in its dual
form. In order to define a representation with complex-
valued argument, mathematical quantity introduced is the
“complex time” or complex-lag argument which is related to
the time axis in the same way as the complex frequency is
related to the frequency axis. The complex-lag distribution is
defined by

CADT(t.ω) =
∫

x
(

t +
τ

4

)

x∗
(

t − τ

4

)

× x− j
(

t + j
τ

4

)

x j
(

t − j
τ

4

)

e− jωτdτ.

(42)

Simulation Examples. It has been shown through simula-
tions that the inner artifacts in the representations of signals
with fast varying frequency or GD could be significantly
reduced. First example is a noisy monocomponent signal
considered by Stankovic, which is expressed as [165]

x(t) = exp
[

j
(

6 cos(πt) +
2
3

cos(3πt) +
2
3

cos(5πt)
)]

+ n(t)

(43)

within the interval t ∈ [−1, 1], with Δt = 2/N , and N =
128. The spectrogram, WD, and the complex-lag distribution
are shown in Figure 18. Based on the distributions from
Figure 18, the IF is estimated for various values of the noise
standard deviation: σn = 0.031, σn = 0.31, σn = 0.707,
and σn = 1. The estimated IF is shown in Figure 19. It
can be seen that although the lag window is quite narrow,
the bias in the WD and the spectrogram is significant
and dominates in the estimation error. Variance in the
complex-lag distribution is slightly higher, whereas the bias
is significantly lower, thus improving the overall estimation.
When the noise is increased, the number of instants where

the IF estimator completely misses the IF increases [176]
in the WD and the spectrogram. Therefore, although the
variance of the estimation should not be large, the misses
degrade the performance of these distributions. However, the
performance of the complex-lag distribution is far ahead of
all considered cases.

Second example considered by Stankovic is multicompo-
nent signal given by

x(t) = exp
(

j7.5π
(

0.5t4 − 0.8t2)− j8.5πt
)

+ exp j3 cos(πt) +
cos(3πt)

2

+
cos(5πt)

2
+ 8.5πt + n(t).

(44)

According to the procedure for a multicomponent signal
realization illustrated by Stankovic, the representations are
obtained shown in Figure 20. The case of real-valued signal

x(t) = cos
[

9 cos(πt) +
2
3

cos(3πt) +
5
7

cos(5πt)
]

+ n(t)

(45)

whose components intersect, is shown in Figure 20, as well.
CTs between positive and negative frequencies are removed
in the same way as other CTs.

Generalized Representations of Phase Derivative for Regular
Signals. Recently a class of generalized complex-lag distribu-
tions (GCADs) is proposed by Cornu et al. in [174]. These
distributions based on generalized complex-lag moment
(GCM) provide the representation of arbitrary instantaneous
phase derivative (IPD). They can estimate any order of IPDs
and produce high concentration. These GCADs can provide
an accurate IF estimation, even in the case of significant
IF variation within only a few signal samples. Moreover
the IF rate estimation introduced by some of the existing
methods (e.g., [177]) can also be obtained with a slight
modification of a particular form of the GCAD. In addition,
better IFR concentration can be achieved by using higher
order t-f rate distributions belonging to the proposed class
of distributions. These distributions are parameterized by
two integers K and N . One important property is that they
provide high concentration along the Kth derivative of the
phase. A special case of this class of distributions, for K = 1,
provides distributions for t-f analysis. Among them, the WD
is one of the special cases. The most interesting distributions
for K = 2 (time-“frequency rate” analysis) and for K = 3 are
analyzed too by Cornu et al.

A. Concept. Cornu et al. make use of the ideal representa-
tion of an arbitrary IPD, given as [174]

IPDK (t,Ω) = δ
(

Ω−Φ(K)(t)
)

, (46)

where Ω is the axis which corresponds to the Kth derivative
of the phase function Φ(t) for the signals of the form s(t) =
A exp( jΦ(t)). The authors term this distribution in general
the ideal time “phase derivatives” distribution, that provides
this representation. The IF representation and the IF rate
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Figure 19: (a)–(d) IF estimation based on WD, (e)–(h) spectrogram, (i)–(l) complex lag-distribution. First column: SNR = 30 dB. Second
column: SNR = 10 dB. Third column: SNR = 3 dB. Fourth column: SNR = 0 dB (all adopted from Stankovic [165]).

can subsequently be obtained by replacing K = 1 and 2,
respectively, in (46).

By making use of complex variable analysis [175], Cornu
et al. define complex moment in order to otbain distribution
concentrated along Kth phase derivative, as

GCMK
N [s](t, τ) =

N−1
∏

k=0

sω
N−K
N ,k
(

t + ωN ,kτ
)

, (47)

where ωN ,k = e j2πk/N , and (47) is introduced to produce
phase in discrete form as

Angle
[

GCMK
N [s](t, τ)

]

=
N−1
∑

k=0

Φ
(

t + ωN ,kτ
)

ωN−K
N ,k (48)

by expanding Φ into Taylor’s series, and subsequent sim-
plication leads to the following expression for the discrete
phase:

Angle
[

GCMK
N [s](t, τ)

]

= Φ(K)(t)
NτK

K !
+ R(t, τ), (49)

where the remainder R(t, τ), the spread factor of the GCAD,
is written as

R(t, τ) = N
∞
∑

k=1

Φ(Nk+K)(t)
τNk+K

(Nk + K)!
. (50)

To obtain a distribution concentrated along along Kth phase
derivative, Cornu et al. linearizes the first term in (49) with
respect to τ. As a result, the GCM becomes

GCMK
N [s](t, τ) =

N−1
∏

k=0

sω
N−K
N ,k

⎛

⎝t + ωN ,k
K

√

K !
N

τ

⎞

⎠. (51)

By taking the FT of the GCM produces the GCAD, whose
mathematical expression is given as [174]:

GCADK
N [s](t,ω) = -Fτ

[

GCMK
N [s](t, τ)

]

= -Fτ

[

e jΦ
(K)(t)τe jR(t,τ)

]

= δ
(

ω−Φ(K)(t)
)

ω∗-Fτ

[

e jR(t,τ)
]

.

(52)

It can be concluded that a high value of N reduces
interferences in the resultant GCAD, since the spread factor
R(t, τ) is reduced.
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Figure 20: TFD of a multicomponent signal with highly nonlinear IF. Spectrogram (a), (d), WD (b) , (e), complex-lag distribution (c) , (f).
(a) , (b), (c): noisy signal with SNR = 30 dB. (d), (e) , (f): noisy signal with SNR = 20 dB (all adopted from Stankovic [165]).

B. IF Representation Using Test Signals. Cornu, Stankovic,
Ioana, and Ljubisa Stankovic test the proposed GCADs on
several signals and compare the results with conventional
representations. Two test cases are shown here to determine
the effectiveness of proposed approach. The first one is a
periodically FM signal with rapid frequency variations added
with noise. The second one is still a periodically FM signal
with faster frequency variations without noise. The WD and
the GCAD of first signal are depicted in Figures 21(a)-21(b).
The signal is contaminated with a white Gaussian noise. The
SNR is about 10 dB. The WD cannot follow the frequency
variation of the signal since it is highly nonlinear. The sixth-
order GCAD is naturally more robust to noise and exhibits a
better signal representation. It is almost interference free and
has no artifacts in this case. The second signal, has very rapid
frequency variations (TFDs shown in Figures 21(c)-21(d)).
The sixth-order GCAD is still well fitted to the theoretical IF,
and the interferences level is negligible compared with the
WD.

2.2.6. Neural Network-Based TFDs. A neural network- (NN-
) based method to compute TFDs is proposed by Shafi et
al. [178, 179]. The output TFDs (henceforth neural network
TFDs (NTFDs)) are free of any blurring effect, without any
prior knowledge of the components in the signal. Figure 22

is the general block form representation of the method. The
authors treat TFDs as 2D images and recognize vectors of
different nature based on various edges. These vectors are
separated and clustered according to the elbow criterion. The
multiple Bayesian regularized neural networks (BRNNs) are
trained for each group of vectors in a cluster and by keeping
track of the network error or performance, accessible via
the training record, the best network is selected in terms of
training performance. These selected networks are termed
the localized neural networks (LNNs), specialized for one
type of vectors each.

The Method. The NN-based model can be described as
the combination of three processes which include the
preprocessing of input data, training/testing of the BRNNM,
and the postprocessing of output data. The spectrogram and
highly concentrated WD of known signals are used to train
the BRNNs. The presence of CTs in the target TFDs make
them unsuitable to be presented as target to NN [180], and
are therefore removed before the TFD is fed to NNs. This is
achieved by multiplying the WD with Gabor transform of
the signal obtained with reasonably sized hamming window
[181].

The input and target TFDs are converted into vectors.
The mean of pixel values so obtained are computed with a
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Figure 21: TFDs of test signals, (a), (b) a noisy signal, SNR = 10 dB: (a) WD, and (b) sixth GCAD, (c), (d) a signal with fast-varying IF: (c)
WD, and (d) sixth GCAD (all adopted from Cornu et al. [174]).

view that the IF can be computed by averaging frequencies at
each time instant, a definition suggested by many researchers
[3]. These empirical values are paired with the vectors
obtained from target TFDs. The vectors are clustered based
on the elbow criterion [182] in relation to underlying image
features like edges present in the data. The objective is to
divide the input vector space into number of sub-spaces, Sn,
described by directional unit vectors, vn. A vector will lie in
the subspace Sn represented by vn that is most similar to this
vector measured by an inner-product similarity measure.

A single layer feed-forward backpropagation NN model
with 40 hidden units is used. The Bayesian regularized
Lavenberg-Marquardt backpropagation training algorithm
is used for training the multiple NNs. The hidden layer
of sigmoid neurons followed by an output layer of pos-
itive linear neurons, respectively, are fixed as the transfer
functions [183, 184]. For each cluster, multiple NNs are
trained by the selected training algorithm incorporating the
Bayesian regularization. By keeping track of the network
error, accessible via the training record, the best network is
selected in terms of training performance for each cluster.
The best networks for the respective clusters are called the
LNNs. The LNNs are then fed with the test image vectors
and the resultant data is postprocessed.

Simulation Result. For this paper, a real-life multicomponent
signal used by the authors is shown to check the proposed
model’s performance. The test spectrograms is depicted in
Figure 23(a), and the NTFD for this test signal is shown in
Figure 23(b). For better comparison, Figures 23(c) and 23(d)
depict the WD and reassigned TFD for the same test signal.
Visual results indicate the superiority of NTFD as compared
to the other TFDs. The NTFDs are deblurred but are not
valid energy distributions because they do not observe the
signature continuity and marginal characteristics or weak
signal mitigation and lack the parametric representations.
Due to this reason, the results may not be feasible for
certain applications as different applications have different
preference and requirement to the TFDs. This problem may
be attributed to the discontinuities in the target TFDs and
is expected to overcome by better pre- and postprocessing
techniques and by using continuous target TFDs.

2.2.7. TFDs Based on Signal Expansions. The wide scope of
patterns embedded in complex signals and the precision of
their characterization motivate decompositions over large
and redundant dictionaries of waveforms. Linear expansions
in a single basis, whether it is a Fourier, wavelet, or any
other basis, are not flexible enough. In Fourier and wavelet



EURASIP Journal on Advances in Signal Processing 29

Correlator

Pre-processing

Post-processing

Post-
processing

Processing
through
BRNNM

Vectorization

Cluster A Cluster B Cluster N

Training &
target TFDs

Training 
multiple
BRNNs

LNN
selection

LNN
selection

LNN
selection

Training 
multiple
BRNNs

Training 
multiple
BRNNs

Cluster A Cluster B Cluster N

Vectorization

Test
TFDs

Correlator Resultant
TFDs

· · ·

· · ·

· · ·

· · ·

Figure 22: Flow diagram of the NN-based method [178].

basis, it is difficult to detect and identify the signal patterns
from their expansion coefficients, because the information
is diluted across the whole basis. Due to this reason, there
has been an explosion of interest in alternatives to tradi-
tional signal representations. Instead of just representing
signals as superpositions of sinusoids (the traditional Fourier
representation) now there are available alternate dictionar-
ies. Out of such dictionaries, that is, the collections of
parameterized waveform, the wavelets dictionary is the best
known. Wavelets, steerable wavelets, segmented wavelets,
Gabor dictionaries, multiscale Gabor dictionaries, wavelet
packets, cosine packets, chirplets, warplets, and a wide range
of other dictionaries are now available. Each such dictionary
D is a collection of parameterized waveforms (ϕμ)μ∈Γ, with

μ a parameter. The waveforms ϕμ are discrete-time signals
of length n called atoms. Depending on the dictionary,
the parameter μ can have the interpretation of indexing
frequency, in which case the dictionary is a frequency or
Fourier dictionary, of indexing time scale jointly, in which
case the dictionary is a time-scale dictionary, or of indexing
t-f jointly, in which case the dictionary is a t-f dictionary. A
decomposition of a signal x can be envisioned as [185]

x =
m
∑

i=1

γμiϕμi + R(m), (53)

where γμi are the coefficients and R(m) is a residual. Depend-
ing on the dictionary, such a representation decomposes the
signal into pure tones (Fourier dictionary), bumps (wavelet
dictionary), chirps (chirplet dictionary), and so forth.

Finding a Suitable Representation Leading to High-Resolution
TFDs. The decomposition in (53) is nonunique, because
some elements in the dictionary may have representations in
terms of other elements. Nonuniqueness gives the possibility
of adaptation, that is, of choosing from among many
representations one that is most suited to the purposes
considered. The advantages sought could be summarized as
follows.

(1) Sparsity. The sparsest possible representation of the
object, that is, the one with the fewest significant
coefficients will be obtained.

(2) Superresolution. A resolution of sparse objects that
is much higher resolution than that possible with
traditional nonadaptive approaches will be obtained.

(3) Speed. An important constraint which is perhaps in
conflict with both the earlier goals. It should be
possible to obtain a representation in order O(n) or
O(n log(n)) time.
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Figure 23: Various TFDs for bat chirps signal, (a) the spectrogram (test TFD), (b) NTFD [178], (c) WD, and (d) reassigned TFD [121].

Several methods have been proposed for obtaining
signal representations in overcomplete dictionaries. (Because
they start out that way or because complete dictionaries
are merged, obtaining a new megadictionary consisting
of several types of waveforms (e.g., Fourier and wavelets
dictionaries.)) These range from general approaches, like the
method of frames (MOF) [186] and the method of matching
pursuit (MP) [187], to clever schemes derived for specialized
dictionaries, like the method of best orthogonal basis (BOB)
[188]. These classical methods have both advantages and
shortcomings. The principal emphasis of the proposers
of these methods is on achieving sufficient computational
speed. While the resulting methods are practical to apply
to real data, several computational examples reveal that
the methods, either quite generally or in important special
cases, lack qualities of sparsity preservation and of stable
superresolution.

The expansion of the STSC into an infinite number of
t-f shifted versions of a weighted elementary atom based
on these methods and then applying suitable t-f transform
method like WD will result in highly cocentrated and good
resolution TFDs. We will discuss some important signal

expansion concepts and the resulting TFDs in succeeding
paragraphs, from which the t-f research community has
specially been benefitted.

Matching Pursuits TFDs with Time-Frequency Dictionaries.
Mallat and Zhang [187] introduce an algorithm called
MP, that decomposes any signal into waveforms selected
among a dictionary of t-f atoms, that are the dilations,
translations, and modulations of a single window function.
This is achieved using successive approximations of the signal
with orthogonal projections on dictionary elements. These
waveforms are selected in order to best match the signal
structures. Similar algorithms were proposed by Qian and
Chen [189] for Gabor dictionaries and by Villemoes [190]
for Walsh dictionaries. The MPs provide extremely flexible
signal representations since the choice of dictionaries is not
limited. Moreover the properties of the signal components
are explicitly given by the scale, frequency, time and phase
indexes of the selected atoms. This representation is therefore
well adapted to information processing. Although an MP
is nonlinear, like an orthogonal expansion, it maintains an
energy conservation which guaranties its convergence. Mallat



EURASIP Journal on Advances in Signal Processing 31

Figure 24: TFD of the example signal. The horizontal axis is time.
The vertical axis is frequency. The highest frequencies are on the
top. The darkness of this t-f image increases with the value of TFD.

and Zhang then derive a t-f energy distribution, by adding
the WD of the selected t-f atoms. Contrarily to the WD or
Cohen’s class distributions, this energy distribution does not
include interference terms and thus provides a clear picture
in the t-f plane.

Compact signal coding is another important domain
of application of MPs. For a given class of signals, if the
dictionary can be adapted to minimize the storage for a
given approximation precision, better results are guaranteed
than decompositions on orthonormal bases. Indeed, an
orthonormal decomposition is a particular case of MP where
the dictionary is the orthonormal basis. For dictionaries
that are not orthonormal bases, the inner products of the
structure book and the indexes of the selected vectors need
coding. This requires to quantize the inner product values
and use a dictionary of finite size. The MP decomposition
is then equivalent to a multistage shape-gain vector quan-
tization in a very high dimensional space. For information
processing or compact signal coding, it is important to have
strategies to adapt the dictionary to the class of signal, that
is, decomposed. If enough prior information is available, the
dictionary can be adapted to the probability distribution of
the signal class within the signal space. Finding strategies to
optimize dictionaries in high dimensions is an open problem
that shares similar features with learning problems in
NNs.

Numerical Example. Mallat and Zhang formulates the dis-
crete implementation of an MP for a dictionary of Gabor
t-f atoms with numerical examples. For example, here the
TFD of a signal s(t) that is built by adding chirps, truncated
sinusoidal waves and waveforms of different t-f localizations
is shown in Figure 24. Each Gabor t-f atom selected by
the MP is an elongated Gaussian blob in the t-f plane.
Appearance of two chirps that cross each other, with a
localized t-f waveform at the top of their crossing point is
clearly seen. We can also detect closely spaced Diracs, and
truncated sinusoidal waves having close frequencies. Several
isolated localized t-f components also appear in this energy
distribution.

Basis Pursuit TFDs. The basis pursuit (BP) proposed by
Chen et al. [185] finds signal representations in overcomplete
dictionaries by convex optimization; it obtains the decom-
position that minimizes the η1 norm of the coefficients
occurring in the representation. Because of the nondifferen-
tiability of the η1 norm, this optimization principle leads to
decompositions that can have very different properties from
the MOF—in particular, they can be much sparser. Because
it is based on global optimization, it can stably superresolve
in ways that MP cannot. Moreover BP can be used with
noisy data by solving an optimization problem trading off
a quadratic misfit measure with an η1 norm of coefficients.
BP is closely connected with linear programming. Recent
advances in large-scale linear programming—associated
with interior-point methods—can be applied to BP and can
make it possible, with certain dictionaries, to nearly solve the
BP optimization problem in nearly linear time.

There are important connections between BP and meth-
ods like Mallat and Zhong’s MP [187] multiscale edge
representation and Rudin et al. [133] total variation-based
denoising methods, while experimenting with some non-
standard dictionaries, like the stationary wavelet dictionary
and the heaviside dictionary.

A. BP Optimization Principle. If it is assumed that the
dictionary is overcomplete, then there are in general many
representations as in (53). The principle of BP is to find a
representation of the signal whose coefficients have minimal
η1 norm. Formally, one solves the problem

min
∥
∥γ
∥
∥

1 subject to Φγ = x. (54)

From one point of view, (54) is very similar to the MOF
where solution to min‖γ‖2 subject to Φγ = x is sought.
Here for BP simply η1 replaces the η2 norm as done in
(54). However, this apparently slight change has major
consequences. The MOF leads to a quadratic optimization
problem with linear equality constraints and so involves
essentially just the solution of a system of linear equations. In
contrast, BP requires the solution of a convex, nonquadratic
optimization problem, which involves considerably more
effort and sophistication.

The solution of (54) can be obtained by solving an
equivalent linear program [191]. The linear programing in
so-called standard form [191] is a constrained optimization
problem defined in terms of a variable x ∈ Rm by

min cTx subject to Ax = b, x ≥ 0, (55)

where min cTx is the objective function, Ax = b is a
collection of equality constraints, and x ≥ 0 is a set of
bounds. The main question is which variables should be
zero. Reformulation of the BP problem is therefore needed
by making suitable translations. Thereafter any algorithm
from the linear programming literature can be considered as
a candidate for solving the BP optimization problem; both
the simplex and interior-point algorithms offer interesting
insights into BP.

BP-Simplex Algorithm. In standard implementations of
the simplex method for linear programming, one first
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finds an initial basis B consisting of n linearly independent
columns of A for which the corresponding solution B−1b
is feasible (nonnegative). Then one iteratively improves the
current basis by swapping, at each step, one term in the
basis for one term not in the basis, using the swap that
best improves the objective function. There always exists a
swap that improves or maintains the objective value, except
at the optimal solution. Hence the simplex algorithm is
explicitly a process of BP; iterative improvement of a basis
until no improvement is possible, at which point the solution
is achieved.

Translating this linear programming algorithmin to
BP terminology, one starts from any linearly independent
collection of n atoms from the dictionary. One calls this the
current decomposition. Then one iteratively improves the
current decomposition by swapping atoms in the current
decomposition for new atoms, with the goal of improving
the objective function.

BP-Interior Point Algorithm. The collection of feasible
points {x : Ax = b, x ≥ 0} is a convex polyhedron in Rm

(a “simplex” ). The simplex method, viewed geometrically,
works by walking around the boundary of this simplex,
jumping from one vertex (extreme point) of the polyhedron
to an adjacent vertex at which the objective is better. Interior
point methods instead start from a point x(0) well inside
the interior of the simplex (x(0) 
 0) and go “through
the interior” of the simplex. Since the solution of a linear
program is always at an extreme point of the simplex,
as the interior-point method converges, the current iterate
x(k) approaches the boundary. One may abandon the basic
interior-point iteration and invoke a “cross-over” procedure
that uses simplex iterations to find the optimizing extreme
point.

Translating this linear programming algorithmin to BP
terminology, one starts from a solution to the overcomplete
representation problem Φγ(0) = x with γ(0) > 0. One
iteratively modifies the coefficients, maintaining feasibility
Φγ(k) = x and applying a transformation that effectively
sparsifies the vector γ(k). At some iteration, the vector has
≤ n significantly nonzero entries, and it “becomes clear”
that those correspond to the atoms appearing in the final
solution. One forces all the other coefficients to zero and
“jumps” to the decomposition in terms of the ≤ n selected
atoms.

B. Examples. Chen et al. [185] consider number of practical
signals to demonstrate the effectiness of the proposed BP
method. Here two synthetic examples are presented includ-
ing (i) an FM sinusoid superimposed with a pure sinusoid,
and (ii) a composite of six atoms: a Dirac, a sinusoid, and
four mutually orthogonal wavelet packet atoms.

Figure 25(a) displays the artificial signal consisting of an
FM sinusoid superposed with a pure sinusoid: x = cos(δ0t)+
cos((δ0t + α cos(δ1t))t). Figure 25(b) shows the ideal phase
plane. In Figure 25(c)–25(f), the signal is analyzed using the
cosine packet dictionary based on a bell 16 samples wide.
It is evident that BOB cannot resolve the nonorthogonality
between the sinusoid and the FM signal. Neither can

MP. However, BP yields a clean representation of the two
structures.

The synthetic signal which is composite of six atoms,
adjacent in the t-f plane is depicted in Figure 26. The
wavelet packet dictionary of depth D = log2(n) is employed,
based on filters for symmlets with eight vanishing moments.
Figure 26 displays the results in phase-plane form; for
comparison, the phase planes obtained using MOF, MP, and
BOB are also included. First, note that MOF uses all basis
functions that are not orthogonal to the six atoms, that is,
all the atoms at times and frequencies that overlap with some
atom appearing in the signal. The corresponding phase plane
is very diffused or smeared out. Second, MP is able to do
a relatively good job on the sinusoid and the Dirac, but
it makes mistakes in handling the four close atoms. Third,
BOB cannot handle the nonorthogonality between the Dirac
and the cosine; it gives a distortion (a coarsening) of the
underlying phase plane picture. Finally, BP finds the “exact”
decomposition in the sense that the four atoms in the quad,
the Dirac, and the sinusoid are all correctly identified.

TFDs Based on Empirical Mode Decomposition. Recently, a
new data-driven technique, referred to as empirical mode
decomposition (EMD), has been introduced by Huang et al.
[192], for analyzing data from nonstationary and nonlinear
processes. In their original paper, Huang et al. introduce a
general method which requires two steps in analysing the
data. The first step is to preprocess the data by the EMD
method, with which the data are decomposed into a number
of intrinsic mode function (IMF) components. Thus, the
data is expanded in a basis derived from the data. The second
step is to apply the Hilbert transform to the decomposed
IMFs and construct the energy-frequency-time distribution,
designated as the Hilbert spectrum, from which the time
localities of events are preserved. This construction of TFD
is offcourse not limited to any one technique, and the better
methods may be used to get TFDs that become highly
localized in t-f domain.

The EMD has received more attention in terms of
applications [193–205] and interpretations [206, 207]. The
major advantage of the EMD is that the basis functions
are derived from the signal itself. Hence, the analysis is
adaptive in contrast to the traditional methods where the
basis functions are fixed. The EMD is based on the sequential
extraction of energy associated with various intrinsic time
scales of the signal, starting from finer temporal scales (high-
frequency modes) to coarser ones (low-frequency modes).
The total sum of the IMFs matches the signal very well and,
therefore, ensures completeness [192].

The idea is to decompose time series into superpo-
sition of components with well-defined Ifs, that is, the
IMFs. The components should (approximately) obey earlier
requirements of completeness, orthogonality, locality, and
adaptiveness. Next construct the Hilbert spectrum of each
IMF, representing it in the t-f plane. However the appro-
priate t-f representation (e.g., reassignment method) of the
decomposed IMF result into highly concentrated TFDs as
shown in Figure 27 for a synthetic three-component example
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Figure 25: Analyzing the FM cosine signal with a cosine packet dictionary using MOF, BOB, MP, and BP methods (adopted from [185]).

considered by Rilling and Flandrin [208]. The signal in the
top row is decomposed by the EMD, resulting in the three
IMFs listed below and six others that are not displayed since
they are almost zero (they contain less than 0.3% of the total
energy). The t-f analysis of the signal (top left of the four
bottom diagrams) reveals three t-f signatures that overlap in
both time and frequency, thus forbidding the components
to be separated by any nonadaptive filtering technique. The
t-f signatures of the first three IMFs are extracted by EMD
evidence that these modes efficiently capture the three-
component structure of the analyzed signal. All TFDs are
reassigned spectrograms in this case.

Huang’s Algorithm for EMD. The aim of the EMD is to get a
representation of the form, given an observation x(t):

x(t) =
K
∑

k=1

ak(t)ψk(t), (56)

where the ak(t) measure “amplitude modulations” and the
ψk(t) “oscillations.” The EMD involves the decomposition
of x(t) into a series of IMFs through the sifting process,
with each one having a distinct time scale [192]. The
decomposition is based on the local time scale of the signal
and yields adaptive basis functions. The EMD can be seen as

a type of wavelet decomposition whose subbands are built up
as needed to separate the different components of x(t). Each
IMF then replaces the detail signals of x(t) at a certain scale
or frequency band [206]. The EMD picks out the highest
frequency oscillation that remains in x(t). A function is an
IMF if either the number of extrema and the number of zero
crossings are equal or differ at most by one, and at any point,
the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima are zero. Thus,
locally, each IMF contains lower frequency oscillations than
the one that was extracted before. The EMD does not use any
predetermined filter or wavelet function, and thus, it is a fully
data-driven method [192]. To be successfully decomposed
into IMFs, the signal x(t) must have at least two extrema: one
minimum and one maximum.

Implementation. Sifting process involves four major steps
[192]. The idea is to identify (locally) the fastest oscillation,
subtract it to the initial signal, and iterate it on the residual
as follows.

(1) Identify local maxima and minima in the signal.

(2) Deduce an upper and a lower envelope by interpola-
tion (cubic splines)

(a) Subtract the mean envelope from the signal.
(b) Iterate until #{extrema} = #{zeroes} ± 1.
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Figure 26: Analyzing the signal which is a composit of six atoms by the MOF, BOB, MP, and BP methods (adopted from [185]).

(3) Subtract the so-obtained mode from the signal.

(4) Iterate on the residual.

The result of the sifting is that x(t) is decomposed into
IMF j(t), j = 1, . . . ,C, and a residual RC(t) given by

x(t) =
C
∑

j=1

IMF j(t) + RC(t), (57)

where C is the number of modes, which is automatically
determined using the stopping criterion. Thus C is signal
dependant. The output of the EMD is thus a priori some
sort of adaptive multiresolution decomposition [202]. In
order to better assess the potential of the method, Flandrin
and Gonçalves illustrate its behavior in Figure 27 on a
synthetic signal. The results show that the EMD may be
very efficient at naturally decomposing signals that are a
burden to handle with usual methods based on Fourier or
wavelet transform and often necessitate ad hoc solutions.
The method proved useful in a variety of applications as
diverse as climate variability [209], biomedical engineering
[210], or blind-source separation [211]. The technique is,
however, faced with the difficulty of being essentially defined

by an algorithm, and therefore of not admitting an analytical
formulation which would allow for a theoretical analysis and
performance evaluation.

Matching Pursuit Adaptive TFDs. A novel approach to
extract the IF from its adaptive TFD is proposed recently by
Krishnan [212]. The adaptive TFD of a signal is obtained by
decomposing the signal into components with reasonable t-f
localization and by combining the WD of the components.
The adaptive TFD, thus obtained, is free of CTs and is a
positive TFD but it does not satisfy the marginal properties.
The marginal properties are achieved by applying the MCE
optimization to the TFD. Then, IF may be obtained as
the first central moment of this adaptive TFD. Krishnan
has shown successful extraction of the IF of a set of real-
world and synthetic signals of known IF dynamics with the
proposed method. In [213], a solution to the multicom-
ponent problem was given by proposing an algorithm to
select an optimal TFD from a set of TFDs for a given signal.
Krishnan, in his approach, has addressed the same problem
by constructing TFDs according to the application in hand,
that is, he has tailored the TFD according to the properties
of the signal being analyzed. In his method, by using
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Figure 27: Synthetic three-component example. The signal in the top row is decomposed by the EMD, resulting in the three IMFs listed
below. All TFDs are reassigned spectrograms (adopted from [208]).

constraints, the TFDs are modified to satisfy certain specified
criteria. It is assumed that the given signal is somehow
decomposed into components of a specified mathematical
representation. By knowing the components of a signal,
the interaction between them can be established and used
to remove or prevent CTs. This avoids the main drawback
associated with Cohen’s class TFDs.

A. Concept. The key to successful design of adaptive
TFDs lies in the selection of the decomposition algorithm.
The components obtained from a decomposition algorithm
depend largely on the type of basis functions used. Krishnan
makes use of the MP algorithm [187], which decomposes
the given signal using basis functions that have excellent t-
f properties. The signal x(t) is projected onto a dictionary of
t-f atoms obtained by scaling, translating, and modulating a
window function σ(t). In [212], the window is selected to be
Gaussian type function considered most optimally, that is,
σ(t) = 21/4 exp(−πt2); the t-f atoms are then called Gabor
atoms, and they provide the optimal t-f resolution in the t-f
plane.

The algorithmic steps followed in [212] are as follows.

(1) The signal is iteratively projected onto a Gabor
function dictionary.

(2) This process decomposes the signal into various parts
including the inner product of the signal with various
t-f atoms and the residue terms.

(3) The process is continued by projecting the residue
onto the subsequent functions in the dictionary and
after M iteration on simplification:

x(t) =
M−1
∑

n=0

〈

Rnx, σλn
〉

σλn + RMx(t), (58)

where RM and σλn are Mth residue after approxi-
mating in the direction of σλn and the nth Guassina
type t-f atom, respectively, with R0x(t) = x(t). The
author suggests two ways to stop the iterations either
by using a prescribed limiting number M of the t-
f atoms or by checking the energy of the residue
RMx(t). Doing so, Krishnan takes the WD of the t-
f atoms in (58) and subsequently comes up with a
signal-decomposition-based TFD after rejecting the
CTs, which is given as

Q(t,ω) =
M−1
∑

n=0

∣
∣
〈

Rnx, σλn
〉∣
∣2
Wσλn(t,ω). (59)
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Figure 28: OMP TFDs of a monocomponent, nonstationary, synthetic signal consisting of a chirp, an impulse, and a sinusoidal FM
component (SNR = 10 dB) and (SNR = 0 dB), respectively.

B. Simulation Results. The TFD in (59) is found free of
CTs, termed by author as matching pursuit TFD (MPTFD).
He further optimizes it using the cross-entropy minimization
method [214, 215] to satify the marginal properties. The
resultant TFD is found to have good signal representation
and is claimed appropriate for analysis of nonstationary
multicomponent signals. The IF of a signal is computed as
the first moment of TFD long for each time slice. The method
applied to synthetic signal composed of nonoverlapping
chirp, transient, and sinusoidal FM components. To simulate
noisy signal conditions, the signal is further corrupted
by adding random noise of different SNR values. The
suggested method by Krishnan gives a clear picture of
the IF representation, as we find that the three simulated
components are reasonably localized in the TFDs shown in
Figure 28.

3. Concluding Remarks

The attempt to clearly understand what a time-varying
spectrum is, and to represent the properties of a signal
simultaneously in time and frequency without any ambigu-
ity, is one of the most fundamental and challenging aspects
of analysis. The t-f processing with regard to improved
concentration and resolution is found essential for the
ideal and unambiguous characterization of the STSC, a fact
authenticated by the large amount of published scientific
literature. In this reveiw paper, we attempt to provide a
response to the following questions:

(1) why high concentration and good resolution is
important?,

(2) what are the motivations of various researchers to
propose and implement newer methods for this
purpose? and most immportantly,

(3) how different researchers have used new ideas and
implemented the techniques to achieve the desired
objectives?

Concentrating on various methods and well-tested algo-
rithms, the paper discusses their basic concept, important
properties, implementation methods, and simulation results
that emphasize the importance and significance of the tech-
nique to the analysis signals. Indeed different applications
have different preferences and requirements to the TFDs.
In general the choice of a TFD in a particular situation
depends on many factors such as the relevance of properties
satisfied by TFDs, the computational cost and speed of the
TFD, and the trade-off in using the TFD. However as this
task is achieved by many different types of t-f techniques,
it is important to search for the one that is most pertinent
to the application. Although the WD and the spectrogram
QTFDs are often the easiest ot use, they do not always
provide an accurate characterization of the real data. The
spectrogram results in a blurred version, and the use of
the WD in practical applications has been limited by the
presence of CTs and inability to produce ideal concentration
for nonlinear IF variations. The spectrogram, for example,
could be used to obtain an overall characterization of the
STSC structure, and then the information could be used to
invest in another QTFD that is well matched to the data
for further processing that requires information that is not
provided by the spectrogram, an idea conceived and used by
Shafi et al. [178].

Here, we barely scratch the surface of the possible
ideas and methods that are used to obtain highly concen-
trated and good resolution distributions to achieve above-
mentioned objectives due to limitation of space. There
are a large number of proposed methods, and only a few
have been explored in a sequence with an aim to produce
the ideas and techniques in a logical way. Our emphasis
has been on the techniques and methodologies that have
been developed steadily with stress over the fundamentals.
It is important to highlight that all the concepts and
techniques developed earlier or in the recent past are truly
impressive. However, it is clear that still much more work lies
ahead.
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“Instantaneous frequency estimation using discrete evolu-
tionary transform for jammer excision,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’01), vol. 6, pp. 3525–3528, Salt Lake,
Utah, USA, May 2001.

[70] R. Suleesathira, L. F. Chaparro, and A. Akan, “Discrete
evolutionary transform for time-frequency signal analysis,”
Journal of the Franklin Institute, vol. 337, no. 4, pp. 347–364,
2000.

[71] R. Suleesathira and L. F. Chaparro, “Interference mitigation
in spread spectrum using discrete evolutionary and Hough
transforms,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP ’00),
vol. 5, pp. 2821–2824, Istanbul, Turkey, June 2000.

[72] S. Barbarossa, “Analysis of multicomponent LFM signals by
a combined Wigner-Hough transform,” IEEE Transactions on
Signal Processing, vol. 43, no. 6, pp. 1511–1515, 1995.

[73] S. Barbarossa, A. Scaglione, S. Spalletta, and S. Votini,
“Adaptive suppression of wideband interferences in spread-
spectrum communications using the Wigner-Hough trans-
form,” in Proceedings of the IEEE International Conference on



EURASIP Journal on Advances in Signal Processing 39

Acoustics, Speech, and Signal Processing (ICASSP ’97), vol. 5,
pp. 3861–3864, Munich, Germany, April 1997.

[74] L. F. Chaparro and A. Alshehri, “Jammer excision in
spread spectrum communications via wiener masking and
frequency-frequency evolutionary transform,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’03), vol. 4, pp. 473–476, Hong
Kong, April 2003.

[75] A. Akan and L. F. Chaparro, “Multi-window Gabor expan-
sion for evolutionary spectral analysis,” Signal Processing, vol.
63, no. 3, pp. 249–262, 1997.

[76] M. Jachan, G. Matz, and F. Hlawatsch, “Time-frequency
ARMA models and parameter estimators for underspread
nonstationary random processes,” IEEE Transactions on
Signal Processing, vol. 55, no. 9, pp. 4366–4381, 2007.
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[113] L. J. Stanković, “A method for improved distribution con-
centration in the time-frequency signal analysis using the L-
Wigner distribution,” IEEE Transactions on Signal Processing,
vol. 43, no. 5, 1995.
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on the instantaneous frequency estimation using quadratic
time-frequency distributions,” IEEE Signal Processing Letters,
vol. 7, no. 11, pp. 317–319, 2000.

[177] P. O’Shea, “A new technique for instantaneous frequency rate
estimation,” IEEE Signal Processing Letters, vol. 9, no. 8, pp.
251–252, 2002.

[178] I. Shafi, J. Ahmad, S. I. Shah, and F. M. Kashif, “Evolution-
ary time-frequency distributions using Bayesian regularised
neural network model,” IET Signal Processing, vol. 1, no. 2,
pp. 97–106, 2007.

[179] I. Shafi, J. Ahmad, S. I. Shah, and F. M. Kashif, “Computing
deblurred time-frequency distributions using artificial neural
networks,”Circuits, Systems, and Signal Processing, vol. 27, no.
3, pp. 277–294, 2008.

[180] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network
Design, Thomson Learning, Boston, Mass, USA, 1996.

[181] S.-C. Pei and J.-J. Ding, “Relations between Gabor transforms
and fractional fourier transforms and their applications for
signal processing,” IEEE Transactions on Signal Processing, vol.
55, no. 10, pp. 4839–4850, 2007.

[182] http://en.wikipedia.org/wiki/Data clustering.
[183] I. Shafi, J. Ahmad, S. I. Shah, and F. M. Kashif, “Impact

of varying neurons and hidden layers in neural network
architecture for a time frequency application,” in Proceedings
of the 10th IEEE International Multitopic Conference (INMIC
’06), pp. 188–193, Islamabad, Pakistan, December 2006.

[184] J. Ahmad, I. Shafi, S. I. Shah, and F. M. Kashif, “Analysis
and comparison of neural network training algorithms for
the joint time-frequency analysis,” in Proceedings of the
IASTED International Conference on Artificial Intelligence and
Applications (AIA ’06), pp. 193–198, Austria, February 2006.

[185] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal of Scientific
Computing, vol. 20, no. 1, pp. 33–61, 1998.

[186] I. Daubechies, “Time-frequency localization operators: a
geometric phase space approach,” IEEE Transactions on
Information Theory, vol. 34, no. 4, pp. 605–612, 1988.

[187] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 12, pp. 3397–3415, 1993.

[188] R. R. Coifman and M. V. Wickerhauser, “Entropy-based
algorithms for best basis selection,” IEEE Transactions on
Information Theory, vol. 38, no. 2, pp. 713–718, 1992.

[189] S. Qian and D. Chen, “Signal representation using adaptive
normalized Gaussian functions,” Signal Processing, vol. 36,
no. 1, pp. 1–11, 1994.

[190] L. F. Villemoes, “Best approximation with Walsh atoms,”
Constructive Approximation, vol. 13, no. 3, pp. 329–355, 1997.

[191] P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear
Algebra and Optimization, Addison-Wesley, Redwood City,
Calif, USA, 1991.

[192] N. E. Huang, Z. Shen, S. R. Long, et al., “The empirical mode
decomposition and the Hubert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal
Society A, vol. 454, no. 1971, pp. 903–995, 1998.

[193] A.-O. Boudraa, J.-C. Cexus, F. Salzenstein, and L. Guillon,
“If estimation using empirical mode decomposition and
nonlinear Teager energy operator,” in Proceedings of the
1st International Symposium on Control, Communications,

and Signal Processing (ISCCSP ’04), pp. 45–48, Hammamet,
Tunisia, March 2004.

[194] J. C. Cexus and A. O. Boudraa, “Nonstationary signals
analysis by Teager-Huang transform (THT),” in Proceedings
of the 13th European Signal Processing Conference (EUSIPCO
’06), Florence, Italy, 2006.

[195] A.-O. Boudraa and J.-C. Cexus, “EMD-based signal filtering,”
IEEE Transactions on Instrumentation and Measurement, vol.
56, no. 6, pp. 2196–2202, 2007.

[196] J. C. Cexus and A. O. Boudraa, “Teager-Huang analysis
applied to sonar target recognition,” International Journal of
Signal Processing, vol. 1, no. 1, pp. 23–27, 2004.

[197] A. O. Boudraa, J. C. Cexus, and Z. Saidi, “EMD-based signal
noise reduction,” International Journal of Signal Processing,
vol. 1, no. 1, pp. 33–37, 2004.

[198] Z. Liu and S. Peng, “Boundary processing of bidimensional
EMD using texture synthesis,” IEEE Signal Processing Letters,
vol. 12, no. 1, pp. 33–36, 2005.

[199] A. O. Boudraa, J. C. Cexus, F. Salzenstein, and A. Beghdadi,
“EMD-based multibeam echosounder images segmenta-
tion,” in Proceedings of the 2nd International Symposium
on Control, Communications, and Signal Processing (ISCCSP
’06), Marrakech, Morocco, March 2006.

[200] K. Zeng and M.-X. He, “A simple boundary process tech-
nique for empirical mode decomposition,” in Proceedings of
the International Geoscience and Remote Sensing Symposium
(IGARSS ’04), vol. 6, pp. 4258–4261, 2004.
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