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1. Introduction

A digital filter bank pair (FBP) is represented by a cascade
connection of an analysis filter bank (AFB) for signal
decomposition and a synthesis filter bank (SFB) for signal
reconstruction. In this contribution, we are exclusively
interested in FBP that are most efficient in terms of (i)
low power consumption calling for minimum computational
load and a modular structure (minimum control overhead),
and (ii) low overall ASFB signal (group) delay. The former
property is most important if the FBP is part of mobile
equipment with tight energy constraints, most pronounced
in hearing aids (HAs) [1], while the latter requirement
must, for instance, be considered in two-way communication
systems or HA, where the total group delay of the FBP shall
not exceed 5–8 milliseconds [2, 3] to allow for sufficient
margin for extensive subband signal processing.

The above computational constraints are best accounted
for by using uniform, maximally decimating (critically-
sampling), complex-modulated (DFT) polyphase FB applying
FIR filters, where all individual frequency responses of the
AFB or SFB are frequency-shifted versions of that of the
corresponding prototype lowpass filters, respectively, [4–6].

As it is well known, critical sampling in FBP gives rise to
severe aliasing in case of low-order (prototype) filters with
overlapping frequency responses which, in general, can be
compensated for by proper matching of the AFB and SFB
(prototype) filters [5, 6]. In contrast, we are interested in FBP
that call for extensive subband signal manipulation, where
aliasing compensation approaches cannot be used. As a
result, the design of FBP considered in this contribution calls
for moderately oversampled subband signals. Thus, nonlinear
distortion due to aliasing and imaging can exclusively be
controlled by adequate stopband rejection of the respective
(prototype) filters. As an example, stopband magnitude
constraints for FBP in HA are derived in [7].

When considering linear-phase (LP) FIR filters for the
prototype design, the above stringent group delay require-
ments are best met, if the filter lengths are as small as
possible [8]. Essentially the same applies to low-delay FIR
filter designs [9].

In the past, many attempts to design FIR lowpass filters
with low group delay have been made [9–12]. In [13], a
procedure for the design of FIR Nyquist filters with low group
delay was proposed that is based on the Remez exchange
algorithm. With the mentioned approaches a filter group
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delay can always be obtained that ranges below the group
delay of a corresponding LP FIR filter. However, the absolute
minimum value of the passband group delay was of no
concern. In contrast, for instance, Lang [14] has shown
that his algorithms for the constrained design of digital
filters with arbitrary magnitude and phase responses have the
potential to achieve a considerable reduction of group delay
as compared to LP FIR filters, even for high-order FIR filters.

Moreover, several solutions to the problem of low-delay
filter banks have been suggested in literature. In [15], an
iterative method for the design of oversampling DFT filter
banks has been proposed, which allows for controlling the
distortion function for each frequency and jointly minimizes
aliasing and imaging. The demand for low group delay
particularly of the AFB prototype filters has not been asked
for explicitly. Based on the algorithm [15] the approach
[16] introduces additional constraints to the delay and phase
responses. Noncritical decimation has also been suggested
in [17], where both filter bank delay aspects and magnitude
deviations of the distortion function have not especially been
taken into consideration. In [18] the problems of aliasing
effect and amplitude distortion are studied. Prototype filters
which are optimised with respect to those properties are
designed and their performances are compared. Moreover,
the effect of the number of subbands, the oversampling
factors, and the length of the prototype filter are also studied.
Using the multicriteria formulation, all Pareto optimums are
sought via the nonlinear programming technique. In [19] a
hybrid optimization method is proposed to find the Pareto
optimums of this highly nonlinear problem. Furthermore it
is shown that Kaiser and Dolph-Chebyshev windows give the
best overall performance with or without oversampling.

From a filter bank system theoretic point of view, we
pursue three objectives, representing steps towards the design
of oversampling uniform complex-modulated (FFT) FIR filter
bank pairs (FBPs) allowing for extensive subband signal
manipulation. We restrict ourselves to integer oversampling
factors as defined by

O = I

M
∈ N, O > 1 (1)

in order not to constrain the applicability of polyphase
prototype filters in any form [4, 6], where I represents the
number of FB channels and M ∈ N the common decimation
or interpolation factor of the FBP, respectively.

(1) In Section 2 being related to the first objective
of this paper, we begin with a system-theoretic
description and analysis of oversampling I-channel
complex-modulated FIR filter bank pairs without
subband signal manipulation, which supplements
and extends the results reported in [16]. In particular,
we investigate the properties of the distortion function
[5, 6], the overall single-input single-output (SISO)
transfer function of the filter bank pair that ideally
approximates a linear-phase allpass function. We
show that both the magnitude and the group delay

of the FBP distortion function are periodic versus
frequency. Furthermore, the group delay of the FBP
is investigated in detail.

(2) For a first design step (cf. Section 3), we introduce
a novel procedure for the constrained design of low-
delay narrow-band FIR prototype filters for over-
sampling complex-modulated filter banks with an
approximately linear-phase frequency response in the
passband and the transition bands. As the objective
function to be minimised we adopt a particular
representation of the group delay [20], while the
stopband magnitude specifications of the prototype
filter, as derived in [7], serve as constraints to control
subband signal aliasing or imaging, respectively. In
the first design step this procedure is used either
for the design of the SFB or the AFB prototype
filter.

(3) For the second and final design step (cf. Section 4),
we use the deviation of the FBP distortion function
from unity as the objective function. To this end,
the AFB (or SFB) FIR prototype filter is designed
subject to the stopband magnitude constraints, as
given by [7], while the SFB (or AFB) prototype filter
is fixed to the design obtained in the previous step.
By this procedure the AFB and SFB prototype filters’
magnitude responses are matched in the passbands
and the transition bands without further consid-
eration of the overall FBP group delay, aiming at
minimum, possibly differing AFB and SFB prototype
filter orders.

To illustrate the results and the potential of the design
procedure, we present a design example in Section 5. Finally,
in Section 6 we draw some conclusions.

2. Oversampling Complex-Modulated
FIR Filter Bank Pairs

We begin with the introduction of our filter bank notation
and a system-theoretic description and analysis of uniform
oversampling I-channel complex-modulated FIR filter bank
pairs (FBP) without subband signal manipulation, the
principle of which is shown in Figure 1. In particular,
we investigate the properties of the distortion function [5,
6], which is required to approximate a linear-phase allpass
function.

2.1. Distortion Function. For a uniform oversampling
complex-modulated I-channel FBP the AFB und SFB filters,
respectively, are derived from common prototype filters
[5, 6]:

Hl(zi) = H
(
ziW

l
I

)
, l = 0, . . . , I − 1,

Gl(zi) = G
(
ziW

l
I

)
, l = 0, . . . , I − 1.

(2)
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Figure 1: Uniform oversampling filter bank pair, oversampling factor O = I/M ∈ N.

Both prototype filters are real-valued FIR filters represented
by their causal transfer functions:

H(zi) =
Nh−1∑

n=0

h(n) · z−ni = cT
h (zi) · h, (3)

G(zi) =
Ng−1∑

n=0

g(n) · z−ni = cT
g (zi) · g, (4)

where the vectors

h = [h(0),h(1), . . . ,h(Nh − 1)]T ∈ RNh ,

g =
[
g(0), g(1), . . . , g

(
Ng − 1

)]T ∈ RNg

(5)

contain Nh or Ng coefficients of the impulse response,
respectively, and the vectors

ch(zi) =
[

1, z−1
i , z−2

i , . . . , z−(Nh−1)
i

]T
,

cg(zi) =
[

1, z−1
i , z−2

i , . . . , z
−(Ng−1)
i

]T
(6)

the associated delays.

The input signal x(n)
zT↔ X(zi) in Figure 1 is simulta-

neously passed through all AFB channel filters Hl(zi), l =
0, . . . , I − 1 and subsequently downsampled by a factor of M,
yielding

Xl(zsn) = 1
M

M−1∑

k=0

Hl

(
z1/M

sn Wk
M

)
X

(
z1/M

sn Wk
M

)
,

l = 0, 1, . . . , I − 1,

(7)

using the alias component representation [5, 6], and WM =
e−j2π/M . In the SFB, the M-fold upsampled subband signals
Xl(zMi ) = Xl(zsn) are combined to form the z-domain output
signal representation [6]:

Y(zi) =
I−1∑

l=0

Gl(zi)Xl

(
zMi

)
. (8)

Inserting the upsampled form of (7) into (8), with zsn = zMi
we obtain

Y(zi) =
I−1∑

l=0

Gl(zi)

⎡
⎣ 1
M

M−1∑

k=0

Hl

(
ziW

k
M

)
X

(
ziW

k
M

)
⎤
⎦

= 1
M

M−1∑

k=0

X
(
ziW

k
M

)⎡
⎣
I−1∑

l=0

Hl

(
ziW

k
M

)
Gl(zi)

⎤
⎦.

(9)

Obviously the output signal representation Y(zi) depends on
all M modulation components X(ziW

k
M), k = 0, . . . ,M − 1,

of the input signal. All these components are filtered by
the compound term

∑I−1
l=0 Hl(ziW

k
M)Gl(zi) and eventually

combined. The transfer function of the zeroth (k = 0)
modulation component is generally denoted as the distortion
function [5, 6]:

Fdist(zi) = 1
M

⎡
⎣
I−1∑

l=0

Hl(zi)Gl(zi)

⎤
⎦. (10)

In our approach this distortion function determines the
properties of the FBP almost exclusively, since aliasing and
imaging is assumed to be negligible as a result of sufficiently
high AFB and SFB prototype filter stopband attenuation.
Inserting (3) and (4) into (10), we obtain

Fdist(zi) = 1
M

⎡
⎣
I−1∑

l=0

H
(
ziW

l
I

)
G

(
ziW

l
I

)⎤
⎦. (11)

Next, the properties of the distortion function (11) are
investigated in the time-domain.

2.2. Time-Domain Analysis. In this section we present a
novel time-domain interpretation of the distortion function.
We begin with introducing the FBP impulse response

s(n) = h(n)∗ g(n)
zT←→ S(zi) = H(zi) ·G(zi). (12)

The length of s(n) is given by [8, 20]

Ns = Nh + Ng − 1. (13)

The distortion function (11) is reformulated by introducing
(12) and by using (1):

Fdist(zi) = O
I

I−1∑

l=0

S
(
ziW

l
I

)
= O · S(I)

0

(
zIi

)
. (14)
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In time-domain this relation is expressed as

fdist(n) = O · s(I)
0 (n) =

⎧⎨
⎩
O · s(mI) ∀n = mI ,m ∈ N,

0 ∀n /=mI ,m ∈ N.
(15)

As a result the distortion function represents the z-transform
of the zeroth polyphase component of s(n) [5, 6]. Consid-
ering (13) and (15) the distortion function in time-domain
fdist(n) has only �(Ns − 1)/I	 + 1 nonzero terms, which leads
to the z-domain representation of the distortion function:

Fdist(zi) = O
�(Ns−1)/I	+1∑

m=0

s(mI) · z−mI
i , (16)

where all zero values of the FBP impulse response s(n)
according to (15) have been discarded. Hence, the corre-
sponding discrete-time Fourier transform of (16) is 2π/I-
periodic, where I is the number of FBP channels. As a
consequence, both the magnitude response and the group
delay response of the FBP distortion function possess this
2π/I-periodicity property.

2.3. Potential Delays. Next, we show that the mean group
delay of a uniform I-channel complex-modulated oversam-
pling FBP is restricted to integer multiples of the number
I of FBP channels. This is an inherent characteristic of a
complex-modulated filter bank and has first been shown in
[16]. Exploiting the above 2π/I-periodicity, we define the
mean group delay:

τdist
g = I

2π

∫ π/I

−π/I
τdist

g

(
Ω(i)

)
dΩ(i). (17)

Since the distortion function (16) is conjugate symmetric:

[
Fdist

(
e−jΩ(i)

)]∗ =
⎡
⎣O

�(Ns−1)/I	∑

m=0

s(mI) · ejmIΩ(i)

⎤
⎦
∗

= Fdist

(
ejΩ(i)

)
,

(18)

the group delay of the filter bank is an even function allowing
for the modification of (17):

τdist
g = I

π

∫ π/I

0
τdist

g

(
Ω(i)

)
dΩ(i). (19)

Using the definition of the group delay as the negative
derivation of the phase ϕ(Ω(i)):

τg
(
Ω(i)

)
= −

dϕ
(
Ω(i)

)

dΩ(i)
, (20)

it follows from (19) that

τdist
g = − I

π

[
ϕ
(
Ω(i)

)]π/I
0
= I

π

[
ϕ(0)− ϕ

(
π

I

)]
. (21)

To determine the phase response at Ω(i) = 0 and Ω(i) = π/I
we use (16) for zi = ej0 = 1:

Fdist

(
ej0

)
= O

�(Ns−1)/I	+1∑

m=0

s(mI) ∈ R, (22)

which is real valued according to (12) since we only consider
real analysis and synthesis prototype filters. Moreover, the
magnitude of the distortion function is supposed to be
approximately unity, Fdist(ej0) ≈ 1 · ejϕdist(0) ∈ R; therefore
the phase response at zero frequency is

ϕdist(0) = κ1 · π, κ1 ∈ Z. (23)

With the same considerations for zIi = ej(π/I)I = −1, we get

Fdist

(
ej(π/I)

)
= O

�(Ns−1)/I	+1∑

m=0

s(mI) · (−1)m ∈ R. (24)

Since at this frequency the distortion function is again real-
valued and approximately unity, Fdist(ej(π/I)) ≈ 1 · ejϕdist(π/I) ∈
R, we conclude that

ϕdist

(
π

I

)
= κ2 · I , κ2 ∈ Z. (25)

Combining the results (23) and (25) with (21) yields

τdist
g = I

π
[κ1 · π − κ2 · π] = (κ1 − κ2) · I. (26)

The result states that a complex-modulated filter bank can
only approximate delays of the form τg = κ · I , κ ∈ Z.

Finally, we present a system-theoretic interpretation of
the fact that the overall group delay is restricted to τg = κ · I .
In the following all examinations of the distortion function
are performed in time-domain using fdist(n). According to
(15) the distortion function represents the zeroth polyphase
component of s(n) = h(n) ∗ g(n) with the prototype filters
(3) and (4). Therefore fdist(n) has only �(Ns − 1)/I	 + 1
nonzero terms which are located at indices that are integral
multiples of I .

We begin with an ideal distortion function of constant
magnitude response and linear-phase. Since the distortion
function in time-domain can be seen as the impulse response
of an FIR filter, the upper demand is equivalent to the
demand for an FIR allpass. According to the theory of FIR
filters this can only be achieved by a simple delay [8, 20, 21].
Therefore all the nonzero terms of fdist(n) have to be zero
except for one. The resulting distortion function is

Fdist(zi) = z−dIi , d ∈ N. (27)

Hence, under ideal allpass conditions, the delay of a uniform
complex-modulated FBP is restricted to integer multiples of
the number I of channels.

Next we relieve the demand for exactly constant mag-
nitude response and ask only for exactly linear-phase. The
nonzero terms of fdist(n) must exhibit a symmetry in order
to impose a linear-phase distortion function. For illustration,
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we start with a simple example assuming an odd length:
�(Ns − 1)/I	 + 1 = 3. To gain a better overview the nonzeros
terms of fdist(n) are put into a vector:

fdist = [ε, 1, ε]T, (28)

where ε � 1 is provided. The distortion function is the
discrete-time Fourier transform of the upper expression:

Fdist

(
ejΩ(i)

)
= ε + e−jΩ(i)I + ε · e−j2Ω(i)I

= e−jΩ(i)I
[

1 + 2 · ε · cos
(
Ω(i)I

)]
.

(29)

As a result, the constant group delay of

τmin
g = I · �(Ns − 1)/I	 − 1

2
= I (30)

is obtained, while the magnitude response of (16) varies in
the vicinity of

1− 2ε ≤
∣∣∣Fdist

(
ejΩ(i)

)∣∣∣ ≤ 1 + 2ε. (31)

Since ε � 1, the distortion function approximates a linear-
phase allpass function sufficiently well. Similar results can be
obtained with any even order �(Ns − 1)/I	 (odd length) of
the downsampled distortion function (16). From the theory
of linear-phase FIR filters it is well known [8, 20, 21] that the
zero-phase frequency responses of even-length symmetric
FIR filters always possess at least a single zero at f = fi/I
(zIi = −1). All antimetric linear-phase FIR filters are likewise
unusable, since they have zero transfer at zero frequency
(zIi = 1). Hence, in case of exactly linear-phase distortion
functions, the impulse response is restricted to even order, to
positive symmetry, and the only possible group delay is given
by (30).

Finally we relieve the demand for exactly linear-phase
and ask only for approximately constant magnitude response
and approximately linear-phase. Thus fdist(n) is no longer
restricted to be symmetric. As a result, the position d · I
of the dominating coefficient of the distortion function
in time-domain can again take on any value according to
d ∈ {1, 2, . . . , �(Ns − 1)/I	}, while all other coefficients at
positions m /=d ∈ {1, 2, . . . , �(Ns − 1)/I	}must be kept close
to zero by optimisation. Hence, the overall mean delay of a
uniform oversampling complex-modulated FBP results in

τg = d · I. (32)

Note that the above considerations of linear-phase FIR filters
likewise apply approximately.

3. Design of Low-Delay FIR Prototype Filter

In this section, we develop a procedure for the design
of real-valued narrowband FIR lowpass prototype filters
for the AFB. We are aiming at (i) minimum group delay
both in the pass and in the transition band and (ii)
meeting tight magnitude frequency response constraints for
the stopband. The requirements concerning the stopband

attenuation can vary with each frequency. Especially, we
look for a unique solution that yields the globally optimum
design. To this end, we introduce for the first time a convex
objective function for group delay minimisation, whereas the
magnitude requirements are used as design constraints.

3.1. Objective Function. Subsequently, a convex objective
function for group delay minimisation of narrowband FIR
filters is developed that delivers the desired globally optimum
design result. To begin with, let us use the polar coordinate
representation of (3):

H
(

ejΩ(i)
)
=

∣∣∣H
(

ejΩ(i)
)∣∣∣ · ejϕ(Ω(i)), (33)

where ϕ(Ω(i)) describes the phase of the FIR filter frequency
response [20].

By calculating the first derivative of the frequency
response as given by both (33) and (13) with respect to the
normalised frequency Ω(i), we obtain a relation that contains
the group delay in one of its summands:

j
dH

(
ejΩ(i)

)

dΩ(i)
= τg

(
Ω(i)

)
·H

(
ejΩ(i)

)

+ j ·
d
∣∣∣H

(
ejΩ(i)

)∣∣∣
dΩ(i)

· ejϕ(Ω(i)).

(34)

Note that (34) is equivalently represented in time-domain
according to the differentiation in frequency property of the
discrete-time Fourier transform:

hderiv(n) = n · h(n)
DTFT←→ j

dH
(

ejΩ(i)
)

dΩ(i)
. (35)

Next we apply the generalized Parseval’s theorem which is [8]

∞∑
n=−∞

x(n)y∗(n)= 1
2π

∫ π

−π
X

(
ejΩ(i)

)
Y∗

(
ejΩ(i)

)
dΩ(i). (36)

On the left side of (36) we substitute x(n) = hderiv(n) = n ·
h(n) and y(n) = h(n). On the right side the corresponding
terms in the frequency domain are inserted. Please note that
X(ejΩ(i)

) corresponds to (33). We get

Nh−1∑

n=0

n · h(n)2

= 1
2π

∫ π

−π

⎛
⎝τg

(
Ω(i)

)
·
∣∣∣H

(
ejΩ(i)

)∣∣∣2

+ j ·
d
∣∣∣H

(
ejΩ(i)

)∣∣∣
dΩ(i)

·
∣∣∣H

(
ejΩ(i)

)∣∣∣
⎞
⎠dΩ(i).

(37)

Using the fact that the derivation of even function yields
uneven function the integral over the imaginary part of the
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integrand in (37) is zero since the integration interval is
symmetric:

Nh−1∑

n=0

n · h(n)2 = 1
2π

∫ π

−π
τg

(
Ω(i)

)
·
∣∣∣H

(
ejΩ(i)

)∣∣∣2
dΩ(i).

(38)

Obviously the rather sophisticated integral corresponds in
time-domain to a simple sum. This formula was first
introduced in [20].

Next, we proof that (38) posseses all the characteristics
the objective function was asked for in last section. This
is best shown by examining the following theoretical con-
strained optimization problem:

min
h

1
2π

∫ π

−π
τg

(
Ω(i),h

)
·
∣∣∣H

(
ejΩ(i)

,h
)∣∣∣2

dΩ(i),

s.t. ∀ h ∈ X ,

(39)

where X is supposed to be the set of all lowpass filters of
length N with a distinctive passband (i.e., negligible ripple)
and very narrow transition band. Moreover low-pass filters
in X are supposed to have a high stopband attenuation.
The set X allows us to simplify the right side of (38) and
makes it possible to explain its functionality. Due to the
second power of the magnitude frequency response and the
assumed high stopband attenuation of the filters in X the

integrand τg(Ω(i))·|H(ejΩ(i)
)|2 is nearly zero in the stopband.

The magnitude frequency response is in consequence of the
negligible ripple nearly one throughout the passband. And
finally due to the assumed very narrow transition band (39)
can be simplified in the following way:

min
h

1
2π

∫ Ω(i)
d

0
τg

(
Ω(i)

)
dΩ(i),

s.t. ∀ h ∈ X.

(40)

It is evident as seen in (40) that by minimizing the
objective function the area bounded by the group delay in
the passband is minimized. Minimizing the area results in
minimizing the group delay itself in the passband, which is
our main purpose. Moreover minimizing the area beneath
the group delay yields a smoothing effect. In the stopband
the group delay is apparently not minimized at all. Therefore
the stopband can be regarded as a “do not care” region
thus increasing the available degrees of freedom. Next we
look at more realistic filters which do not exhibit negligible
transition bands. In this case the second power of the
magnitude frequency response in (39) acts in the transition
band as a real-valued weighting function for the group delay.
Thus guaranteeing that in the transition band close to the
passband edge the group delay is minimized in the most
prevalent form and close to the stopband edge in the least.

One of the objective function’s strongest points is the
simple formulation in time-domain as seen in (39). The sum
on the left side can readily be expressed by a quadratic form:

Nh−1∑

n=0

n · h(n)2 = hT ·DNh · h. (41)

The Nh ×Nh diagonal matrix DN has the following form:

DNh = diag (0, 1, . . . ,Nh − 1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · N − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(42)

This matrix is positive semidefinite, which implies the
convexity of the objective function. Hence gradient and
Hessian matrix, both important for search methods, can be
obtained very easily.

3.2. Constraints. In this section we present functions to
set up constraints for the optimization problem. These
functions enable us to meet the given magnitude frequency
response specifications during the optimization. We show
that all functions are convex and in combination with
the introduced convex objective function yield a convex
optimization problem.

3.2.1. Passband. Narrow-band low-pass filters usually do not
exhibit a distinctive passband. In order to obtain a narrow-
band low-pass filters it is sufficient to ask for

∣∣∣H
(

ejΩ(i)
,h

)∣∣∣
Ω(i)=0

= 1, (43)

which is accomplished by formulating an equality constraint.
Using the relation H(ej0,h) = ±|H(ej0,h)|, whereas the
minus sign can be understood as a special case only [8],
we reformulate the upper constraint function by using (3)
evaluated at Ω(i) = 0:

H
(

ej0
)
= cT

h

(
ej0

)
· h. (44)

The vector e∗(0) is equivalent to the one-vector which is
defined as follows: 1 := (1, . . . , 1)T. The linear (referring to
h) equality constraint for the passband can thus be stated as
follows:

1T · h = 1. (45)

Since term (44) is a linear function in h, the convexity of the
search space defined by the constraints is ensured.

3.2.2. Stopband. The magnitude frequency response specifi-
cations in the stopband are defined by a tolerance mask. To
this end a nonnegative tolerance value functionΔ(Ω(i)) ≥ 0 is
defined, which determines the allowed maximum deviation:

∣∣∣H
(

ejΩ(i)
)∣∣∣ ≤ Δ

(
Ω(i)

)
∀ Ω(i) ∈ Bs. (46)

The tolerance mask is defined on the region of support
Bs, the conjunction of all stopbands, which is a subset of
the bounded interval [0,π]. This makes allowances for the
symmetry of the frequency response of real-valued filters [8].
Regions of the bounded interval [0,π] where no tolerance
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mask is defined are called “do not care” regions. The
definition of the tolerance value function Δ(Ω(i)) according
to (46) can be used to formulate the remaining constraints.
By using the following relation between the magnitude and
the real part of a complex number zi, also known as the real
rotation theorem [15, 16],

|zi| = max
θ∈[0,2π)

[
Re

{
zi · e−jθ

}]
≥ Re

{
zi · e−jθ

}
,

∀θ ∈ [0, 2π),

(47)

and applying it for the magnitude frequency response we
obtain

∣∣∣H
(

ejΩ(i)
,h

)∣∣∣ ≥ Re
{
H

(
ejΩ(i)

,h
)
· e−jθ

}

=
N−1∑

n=0

h(n) · cos
(
Ω(i) · n + θ

)
, ∀θ∈[0, 2π).

(48)

This term again is a linear function in h and can be written
down using the vector representation as follows:

∣∣∣H
(
e jΩ

(i)
,h

)∣∣∣ ≥ cT
(
Ω(i), θ

)
· h, ∀θ ∈ [0, 2π), (49)

where

c
(
Ω(i), θ

)

=
[

cos(θ), cos
(
Ω(i) + θ

)
, . . . , cos

(
[N − 1] ·Ω(i) + θ

)]T
,

(50)

depends not only on the frequency Ω but on also the addi-
tional value θ as well. Using (49) the inequality constraint
can be stated as follows:

cT
(
Ω(i), θ

)
· h ≤ Δ

(
Ω(i)

)
, ∀ Ω(i) ∈ Bs, θ ∈ [0, 2π).

(51)

We see that the region defined by the upper inequality
constraint is convex due to the linearity of the left term
in h. Please note that the number of constraints in the
stopband in the original formulation is infinite regarding
to the frequency Ω(i). In the linearized version according to
(51) a second infinite parameter θ appears, which is induced
by the real rotation theorem. Thus the constraints are now
infinite regarding both Ω(i) and θ.

3.3. Constrained Optimization Problem. In this section the
convex objective function (41) and the convex constraints
(45) and (51) are used to build up a convex constrained
optimization problem. Since all used constraint functions are
linear in h, the so-called Constraint Qualification is always

maintained. The problem can readily be formulated in the
following way:

min
h

hT ·DNh · h

s.t. 1T · h = 1, ∀ Ω(i) = 0

cT
(
Ω(i), θ

)
· h ≤ Δ

(
Ω(i)

)
, ∀ Ω(i) ∈ Bs,

∀ θ ∈ [0, 2π).

(52)

Due to the fact that the objective function is a quadratic
function and the number of constraints is infinite, the overall
optimization problem is called convex quadratic semi-infinite
optimization problem. The term semi-infinite implies a finite
number of unknowns h yet a infinite number of constraints.

To obtain a computable algorithm the number of
constraints has to be reduced to a finite number. The mere
discretization of Ω(i) in the following way:

Ω(i)
k = π

NFFT
· k, k = 0, 1, . . . ,NFFT (53)

is not sufficient for obtaining a finite optimization problem,
since the additional value θ remained still infinite. Therefore
θ has to be discretized as well:

θi = π

p
i, ∀ i = 0, 1, . . . , 2p − 1, p ≥ 2. (54)

The number of discretization points of θ is restricted to even
values.

With these discretizations the infinite problem becomes
a finite one and can be stated as follows:

min
h

hT ·DNh · h

s.t. 1T · h = 1,

Ω0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cT
(
Ω(i)

0 , θ0

)
· h ≤ Δ

(
Ω(i)

0

)

...

cT
(
Ω(i)

0 , θi
)
· h ≤ Δ

(
Ω(i)

0

)

...

cT
(
Ω(i)

0 , θ2p−1

)
· h ≤ Δ

(
Ω(i)

0

)

...

ΩL :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cT
(
Ω(i)

L , θ0

)
· h ≤ Δ

(
Ω(i)

L

)

...

cT
(
Ω(i)

L , θi
)
· h ≤ Δ

(
Ω(i)

L

)

...

cT
(
Ω(i)

L , θ2p−1

)
· h ≤ Δ

(
Ω(i)

L

)
.

(55)
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Table 1: Maximum Error over p.

p 2 4 8 16 32

−20 · log(cos(π/2 · p))/dB 3.0103 0.6877 0.1685 0.0419 0.0105

The price one has to pay for the linearization is the large
number of inequality constraints in the stopband as pointed
out in (55). The overall number of inequality constraints can
be determined to 2 · p · L.

The maximum error depends on factor p. The bigger
p is, the less the maximum error becomes. Table 1 shows
the worst deviation from the constraints for some common
values of p.

4. Design of Low-Delay FIR Filter Bank Pair

In this section a method to design a prototype filter for the
SFB is introduced. The main objective lies in obtaining a
distortion function of an oversampling I-channel complex-
modulated filter bank according to (11) which independently
of the frequency nearly equals a constant delay. At the
same time the constant delay is supposed to be the smallest
possible one as figured out in Section 2. Please note that all
requirements regarding the distortion function are met on
the synthesis filter bank side only. We use the deviation of
the distortion function from a suitable desired distortion
function as objective function, instead of minimizing the
group delay of the distortion function, similar to minimizing
the group delay of an FIR prototype filter in Section 3. The
real-valued SFB prototype filter has to meet given magnitude
frequency response specifications for the stopband. Due to
the fact the constraints agree with those ones of the previous
algorithm, the convex formulation in (51) can be used.
Therefore only the objective function in (55) has to be
modified.

4.1. Objective Function. In this section we present a convex
objective function which minimizes the error between the
distortion function and the desired distortion function
during the optimization. In combination with the convex
constraints in (51) it guarantees unique solutions.

The distortion function (16) depends on both AFB and
SFB prototype filters as shown in Section 2. However the
coefficients of the AFB prototype filter are regarded as
constants in this design step, due to the fact they are fixed
to the design result obtained in the first algorithm. Therefore
the distortion function depends only on the SFB prototype
filter: Fdist(ejΩ(i)

, g). Below the dependence of the distortion
function of g is pointed out only if required; otherwise we

write Fdist(ejΩ(i)
).

As discussed in Section 2 the group delay of the distortion
function of oversampling complex-modulated filter banks is
restricted to integral multiples of the number of channels I
only. For this reason the desired distortion function can be
defined as follows:

Fdist, desire

(
ejΩ(i)

)
= e−jκIΩ(i)

, (56)

where κ ∈ N+. We are excluding the trivial case κ = 0, since
it is not realisable due to causality reasons [6]. By using the
L2-norm the objective function can be formulated as follows:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

, g
)
− e−jκIΩ(i)

∣∣∣2
dΩ(i). (57)

In order to obtain the lowest possible group delay, first the
smallest possible κ is selected, namely, κ = 1. In case of
dissatisfying results κ is to increase gradually until the desired
result is achieved.

4.2. Practical Implementation. Next we want to set up an
objective function which can directly be implemented in
numerical analysis programs like Matlab or Mathematica. To
this end the integrand in (57) is reformulated in the following
way:

∣∣∣Fdist

(
ejΩ(i)

)
− e−jcΩ(i)

∣∣∣2

=
(
Fdist

(
ejΩ(i)

)
− e−jκIΩ(i)

)
·
(
F∗dist

(
ejΩ(i)

)
− ejκIΩ(i)

)

=
∣∣∣Fdist

(
ejΩ(i)

)∣∣∣2 − 2 Re
{

ejcΩ(i) · Fdist

(
ejΩ(i)

)}
+ 1.

(58)

Reinserted in (57), we get an expression consisting of three
separate integrals:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

)∣∣∣2
dΩ(i)

− 2
∫ π

−π
Re

{
ejκIΩ(i) · Fdist

(
ejΩ(i)

)}
dΩ(i) +

∫ π

−π
dΩ(i)

︸ ︷︷ ︸
2π

.

(59)

By applying Parseval’s theorem on the left integral in (59) we
get a formula which allows us to determine the value of the
integral in time-domain [8]:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

,h
)∣∣∣2

dΩ(i) = 2π
Ns−1∑

k=0

f 2
dist(k). (60)

By inserting (15) into the right side of the upper expression
the sum can be stated as follows:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

,h
)∣∣∣2

dΩ(i) = 2πO2
Ns−1∑

k=0

[
s(I)

0 (k)
]2
. (61)

Furthermore we omit all indices k /=mI since they are zero
according to (15). The remaining sum is replaced by a
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weighted scalar product of two vectors:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

,h
)∣∣∣2

dΩ(i) = 2πO2
�(Ns−1)/I	∑

m=0

s2(mI)

= 2πO2
(
sT · s

)
.

(62)

The components of vector s consist of the convolution s(k) =
h(k) ∗ g(k) evaluated for the indices mI , m = 0, . . . , �(Ns −
1)/I	 as shown below:

s =
(
s(0), s(I), s(2I), . . . , s

(⌊
(Ns − 1)

I

⌋
I
))T

. (63)

Let us have a closer look on s(κI) which according to (12) is

s(mI) =
Ng−1∑

k=0

h(mI − k) · g(k). (64)

Remember that the coefficients of the AFB prototype filter
h(k) are considered to be constants in the current step.
Besides h(k) is a causal FIR-filter (finite length), therefore
h(mI − k) in (12) is not equal to zero only if the following
two conditions are fullfilled:

mI − k ≥ 0 =⇒ mI ≥ k,

mI − k ≤ Nh − 1 =⇒ mI −Nh + 1 ≤ k.
(65)

Therefore all redundant zero-multiplications in s(mI) are left
out by taking the above inequations into account:

s(mI) =
min{Ng−1, mI}∑

max{0, mI−Nh+1}
h(mI − n) · g(n), (66)

and by applying the vector/matrix representation can be
stated as follows:

s(mI) = kT
h (m) · g. (67)

The vector kh(m) ∈ RNg depends on the index m and has
the dimension Ng. Its components are made up of g(mI −
k) for all indices k which are included in the sum (66). The
components which correspond to the remaining indices are
simply put zero as shown below:

[kh(m)]k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(mI − k), max{0,mI −Nh + 1}
≤ k ≤ min

{
Ng − 1,mI

}
,

0, otherwise.
(68)

Now the components s(κI) in (63) are replaced by using (67):

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(0)

s(I)

s(2I)

...

s
(⌊

Ns − 1
I

⌋
I
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kT
h (0)

kT
h (1)

kT
h (2)

...

kT
h

(⌊
Ns − 1

I

⌋)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
K∈R�Nh+Ng−2/I	+1×Ng

· g.

(69)

Vector g is pulled out as indicated above, and the remaining
entries are combined to matrix K of dimension �(Nh + Ng −
2)/I	 + 1 × Ng. Please note that K consists only of inversed
and shifted AFB coefficients h(k). Its dimension depends on
both the length of AFB and SFB prototype filters (i.e., Nh and
Ng) and the number of channels I .

Now vector s in (62) is replaced by (69). We obtain a
quadratic form in g:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

, g
)∣∣∣2

dΩ(i) = 2πO2gT ·
(
KT ·K

)
· g.

(70)

The second integral in (59) is

2
∫ π

−π
Re

{
ejκIΩ(i) · Fdist

(
ejΩ(i)

)}
dΩ(i). (71)

According to the inverse discrete-time Fourier transform
of a discrete signal x(k) evaluated explicitly for the zeroth
coefficient [8]

x(0) = 1
2π

∫ π

−π
X

(
ejΩ(i)

)
ej·0·Ω(i)

dΩ(i), (72)

the integral in (71) formally corresponds to

4π · x(0) = 2
∫ π

−π
X

(
ejΩ(i)

)
dΩ(i). (73)

Therefore the evaluation of the integral in (71) is reduced
to the determination of the zeroth coefficient of the inverse
discrete-time Fourier transform of the following expression:

Re
{

ejκIΩ(i) · Fdist

(
ejΩ(i)

)}
. (74)

The inverse discrete-time Fourier transform of (74) can be
obtained by first applying the time-shift property of the
discrete-time Fourier transform [8]:

x(n− n0)
DTFT←→ e−jn0Ω(i)

X
(

ejΩ(i)
)

, (75)
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and secondly using the fact that in case of real-valued signals
the real part in frequency domain corresponds to the even
part in the time-domain [8]:

1
2

[x(n) + x(−n)]
DTFT←→ Re

{
X

(
ejΩ(i)

)}
. (76)

When applied on (74) we get

1
2

[
fdist(n + κI) + fdist(−n + κI)

]

DTFT←→ Re
{

ejκIΩ(i) · Fdist

(
ejΩ(i)

, g
)}

.

(77)

Next we use (15) to express the distortion function in
the time-domain as a function of the SFB prototype filter
coefficients. Therefore the zeroth coefficient of (74) is

fdist(κI) = O · s(I)
0 (κI). (78)

The upper term can be simplified according to (15). When
(78) is inserted in (73), we get an expression for the second
integral:

4π ·O · s(κI) = 2
∫ π

−π
Re

{
ejκIΩ(i) · Fdist

(
ejΩ(i)

, g
)}2

dΩ(i).

(79)

Finally the second integral according to (79) is written by
using (67):

4πO · kT
h (κ) · g = 2

∫ π

−π
Re

{
ejκIΩ(i) · Fdist

(
ejΩ(i)

, g
)}2

dΩ(i).

(80)

The convex objective function in (57) is readily formulated
as a quadratic function in g:

∫ π

−π

∣∣∣Fdist

(
ejΩ(i)

, g
)
− e−jcΩ(i)

∣∣∣2
dΩ(i)

= 2πO2gT ·
(
KT ·K

)
· g− 4π ·O · kT

h (m) · g + 2π.

(81)

Please note that since matrix K only depends on the
coefficients, h is has to be computed only once. It remains
unchanged during the iterations.

5. Design Example

Subsequently, we present an example for the design of a
uniform oversampling complex-modulated I-channel FBP,
where I = 64. The decimation factor is M = 16, resulting
in an oversampling factor of O = 4.

5.1. AFB Prototype Filter. First we start with the design of
a narrow-band FIR low-pass AFB prototype filter with low
group delay designed by using the algorithm described in
Section 3. For the implementation of the design algorithm
we used the built-in function fmincon of the Optimization
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Figure 2: Narrow-band FIR low-pass filter.

Toolbox for Matlab. The magnitude frequency response
specifications for the stopband are chosen according to the
considerations made in [7]. The minimum possible filter
length in order to fulfill the given magnitude specifications
turned out to be Nh = 90. The number of frequency points
L in (55) was chosen to be 1024. The maximum number p
of the point of the rotation factor θ in (54) was chosen to be
32 thus according to Table 1 producing a maximum error of
0.0105 dB.

The logarithmic magnitude frequency response along
with the tolerance mask for the stopband defined in [7]
is depicted in Figure 2(a). We notice that the tolerance
mask is not always touched by the magnitude response. In
some regions the magnitude response ranges far below the
allowed attenuation, which can be traced back to the fact
that the tolerance mask is not continuous and increases and
diminishes stepwise.

Figure 2(b) depicts the group delay both in passband and
transition band. The group delay in the passband, which
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Figure 3: Zero plot of H(z).

ranges from the normalized frequency Ω/Ωs = 0 up to
Ω/Ωs = 0.25, is almost constant with the mean value of
τg,AFB = 43.9. In the transition band, which starts at the
normalized frequency Ω/Ωs = 0.25, the group delay features
a decay similar to that of the magnitude response. The group
delay however does not fall below the value of τg,AFB = 43 up
to the normalized frequency Ω/Ωs = 0.8 such that the group
delay can be regarded as constant in the region, where the
magnitude frequency response does not range below 40 dB.

As to be seen from Figure 3 there are no zeros forming the
passband, which is common for narrow-band filters, since no
distinct passband is existent here. All zeros are effectuating
the stopband. They are distributed on the periphery of the
unit circle. However they are located slightly inside the
z-plane unit circle, thus yielding a minimum-phase filter.
Moreover, zeros within the unit circle contribute to the
reduction of the overall group delay of the passband [8].

5.2. SFB Prototype Filter. To complete the FBP design we
present an example for the narrow-band FIR low-pass SFB
prototype filter designed by the procedure in Section 4.
This SFB prototype filter is matched to the AFB prototype
filter of Section 5.1 such that the distortion function of an
oversampling I-channel complex-modulated FIR filter bank
according to (11) approximates a constant delay (LP allpass
function). At the same time the constant delay is supposed to
be the smallest possible one as figured out in Section 2.

The magnitude response specifications of the stopband
are chosen according to the considerations made in [7]. They
are more strict than those of the AFB for reasons stated in [7].
For the implementation of the design algorithm the built-in
function fmincon of the Optimization Toolbox of Matlab is
used again. The given stopband magnitude specifications are
met for the filter length Ng = 152. The number of frequency
points is again L = 1024.

Figure 4(a) shows the logarithmic magnitude frequency
response. The tolerance mask for the stopband is depicted
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Figure 4: Narrow-band SFB prototype filter.

in red color. We notice that this time the tolerance mask
is always touched by the magnitude response. This can be
traced back to the fact that, for the SFB, the steps of the
tolerance mask are much smaller, not exceeding 20 dB, except
for the region next to the transition band.

The group delay in the passband and transition band is
depicted in Figure 4(b). The group delay is again approx-
imately constant with the mean value τg,SFB = 74. This
time the group delay does not decay below the value of
τg,SFB = 70 roughly up to the frequency where the magnitude
response is 80 dB. The obtained SFB prototype filter is again
minimum-phase, even though no demand is made in this
regard according to Section 4.

Figure 5(a) illustrates the logarithmic magnitude
response of the distortion function. It approximates the
constant value of zero dB with a peak-to-peak deviation
amounting to 1.2 dB, which lies within the tolerance limits
defined in [7]. Moreover the magnitude response exhibits
periodicity, as described in Section 2.
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Figure 5: Distortion Function.

The group delay of the distortion function is depicted in
Figure 5(b). It varies around the feasible value of 2I = 128
derived in Section 2.3 with a deviation of ±4 corresponding
to ±3%.

The downsampled FBP impulse response fdist(mI) in
compliance with (15) is depicted in Figure 6 (here all zero
coefficients have been omitted). The number �(Ns − 1)/I	 +
1 of non-zero coefficients is four, since Ns according to
(13) results in Ns = 241. Here the dominating coefficient
is the second one, thus explaining the overall delay of
128 as shown above. Note that, due to the even number
of non-zero coefficients, no exact linear-phase distortion
function is possible. The only way to approximate an
allpass according to the considerations in Section 2 is by
bringing the coefficients as close as possible to a ideal
delay.
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Figure 6: Distortion function in time-domain fdist(mI).

6. Conclusion

In this contribution, a new iterative approach for the design
of analysis and synthesis prototype filters of oversampling
uniform complex-modulated FIR filter bank pairs is pro-
posed, such that the overall FBP signal delay is minimized,
and the subband signals experience short delay.

We have shown that in the time-domain the distortion
function can be expressed as a simple FIR filter impulse
response. Based on these results we have shown that the mean
value of the group delay is restricted to integer multiples of
the number of channels.

For the first design step we have introduced a novel
procedure for the design of low-delay AFB FIR prototype
filters with approximately linear-phase in the passband and
the transition band. This procedure is based on convex con-
strained optimization which guarantees unique solutions.
To this purpose we have introduced a convex objective
function for group delay minimisation, which is based on
a particular representation of the group delay according
to [20]. The magnitude requirements are used as design
constraints. The magnitude specifications (e.g., for hearing
aids those derived in [7]) serve as stopband constraints to
control aliasing.

For the second and final design step, we have presented
a procedure for the design of the SFB FIR prototype filter,
such that the overall signal delay of the FBP is minimized.
This procedure is again based on convex constrained opti-
mization, where in analogy to the first design step the
magnitude specifications serve as stopband constraints to
control imaging. Based on the theoretical results regarding
the minimal feasible delays, the objective function is chosen
as the deviation of the FBP distortion function from a
prescribed I-fold delay. In this step, the AFB prototype filter
is fixed to the design result obtained in the previous step.
Furthermore we have presented an efficient implementation
of the objective function to cope with high computational
load.
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Finally, we have discussed the properties of the design
algorithm with reference to an example. The example shows
that the group delays of the prototype filters obtained using
the presented procedures exhibit almost constant group
delay not only in the passband but also in the transition
band. The mean value of the group delay ranges below that of
linear-phase filters of the same length. The observed overall
signal delay lies within the tolerances defined in [7] and
approximates the feasible delay as described in Section 2.

A comparison between the proposed design method
against several other approaches to the design of oversam-
pling complex-modulated FBS is not performed here, since
[22] treats this topic thoroughly, where approaches by DAM
et al. [15], by Stöcker et al. [23], and by Bäuml and Sörgel
[24] are compared.

Future investigations will be devoted to the application
of the prototype filter pair presented in this contribution
to uniform, complex-modulated filter banks with additional
subband signal manipulation. We will particularly investigate
whether or not amplification of subband signals has an
impact on the group delay of the distortion function.
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