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it outperforms the standard algorithm with fixed window width.
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1. Introduction

Instantaneous frequency (IF) estimation is a challenging
topic in the signal processing [1]. The IF is defined as
the first derivative of the signal’s instantaneous phase.
Time-frequency (TF) representations are main tools for
nonparametric IF estimation. The positions of peaks in the
TF representation can be used as an IF estimator. There
are several sources of errors in this estimator: higher-order
derivatives of the signal phase and the noise. For relatively
high signal-to-noise ratio (SNR), Stanković and Katkovnik
have proposed an IF estimator based on intersection of
confidence intervals rule (ICI) that produces results close to
the optimal mean squared error (MSE) of the IF estimate, by
achieving tradeoff between bias and variance [2–7].

Sometimes in practice there is a need for an estimation
of the second-order derivative of signal phase. Estimation of
this parameter, referred to as the chirp-rate, is important in
radar systems, for example, focusing of the SAR images [8, 9].

Recently, O’Shea et al. have proposed a chirp-rate
estimator based on the cubic phase function (CPF) [10–
14]. It gives accurate results for a third-order polynomial
phase signal. In this paper, we consider nonparametric chirp-
rate estimation without the assumption on the polynomial
phase structure. To this end, an adaptive algorithm for the
chirp-rate estimation is proposed based on the ICI algorithm

[15–18]. The proposed estimator performs well for moderate
noise environments.

The paper is organized as follows. The CPF-based non-
parametric chirp-rate estimator is presented in Section 2. In
Section 3 asymptotic expressions for the bias and the vari-
ance of the nonparametric chirp-rate estimate are provided
as a prerequisite for the proposed adaptive algorithm. Full
details of the adaptive algorithm based the ICI principle
are presented in Section 4. Numerical examples are given in
Section 5. Conclusions are given in Section 6.

2. CPF-based Nonparametric
Chirp-Rate Estimator

Consider a signal f (t) = A exp( jφ(t)). The first derivative of
the signal phase, ω(t) = φ′(t), is the IF. An important group
of the IF estimators is based on TF representations [1, 19, 20].
Consider, for example, the Wigner distribution (WD) in a
windowed (pseudo) discrete-time form:

WDh(t,ω) =
∞∑

n=−∞
wh(nT)

× f (t + nT) f ∗(t − nT) exp
(− j2ωnT

)
,

(1)
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where T is the sampling interval and wh(nT) is the window
function of the width h, wh(t) /= 0 for |t| ≤ h/2. The IF can
be estimated from locations of peaks in the WD as

ω̂h(t) = arg max
ω

WDh(t,ω). (2)

A close look at the phase of the local autocorrelation f (t +
nT) f ∗(t − nT) by means of Taylor expansions is

Φ(t,nT)

= φ(t + nT)− φ(t − nT)

≈ 2φ′(t)(nT) + φ(3)(t)
(nT)3

3
+ φ(5)(t)

2(nT)5

5!
+ · · · ,

(3)

where φ(k)(t) is defined as the kth derivative of the phase.
When higher-order phase derivatives are equal to 0, the
WD is ideally concentrated along the IF, that is, it achieves
maximum along the IF line ω(t) = φ′(t). Therefore, the IF
can be calculated as

φ′(t) ≈ φ(t + nT)− φ(t − nT)
2(nT)

(4)

by ignoring higher-order derivatives.
Estimation of the higher-order phase terms is also very

important, for example, in radar signal processing (proper
estimation of higher-order phase terms can be helpful in
focusing of radar images [21–29]). Commonly, higher-order
nonlinearity exists in the estimate. The nonlinearity causes
performance degradation of the IF estimate. For example, it
reduces the SNR threshold of the method applicability [23].

Analogy to the above observations on the IF estimation,
the chirp-rate parameter (i.e., the second-derivative of the
phase) can be obtained by

φ(2)(t) ≈ φ(t + nT)− 2φ(t) + φ(t − nT)

2(nT)2 . (5)

This approximate formula corresponds to the local autocor-
relation function f (t+nT) f ∗2(t) f (t−nT). Since f ∗2(t) does
not depend on nT , the CPF was proposed for the chirp-rate
estimation:

Ch(t,Ω) =
∞∑

n=−∞
wh(nT)

× f (t + nT) f (t − nT) exp
(
− jΩ(nT)2

)
(6)

where Ω denotes chirp-rate index. The rectangular window
function (finite number of samples) is inherently assumed in
the original O’Shea estimator. Here, in our derivations of the
adaptive chirp-rate estimator, we will assume that a general
window function is used. The CPF-based nonparametric
chirp-rate estimation can be performed as

Ω̂h(t) = arg max
Ω
|Ch(t,Ω)|2. (7)

In this manner, the nonlinearity of the chirp-rate estimation
is kept to the same order as in the WD case, that is,

the second, order nonlinearity. It results in high accuracy
approaching the Cramer-Rao lower bound (CRLB) for a
wide range of the SNR for Gaussian noise environment
[10, 11, 13].

However, nonpolynomial phase signal or high-order
polynomial phase signal this estimator is biased, and the
performance degrades. To relax the application range of the
CPF-based chirp-rate estimator, in this following, an CPF-
based algorithm with adaptive window width is proposed.
Specifically, the window width is adaptively determined by
using the ICI algorithm.

3. Asymptotic Bias and Variance

The chirp-rate is estimated by using the position of the
peaks in the magnitude-squared CPF. The CPF is ideally
concentrated on the chirp-rate for signals, when the fourth-
and other higher-order phase derivatives are equal to zero.
However, for signals with these derivatives being different
from zero, this is not the case. Higher-order derivatives
produce bias in the chirp-rate estimation. The asymptotic
expression for the bias, derived in the appendix, is

bias
{
Ω̂h(t)

}
= E{ΔΩh(t)} � φ(4)(t)wbh

2, (8)

where wb is a constant dependent on the selected window
type only, while φ(4)(t) is the fourth derivative of the signal
phase. Assume that the signal corrupted by the additive white
Gaussian noise ν(t) with

(i) mutually independent real and imaginary parts,

(ii) zero-mean E{ν(t)} = 0,

(iii) covariance E{ν(t′)ν∗(t′′)} = σ2δ(t′−t′′), where σ2 is
variance while δ(t) is the Dirac delta function defined
δ(t) = 1 for t = 0 and δ(t) = 0 elsewhere.

Then, the asymptotic expression for variance of the
chirp-rate estimator (7), for relatively high SNR, exhibits

var
{
Ω̂h(t)

}
� σ2

A2
h−5wv, (9)

where wv depends on the selected window type only (see
appendix). Obviously, the bias increases with the increase of
the window width, while the variance decreases at the same
time. The MSE of the estimator is

MSE
{
Ω̂h(t)

}
= bias2

{
Ω̂h(t)

}
+ var

{
Ω̂h(t)

}

= [φ(4)(t)]
2
w2
bh

4 +
σ2

A2
h−5wv.

(10)

From (10), by minimizing the MSE with respect to h, we get

hopt(t) = 9

√√√√ 5
(
σ2/A2

)
wh

4[φ(4)(t)]2
w2
b

. (11)

Since the fourth-order derivative of the signal phase is
not known in advance, we cannot determine the optimal
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Figure 1: MSE for the chirp-rate estimation: (a) signal 1, σ = 0.06; (b) signal 2, σ = 0.06; (c) signal 1, σ = 0.09; (d) signal 2, σ = 0.09; (e)
signal 1, σ = 0.12; (f) signal 2, σ = 0.12, Thin line - fixed window estimator; thick line adaptive window width.

window length hopt(t) in practice. In this paper, an algorithm
that can produce adaptive window width, close to the
optimal one, is proposed without knowing phase derivatives
in advance. The ICI algorithm [2–7] is developed for similar
problems with a tradeoff in parameter selection between
the bias and variance. The ICI-based algorithm for the
second-order derivative estimation is given in the following
section.

4. Intersection Confidence Interval Algorithm

Here, we will briefly describe the ICI algorithm for achieving
the tradeoff between influence of the higher-order derivatives
(bias) and noise (variance). Consider the set of increasing
window widths H = {h1, h2, . . . ,hQ}, hi < hi+1. These
windows are selected in such a manner that hi ≈ ai−1h1,
a > 1. It is assumed that the optimal window hopt(t), for
a given instant, is close to a value from the considered set.

Chirp-rate estimates corresponding to all windows from H

are Ω̂hi(t), i = 1, 2, . . . ,Q. They are obtained as

Ω̂hi(t) = arg max
Ω
|Chi(t,Ω)|2, (12)

where Chi(t,Ω) is the CPF calculated with window whi(t) of
the width hi, whi(t) /= 0 for |t| ≤ hi/2. Around any estimate,
we can create a confidence interval [Ω̂hi(t)− κσ(hi), Ω̂hi(t) +
κσ(hi)], where κ is the parameter that controls probability
that exact chirp-rate parameter belongs to the interval, while
σ(hi) = (σ/A)h−5/2

i
√
wv (A.2). For Gaussian variable we

know that exact value of the parameter belongs to the interval
with probability P(κ) (e.g., P(2) = 0.95 and P(3) = 0.997).

According to [7], the optimal window is close to the
widest one where the confidence intervals, created with two
neighboring windows from set H , still intersect. This can be
written as

∣∣∣Ω̂hi(t)− Ω̂hi−1 (t)
∣∣∣ ≤ κ(σ(hi) + σ(hi−1)). (13)
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Figure 2: Chirp-rate estimation for test signal 1: (a) Fixed window N = 9 samples (h = 9/257); (b) Fixed window N = 17 samples
(h = 17/257); (c) Fixed window N = 33 samples (h = 33/257); (d) Fixed window N = 65 samples (h = 65/257); (e) Fixed window N = 129
samples (h = 129/257); (f) Fixed window N = 257 samples (h = 1); (g) Estimator with adaptive window width; (h) Adaptive window width.

It is required that this relationship holds also for all narrower
windows:
∣∣∣Ω̂hj (t)− Ω̂hj−1 (t)

∣∣∣ ≤ κ
(
σ
(
hj

)
+ σ
(
hj−1

))
j ≤ i. (14)

Then we can adopt that the optimal window estimate for the

considered instant is ĥopt(t) = hi or ĥopt(t) = hi−1.

As it is shown in [2], selection of particular window
depends on bias and variance (in fact on powers of parameter
of interest hn and h−m) in considered application. Namely,
in our application bias2{Ω̂h(t)} ∝ h4 while var{Ω̂h(t)} ∝
h−5. Then, according to [2], it is better to take previous

window ĥopt(t) = hi−1 as the optimal estimate since the
next window can already have large bias. The algorithm
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Figure 3: Chirp-rate estimation for test signal 2: (a) Fixed window N = 9 samples (h = 9/257); (b) Fixed window N = 17 samples
(h = 17/257); (c) Fixed window N = 33 samples (h = 33/257); (d) Fixed window N = 65 samples (h = 65/257); (e) Fixed window N = 129
samples (h = 129/257); (f) Fixed window N = 257 samples (h = 1); (g) Estimator with adaptive window width; (h) Adaptive window width.

accuracy depends on the proper selection of parameter κ.
This selection is discussed in details in [2]. It can be assumed
that the algorithm for relatively wide region of κ ∈ [2, 5]
produces results of the same order of accuracy. The cross-
validation algorithm [4] or results from analysis given in [2]

can be employed in the case where precise selection of this
parameter is required. In our simulations, κ = 3 is used.

The remaining question in the algorithm is how to
estimate σ(hi) since the signal amplitude and noise variance
(A and σ) are not known in advance. There are several
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approaches in literature, but here we will use a simple and
very accurate technique from [30]. Namely, amplitude can
be estimated as

Â2 =
√∣∣2M2

2 −M4
∣∣, (15)

where

Mi = 1
N

∑
xi(n), (16)

where N is number of signal samples, while the variance can
be estimated as

σ̂2 =
∣∣∣M2 − Â2

∣∣∣. (17)

5. Numerical Examples

We considered two test signals:

f1(t) =
⎧
⎨
⎩

exp
(
j12πt2

)
t ≥ 0

exp
(− j12πt2

)
t < 0

(18)

f2(t) = exp
(
j8πt4). (19)

The exact chirp-rates for these two signals are Ω1(t) = 24π
sign(t) and Ω2(t) = 96πt2. Signal is considered within
interval t ∈ [−1/2, 1/2] with sampling rate T = 1/257. A
set of used window widths is hi = NiT , where Ni = ai−1N1

and a = √
2 and N1 = 5. We always set the closest possible

window from the set with odd number of samples in the
interval. Total number of windows in the set is 13. Figure 1
depicts the MSE of the obtained chirp-rate estimators for
σ = 0.06 (first row, SNR = 24 dB), σ = 0.09 (second row,
SNR = 21 dB) and σ = 0.12 (third row, SNR = 18 dB).
The left column is given for the first test signal (18) while
the right column represents results for the second test signal
(19). Results are obtained with the Monte Carlo simulation
with 100 trials. Thin line marks results obtained with the
windows of the fixed width, while thick line represents results
achieved with the proposed algorithm. It can be seen that the
proposed algorithm gives more accurate results than almost
all windows with fixed width. It may happen that some of
windows with fixed width outperform our algorithm, but
it should be kept in mind that the best window is not
known in advance. For example, it can be seen that the best
fixed window width for the first test signal and σ = 0.06
(Figure 1(a)) is about N = 20 samples, for the second signal
and the same noise, it is about N = 50 samples (Figure 1(b)),
while for the first signal and σ = 0.12 (Figure 1(e)), it is about
N = 70 samples.

Illustration of the adaptive CPF for the chirp-rate
estimation for the first test signal embedded in the noise
with σ = 0.09 is depicted in Figure 2. Figures 2(a)–2(f)
represent the result obtained with fixed window widths
(N = 9, N = 17, N = 33, N = 65, N = 129, and
N = 257). Results obtained with the proposed algorithm
are presented in Figure 2(g). Bias in the region close to the
abrupt change can be observed. It is caused by the fact
that we need a narrow window in this region and that this

window produces estimate highly corrupted by noise (see
Figure 2(a)). Figure 2(h) depicts the adaptive window width.

Results achieved with the second test signal for σ = 0.09
are depicted in Figure 3. Here, the fourth order derivative
of the signal phase is constant and we can expect that the
optimal window width is constant. High noise influence can
be observed for small window widths (Figures 3(b) and 3(c),
N = 9 and N = 17) while, at the same time, the bias can
be seen for wide window (Figure 3(f), N = 257). The chirp-
rate estimate and corresponding adaptive window width are
depicted in Figures 3(g) and 3(h). It can be seen that the
proposed algorithm gives adaptive window width close to
constant as it was expected.

6. Conclusion

An adaptive chirp-rate estimator is introduced for a general
signal model. It is based on the confidence intervals-rule.
Selection of the algorithm parameters is discussed. The
proposed algorithm is tested on two characteristic test
signals. The obtained results are good, close to the optimal
one that can be achieved with the CPF function.

Appendices

A. Asymptotic Bias and Variance

Our observation is modeled as x(t) = f (t) + ν(t) where
f (t) = A exp( jφ(t)), while ν(t) is Gaussian noise with
mutually independent real and imaginary parts, with zero-
mean E{ν(t)} = 0 and E{ν(t′)ν∗(t′′)} = σ2δ(t′ − t′′). Chirp-
rate is estimated by using position of the CPF maximum. The
CPF is ideally concentrated on the chirp-rate for noiseless
signals when φ(k)(t) = 0 for k > 3. Introduce the following
notation Fh(t,Ω) = |Ch(t,Ω)|2 for squared-magnitude of the
CPF. Here, index h denotes width of the used even window
function, wh(t) /= 0 for |t| ≤ h/2, wh(t) = wh(−t). Two main
sources of errors in the CPF are (1) errors caused by nonzero
higher-order derivatives of the signal phase (contributing to
the bias); (2) errors caused by the noise (contributing to the
variance). For the sake of brevity, here we will give the main
steps of the derivations. According to [3], the bias of the
chirp-rate estimator can be expressed as

E{ΔΩh(t)} = bias
{
Ω̂h(t)

}
= − (∂Fh(t,Ω)/∂Ω)|0δΔΩ

(∂2Fh(t,Ω)/∂Ω2)|0
,

(A.1)

while the variance is

var
{
Ω̂h(t)

}
=

E
{[

(∂Fh(t,Ω)/∂Ω)|0δν

]2
}

[(∂2Fh(t,Ω)/∂Ω2)|0]2 , (A.2)

where the following hold:

(i) ∂2Fh(t,Ω)/∂Ω2|0 is evaluated at the position of the
true chirp-rate, with the assumption that the signal
has all phase derivatives higher than 2 equal to zero
and that there is no noise;
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(ii) ∂Fh(t,Ω)/∂Ω|0δΔΩ is evaluated at the position of true
chirp-rate with assumption that estimation error is
caused only by higher-order derivatives of the signal
phase (noise-free assumption);

(iii) ∂Fh(t,Ω)/∂Ω|0δν is evaluated at the position of the
true chirp-rate with the assumption that there is no
higher order phase derivatives, that is, noise only
influenced error.

Then three intermediate quantities (∂2Fh(t,Ω)/∂Ω2)|0,
(∂Fh(t,Ω)/∂Ω)|0δΔΩ , and E{[(∂Fh(t,Ω)/∂Ω)|0δν ]2} are need-
ed to determine asymptotic bias and variance. Calculations
of these quantities are shown below.

A.1. Determination of ∂2Fh(t,Ω)/∂Ω2|0. Determination of
∂2Fh(t,Ω)/∂Ω2|0 is performed on true chirp-rate, that is,
Ω = φ(2)(t) under assumption that there is noise and higher-
order terms in the signal phase. Then the CPF exhibits

Ch(t,Ω) = exp
(
j2φ(t)

) ∞∑

n=−∞
wh(nT)A2

× exp
(
jφ(2)(t)(nT)2

)

× exp
(
− jΩ(nT)2

)
.

(A.3)

Value of Fh(t,Ω) = |Ch(t,Ω)|2 is

Fh(t,Ω) = A4
∞∑

n1=−∞

∞∑

n2=−∞
wh(n1T)w∗h (n2T)

× exp
(
jφ(2)(t)(n1T)2 − jφ(2)(t)(n2T)2

)

× exp
(
− jΩ(n1T)2 + jΩ(n2T)2

)
.

(A.4)

The second partial derivative ∂2Fh(t,Ω)/∂Ω2|0, evaluated for
Ω = φ(2)(t), is

∂2Fh(t,Ω)
∂Ω2

|0

= −
∑

n1

∑

n2

A4wh(n1T)w∗h (n2T)

×
(

(n1T)2 − (n2T)2
)2

= −2A4
∑

n1

∑

n2

wh(n1T)wh(n2T)

×
[

(n1T)4 − (n1T)2(n2T)2
]

= 2A4h4[F2
2 − F4F0

]
,

(A.5)

where (see [3, appendix])

Fk =
∫ 1/2

−1/2
w(t)tkdt. (A.6)

A.2. Determination of ∂Fh(t,Ω)/∂Ω|0δΔΩ . Assumptions in the
evaluation of the second term ∂Fh(t,Ω)/∂Ω|0δΔΩ are similar
like for the first terms, except the influence of the higher-
order phase terms that now is not neglected:

∂Fh(t,Ω)
∂Ω

|0δΔΩ

= A4
∑

n1

∑

n2

wh(n1T)w∗h (n2T)
(
− j
(

(n1T)2 − (n2T)2
))

× exp

⎛
⎝2 j

∞∑

k=2

φ(2k)(t)
(n1T)2k − (n2T)2k

(2k)!

⎞
⎠.

(A.7)

For simplicity, all higher-order derivatives, except the fourth
order are removed, that is, |φ(4)(t)| � |φ(2k)(t)| for k > 2:

∂Fh(t,Ω)
∂Ω

|0δΔΩ

= A4
∑

n1

∑

n2

wh(n1T)w∗h (n2T)
(
− j
(

(n1T)2 − (n2T)2
))

× exp

(
jφ(4)(t)

(n1T)4 − (n2T)4

12

)
.

(A.8)

Under the assumption that argument of exponential func-
tion φ(4)(t)(((n1T)4 − (n2T)4)/12) is relatively small, we can
write

exp

(
jφ(4)(t)

(n1T)4 − (n2T)4

12

)

≈ 1 + jφ(4)(t)
(n1T)4 − (n2T)4

12
.

(A.9)

Finally, we get

∂Fh(t,Ω)
∂Ω

|0δΔΩ

= φ(4)(t)
∑

n1

∑

n2

A4wh(n1T)w∗h (n2T)

×
(

(n1T)2 − (n2T)2
)(

(n1T)4 − (n2T)4
)

= 2A4φ(4)(t)h6[F6F0 − F2F4].

(A.10)
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A.3. Determination of E{[∂Fh(t,Ω)/∂Ω|0δν ]2}. In the evalua-
tion of E{[∂Fh(t,Ω)/∂Ω|0δν ]2} higher-order phase terms are
removed while now we consider the influence of the additive
Gaussiannoise. Then, the term required for determination of
the variance is given as

E

{[
∂Fh(t,Ω)

∂Ω
|0δν

]2
}

=
∑

n1

∑

n2

∑

n3

∑

n4

wh(n1T)wh(n2T)wh(n3T)wh(n4T)

× E
{
x(t + n1T)x(t − n1T)x∗(t + n2T)x∗(t − n2T)

×x∗(t + n3T)x∗(t − n3T)x(t + n4T)x(t − n4T)
}

×
(

(n1T)2 − (n2T)2
)(

(n3T)2 − (n4T)2
)

× exp
(
− jΩ(n1T)2 + jΩ(n2T)2 + jΩ(n3T)2 −Ω(n4T)2

)
.

(A.11)

Determination of

E
{
x(t + n1T)x(t − n1T)x∗(t + n2T)x∗(t − n2T)

×x∗(t + n3T)x∗(t − n3T)x(t + n4T)x(t − n4T)
}

(A.12)

is a rather tedious job. By assuming high SNR, that is,
A2/σ2 � 1, (A.12) can be approximated by using only
terms with two noise factors. Then, from all possible 128
combinations of signal and noise we can select just those
where we have 2 noise terms and 6 signal terms. Namely,
combinations with 1 and 3 noise terms give expectation equal
to zero, while we can assume that combinations with 4 and
more noise terms due to introduced high SNR assumption
are much smaller than the expectation of combinations with
2 noise terms. There are 28 combinations in total, with 2
noise terms. Fortunately, a high number of them have zero
expectation. Namely, for the used noise model (complex
Gaussian noise with independent real and imaginary parts)
it holds that E{ν(t1)ν(t2)} = E{ν∗(t1)ν∗(t2)} = 0.
This eliminates 12 combinations from (A.12). Furthermore,
combinations E{ν(t± n1T)ν∗(t± n2T)} = σ2δ(n1± n2) and
combinations E{ν∗(t± n3T)ν(t± n4T)} = σ2δ(n3 ± n4) will
also produce a zero-mean, since they cause (n1T)2−(n2T)2 =
0 or (n3T)2 − (n4T)2 = 0 in (A.11). This eliminates next
8 combinations. Only 8 remaining combinations, E{ν(t ±
n1T)ν∗(t ± n3T)} = σ2δ(n1 ± n3) and E{ν∗(t ± n2T)ν(t ±
n4T)} = σ2δ(n2 ± n4), give results of interest. We will
consider just one of these 8 combinations, since all others
produce the same result. Here, we will consider situation

where the first term x(t + n1T) and the fifth x∗(t + n3T) are
noisy terms while others are signal terms:
∑

n1

∑

n2

∑

n3

∑

n4

wh(n1T)wh(n2T)wh(n3T)wh(n4T)

× σ2δ(n1 − n3) f (t − n1T) f ∗(t + n2T) f ∗(t − n2T)

× f ∗(t + n3T) f ∗(t − n3T) f (t + n4T) f (t − n4T)

×
(

(n1T)2 − (n2T)2
)(

(n3T)2 − (n4T)2
)

× exp
(
− jΩ(n1T)2 + jΩ(n2T)2 + jΩ(n3T)2 −Ω(n4T)2

)

=
∑

n1

∑

n2

∑

n4

σ2| f (t − n1T)|2w2
h(n1T)wh(n2T)wh(n4T)

× f ∗(t + n2T) f ∗(t − n2T) f (t + n4T) f (t − n4T)

×
(

(n1T)2 − (n2T)2
)(

(n1T)2 − (n4T)2
)

× exp
(
jΩ(n2T)2 −Ω(n4T)2

)

= σ2A6
∑

n1

∑

n2

∑

n4

w2
h(n1T)wh(n2T)wh(n4T)

×
(

(n1T)2 − (n2T)2
)(

(n1T)2 − (n4T)2
)

= σ2A6h3[E4F
2
0 − 2E2F2F0 + E0F

2
2

]
,

(A.13)

where Ek is calculated according to [3]

Ek = 1
T

∫ 1/2

−1/2
w2(t)tkdt. (A.14)

The same results as (A.13) can be obtained for the other
seven terms, so we have

E

{[
∂Fh(t,Ω)

∂Ω
|0δν

]2
}
= 8σ2A6h3[E4F

2
0 − 2E2F2F0 + E0F

2
2

]
.

(A.15)

Substituting (A.5), (A.10), and (A.15) in (A.1) and (A.2), we
are getting expressions for the bias and variance (8) and (9).
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polynomial Fourier transform in ISAR,” EURASIP Journal on
Applied Signal Processing, vol. 2006, Article ID 36093, 15 pages,
2006.

[10] P. O’Shea, “A fast algorithm for estimating the parameters of
a quadratic FM signal,” IEEE Transactions on Signal Processing,
vol. 52, no. 2, pp. 385–393, 2004.

[11] M. Farquharson and P. O’Shea, “Extending the performance
of the cubic phase function algorithm,” IEEE Transactions on
Signal Processing, vol. 55, no. 10, pp. 4767–4774, 2007.

[12] M. Farquharson, P. O’Shea, and G. Ledwich, “A compu-
tationally efficient technique for estimating the parameters
of polynomial-phase signals from noisy observations,” IEEE
Transactions on Signal Processing, vol. 53, no. 8, pp. 3337–3342,
2005.

[13] P. O’Shea, “A new technique for instantaneous frequency rate
estimation,” IEEE Signal Processing Letters, vol. 9, no. 8, pp.
251–252, 2002.
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