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Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection
systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing
on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of
all coded feature components—is not optimal. In this paper, we present a detection rate optimized bit allocation (DROBA)
principle, which assigns more bits to discriminative features and fewer bits to nondiscriminative features. We further propose
a dynamic programming (DP) approach and a greedy search (GS) approach to achieve DROBA. Experiments of DROBA on the
FVC2000 fingerprint database and the FRGC face database show good performances. As a universal method, DROBA is applicable
to arbitrary biometric modalities, such as fingerprint texture, iris, signature, and face. DROBA will bring significant benefits not
only to the template protection systems but also to the systems with fast matching requirements or constrained storage capability.
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1. Introduction

The idea of extracting binary biometric strings was originally
motivated by the increasing concern about biometric tem-
plate protection [1]. Some proposed systems, such as fuzzy
commitment [2], fuzzy extractor [3, 4], secure sketch [5],
and helper data systems [6–9], employ a binary biometric
representation. Thus, the quality of the binary string is
crucial to their performances. Apart from the template
protection perspective, binary biometrics also merit fast
matching and compressed storage, facilitating a variety of
applications utilizing low-cost storage media. Therefore,
extracting binary biometric strings is of great significance.
As shown in Figure 1, a biometric system with binary
representation can be generalized into the following three
modules.

Feature Extraction. This module aims to extract indepen-
dent, reliable, and discriminative features from biometric
raw measurements. Classical techniques used in this step
are, among others, Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) [10].

Bit Extraction. This module aims to transform the real-
valued features into a fixed-length binary string. Biometric
information is well known for its uniqueness. Unfortunately,
due to sensor and user behavior, it is inevitably noisy,
which leads to intraclass variations. Therefore, it is desirable
to extract binary strings that are not only discriminative,
but also have low intraclass variations. In other words,
both a low false acceptance rate (FAR) and a low false
rejection rate (FRR) are required. Additionally, from the
template protection perspective, the bits, generated from an
imposter, should be statistically independent and identically
distributed (i.i.d.), in order to maximize the effort of an
imposter in guessing the genuine template. Presumably, the
real-valued features obtained from the feature extraction step
are independent, reliable, and discriminative. Therefore, a
quantization and coding method is needed to keep such
properties in the binary domain. So far, a variety of such
methods have been published, of which an overview will be
given in Section 2.

Binary String Classification. This module aims to verify
the binary strings with a binary string-based classifier. For
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Figure 1: Three modules of a biometric system with binary representation.
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Figure 2: An illustration of the FAR (black) and the FRR (gray),
given the background PDF (solid), the genuine user PDF (dot), and
the quantization intervals (dash), where the genuine user interval is
marked as ∗.

instance, the Hamming distance classifier bases its decision
on the number of errors between two strings. Alternatively,
the binary strings can be verified through a template
protection process, for example, fuzzy commitment [2],
fuzzy extractor [3, 4], secure sketch [5], and helper data
systems [6–9]. Encrypting the binary strings by using a one-
way function, these template protection systems verify binary
strings in the encrypted domain. Usually the quantization
methods in the bit extraction module cannot completely
eliminate the intraclass variation. Thus employing a strict
one-way function will result in a high FRR. To solve
this problem, error correcting techniques are integrated to
further eliminate the intra-class variation in the binary
domain. Furthermore, randomness is embedded to avoid
cross-matching.

This paper deals with the bit extraction module, for
which we present a detection rate optimized bit allocation
principle (DROBA) that transforms a real-valued biometric
template into a fixed-length binary string. Binary strings gen-
erated by DROBA yield a good FAR and FRR performance
when evaluated with a Hamming distance classifier.

In Section 2 an overview is given of known bit extraction
methods. In Section 3 we present the DROBA principle with
two realization approaches: dynamic programming (DP) and
greedy search (GS), and their simulation results are illus-
trated in Section 4. In Section 5, we give the experimental
results of DROBA on the FVC2000 fingerprint database [11]
and the FRGC face database [12]. In Section 6 the results are
discussed and conclusions are drawn in Section 7.

2. Overview of Bit ExtractionMethods

A number of bit extraction methods, based on quantization
and coding, have been proposed in biometric applications
[6–8, 13–16]. In general, these methods deal with two
problems: (1) how to design an optimal quantization and
coding method for a single feature, and (2) how to compose
an optimal binary string from all the features.

So far, most of the published work has been focusing on
designing the optimal quantization intervals for individual
features. It is known that, due to the inter- and intraclass
variation, every single feature can be modeled by a back-
ground probability density function (PDF) pb and a genuine
user PDF pg , indicating the probability density of the whole
population and the genuine user, respectively. Given these
two PDFs, the quantization performance of a single feature
i, with an arbitrary bi-bit quantizer, is then quantified as the
theoretical FAR αi:

αi(bi) =
∫
Qgenuine,i(bi)

pb,i(v)dv, (1)

and FRR βi, given by

δi(bi) =
∫
Qgenuine,i(bi)

pg,i(v)dv, (2)

βi(bi) = 1− δi(bi), (3)

where Qgenuine,i represents the genuine user interval into
which the genuine user is expected to fall, and δi represents
the corresponding detection rate. An illustration of these
expressions is given in Figure 2. Hence, designing quantizers
for a single feature is to optimize its FAR (1) and FRR (3).

Linnartz and Tuyls proposed a method inspired by Quan-
tization Index Modulation [6]. As depicted in Figure 3(a),
the domain of the feature v is split into fixed intervals of
width q. Every interval is alternately labeled using a “0” or a
“1.” Given a random bit string s, a single bit of s is embedded
per feature by generating an offset for v so that v ends up
in the closest interval that has the same label as the bit to be
embedded.

Vielhauer et al. [13] introduced a user-specific quantizer.
As depicted in Figure 3(b), the genuine interval [Imin(1 −
t), Imax(1 + t)] is determined according to the minimum Imin

and maximum Imax value of the samples from the genuine
user, together with a tolerance parameter t. The remaining
intervals are constructed with the same width as the genuine
interval.

Hao and Wah [14] and Chang et al. [15] employed a
user-specific quantizer as shown in Figure 3(c). The genuine
interval is [μ − kσ ,μ + kσ], where μ and σ are the mean
and the standard deviation of the genuine user PDF, and k
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Figure 3: Illustration of the quantizers for a single feature i, and the corresponding Gray codes. The background PDF pb(v, 0, 1) (solid); the
genuine user PDF pg(v,μ, σ) (dot); the quantization intervals (dash). (a) QIM quantization; (b) Vielhauer’s quantizer; (c) Chang’s multibits
quantizer; (d) fixed one-bit quantizer; (e) fixed two-bits quantizer; (f) likelihood ratio-based quantizer, the likelihood ratio (dash-dot),
threshold (gray).

is an optimization parameter. The remaining intervals are
constructed with the same width 2kσ .

The quantizers in [6, 13–15] have equal-width intervals.
However, considering a template protection application, this

leads to potential threats, because samples tend to have
higher probabilities in some quantization intervals and thus
an imposter can search the genuine interval by guessing
the one with the highest probability. Therefore, quantizers
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with equal-probability intervals or equal-frequency intervals
[7, 16] have been proposed.

Tuyls et al. [7] and Teoh et al. [17] employed a 1-bit
fixed quantizer as shown in Figure 3(d). Independent of the
genuine user PDF, this quantizer splits the domain of the
feature v into two fixed intervals using the mean of the
background PDF as the quantization boundary. As a result,
both intervals contain 0.5 background probability mass. The
interval that the genuine user is expected to fall into is
referred to as the genuine interval.

Chen et al. [16] extended the 1-bit fixed quantizer
into multibits. A b-bit fixed quantizer contains 2b intervals,
symmetrically constructed around the mean of the back-
ground PDF, with equally 2−b background probability mass.
Figure 3(e) illustrates an example of b = 2. In the same
paper [16], a user-specific likelihood ratio-based multibits
quantizer was introduced, as shown in Figure 3(f). For a b-
bit quantizer, a likelihood ratio threshold first determines
a genuine interval with 2−b background probability mass.
The remaining intervals are then constructed with equal
2−b background probability mass. The left and right tail
are combined as one wrap-around interval, excluding its
possibility as a genuine interval. The likelihood ratio-based
quantizer provides the optimal FAR and FRR performances
in the Neyman-Pearson sense.

The equal-probability intervals in both the fixed quan-
tizer and the likelihood ratio-based quantizer ensure inde-
pendent and identically distributed bits for the imposters,
which meets the requirement of template protection systems.
For this reason, we take these two quantizers into consider-
ation in the following sections. Additionally, because of the
equal-probability intervals, the FAR of both quantizers for
feature i becomes

αi(bi) = 2−bi . (4)

With regard to composing the optimal binary string from
D features, the performance of the entire binary string can be
quantified by the theoretical overall FAR α and detection rate
δ:

α(b1, . . . , bD) =
D∏
i=1

αi(bi), (5)

δ(b1, . . . , bD) =
D∏
i=1

δi(bi),
D∑
i=1

bi = L. (6)

Given (4), the overall FAR in (5) shows a fixed relationship
with L:

α(b1, . . . , bD) = 2−L. (7)

Hence composing the optimal binary string is to optimize
the detection rate at a given FAR value. In [7, 8, 16], a
fixed bit allocation principle (FBA)—with a fixed number
of bits assigned to each feature—was proposed. Obviously,
the overall detection rate of the FBA is not optimal, since we
would expect to assign more bits to discriminative features
and fewer bits to nondiscriminative features. Therefore, in
the next section, we propose the DROBA principle, which
gives the optimal overall detection rate.

3. Detection Rate Optimized Bit Allocation

(DROBA). In this section, we first give the description of
the DROBA principle. Furthermore, we introduce both a
dynamic programming and a greedy search approach to
search for the solution.

3.1. Problem Formulation. Let D denote the number of
features to be quantized; L, the specified binary string
length; bi ∈ {0, . . . , bmax}, i = 1, . . . ,D, the number
of bits assigned to feature i; δi(bi), the detection rate
of feature i, respectively. Assuming that all the D fea-
tures are independent, our goal is to find a bit assign-
ment {b∗i } that maximizes the overall detection rate in
(6):

{
b∗i
} = arg max∑D

i=1 bi=L
δ(b1, . . . , bD)

= arg max∑D
i=1 bi=L

D∏
i=1

δi(bi).

(8)

Note that by maximizing the overall detection rate, we in
fact maximize the probability of all the features simulta-
neously staying in the genuine intervals, more precisely,
the probability of a zero bit error for the genuine user.
Furthermore, considering using a binary string classifier,
essentially the overall FAR α in (5) and the overall detection
rate δ in (6) correspond to the point with the mini-
mum FAR and minimum detection rate on its theoretical
receiver operating characteristic curve (ROC), as illustrated
in Figure 4. We know that α is fixed in (7), by maximizing
δ, DROBA in fact provides a theoretical maximum lower
bound for the ROC curve. Since DROBA only maximizes
the point with minimum detection rate, the rest of the
ROC curve, which relies on the specific binary string
classifier, is not yet optimized. However, we would expect
that with the maximum lower bound, the overall ROC
performance of any binary string classifier is to some extent
optimized.

The optimization problem in (8) can be solved by
a brute force search of all possible bit assignments {bi}
mapping D features into L bits. However, the computational
complexity is extremely high. Therefore, we propose a
dynamic programming approach with reasonable compu-
tational complexity. To further reduce the computational
complexity, we also propose a greedy search approach, for
which the optimal solution is achieved under additional
requirements to the quantizer.

3.2. Dynamic Programming (DP) Approach. The procedure
to search for the optimal solution for a genuine user is
recursive. That is, given the optimal overall detection rates
δ( j−1)(l) for j − 1 features at string length l, l = 0, . . . , ( j −
1)× bmax:

δ( j−1)(l) = max∑
bi=l, bi∈{0,...,bmax}

j−1∏
i=1

δi(bi), (9)
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Figure 4: Illustration of the maximum lower bound for the
theoretical ROC curve provided by DROBA.

the optimal detection rates δ( j)(l) for j features are computed
as

δ( j)(l) = max
b′+b

′′=l,
b′∈{0,...,( j−1)×bmax},

b
′′∈{0,...,bmax}

δ( j−1)(b′)δj(b′′), (10)

for l = 0, . . . , j×bmax. Note that δ( j)(l) needs to be computed
for all string lengths l ∈ {0, . . . , j × bmax}. Equation (10) tells
that the optimal detection rate for j features at string length
l is derived from maximizing the product of an optimized
detection rate for j − 1 features at string length b′ and the
detection rate of the jth feature quantized to b′′ bits, while
b′ + b′′ = l. In each iteration step, for each value of l in
δ( j)(l), the specific optimal bit assignments of features must
be maintained. Let {bi(l)}, i = 1, . . . , j denote the optimal
bit assignments for j features at binary string length l such
that the ith entry corresponds to the ith feature. Note that

the sum of all entries in {bi(l)} equals l, that is,
∑ j

i=1bi(l) = l.

If b̂′ and b̂′′ denote the values of b′ and b′′ that correspond to
the maximum value δ( j)(l) in (10), the optimal assignments
are updated by

bi(l) = bi
(
b̂′
)

, i = 1, . . . , j − 1,

bj(l) = b̂′′.
(11)

The iteration procedure is initialized with j = 0, b0(0) = 0,
and δ(0)(0) = 1 and terminated when j = D. After D
iterations, we obtain a set of optimal bit assignments for
every possible bit length l = 0, . . . ,D × bmax, we only need
to pick the one that corresponds to L: the final solution
{b∗i } = {bi(L)}, i = 1, . . . ,D. This iteration procedure can
be formalized into a dynamic programming approach [18],
as described in Algorithm 1.

Essentially, given L and arbitrary δi(bi), the dynamic
programming approach optimizes (8). The proof of its
optimality is presented in Appendix A. This approach is
independent of the specific type of the quantizer, which
determines the behavior of δi(bi). The user-specific optimal

Input:
D,L, δi(bi), bi ∈ {0, . . . , bmax}, i = 1, . . . ,D,

Initialize:
j = 0,

b0(0) = 0,
δ(0)(0) = 1,

while j < D do
j = j + 1,

b̂′, b̂
′′ = arg max

b′+b′′=l,
b′∈{0,...,( j−1)×bmax},

b′′∈{0,...,bmax}

δ( j−1)(b′)δj(b′′),

δ( j)(l) = δ( j−1)(b̂′)δj(b̂
′′

),

bi(l) = bi(b̂′), i = 1, . . . , j − 1,

bj(l) = b̂
′′

,
for l = 0, . . . , j × bmax,

endwhile
Output:

{b∗i } = {bi(L)}, i = 1, . . . ,D.

Algorithm 1: Dynamic programming approach for DROBA.

solution {b∗i } is feasible as long as 0 ≤ L ≤ (D × bmax).
The number of operations per iteration step is about O(( j −
1) × b2

max), leading to a total number of operations of
O(D2 × b2

max), which is significantly less than that of a brute
force search. However, this approach becomes inefficient if
L � D × bmax, because a D-fold iteration is always needed,
regardless of L.

3.3. Greedy Search (GS) Approach. To further reduce the
computational complexity, we introduce a greedy search
approach. By taking the logarithm of the detection rate, the
optimization problem in (8) is now equivalent to finding a
bit assignment {b∗i }, i = 1, . . . ,D that maximizes:

D∑
i=1

log(δi(bi)), (12)

under the constraint of a total number of L bits. In [19],
an equivalent problem of minimizing quantizer distortion,
given an upper bound to the bit rate, is solved by first
rewriting it as an unconstrained Lagrange minimization
problem. Thus in our case we define the unconstrained
Lagrange maximization problem as

max
bi,λ≥0

⎡
⎣ D∑
i=1

log(δi(bi))− λ
D∑
i=1

bi

⎤
⎦. (13)

We know that the detection rate of a feature is mono-
tonically non-increasing with the number of quantization
bits. Therefore, we can construct an L-bit binary string, by
iteratively assigning an extra bit to the feature that gives
the minimum detection rate loss, as seen in Algorithm 2.
Suppose {bi(l)}, i = 1, . . . ,D gives the bit assignments of
all D features at binary string length l, we compute Δi(l) for
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Input:
D,L, log(δi(bi)), bi ∈ {0, . . . , bmax}, i = 1, . . . ,D,

Initialize :
l = 0,

bi(0) = 0,
log(δi(bi(0))) = 0,

while l < L do
Δi(l) = log(δi(bi(l)))− log(δi(bi(l) + 1)),

imax = arg min
i

Δi(l),

bi(l + 1) =
{

bi(l)+1, i=imax,
bi(l), otherwise.

l = l + 1, i = 1, . . . ,D,
endwhile
Output:

{b∗i } = {bi(L)}, i = 1, . . . ,D.

Algorithm 2: Greedy search approach for DROBA.

each feature, representing the loss of the log detection rate by
assigning one more bit to that feature:

Δi(l) = log(δi(bi(l)))− log(δi(bi(l) + 1)), i = 1, . . . ,D.
(14)

Hence the extra bit that we select to construct the (l + 1)-
bit binary string comes from the feature imax that gives the
minimum detection rate loss, and no extra bits are assigned
to the unchosen feature components:

imax = arg min
i

Δi(l),

bi(l + 1) =
{
bi(l) + 1, i = imax,

bi(l), otherwise.

(15)

The iteration is initialized with l = 0, bi(0) = 0,
log(δi(bi(0))) = 0, i = 1, . . . ,D and terminated when l = L.
The final solution is {b∗i } = {bi(L)}, i = 1, . . . ,D.

To ensure the optimal solution of this greedy search
approach, the quantizer has to satisfy the following two
conditions:

(1) log(δi) is a monotonically non-increasing function of
bi,

(2) log(δi) is a concave function of bi.

The number of operations of the greedy search is about
O(L × D), which is related with L. Compared with the
dynamic programming approach with O(D2 × b2

max), greedy
search becomes significantly more efficient if L� D × b2

max,
because only an L-fold iteration needs to be conducted.

The DROBA principle provides the bit assignment {b∗i },
indicating the number of quantization bits for every single
feature. The final binary string for a genuine user is the
concatenation of the quantization and coding output under
{b∗i }.

4. Simulations

We investigated the DROBA principle on five randomly
generated synthetic features. The background PDF of each

Table 1: The randomly generated genuine user PDF N(v,μi, σi), i =
1, . . . , 5.

i 1 2 3 4 5

μi −0.12 −0.07 0.49 −0.60 −0.15

σi 0.08 0.24 0.12 0.19 0.24

feature was modeled as a Gaussian density pb,i(v) =
N(v, 0, 1), with zero mean and unit standard deviation.
Similarly, the genuine user PDF was modeled as Gaussian
density pg,i(v) = N(v,μi, σi), σi < 1, i = 1, . . . , 5, as listed in
Table 1. For every feature, a list of detection rates δi(bi), bi ∈
{0, . . . , bmax} with bmax = 3, was computed from (2).
Using these detection rates as input, the bit assignment was
generated according to DROBA. Depending on the quantizer
type and the bit allocation approach, the simulations were
arranged as follows:

(i) FQ-DROBA (DP): fixed quantizer combined with
DROBA, by using the dynamic programming
approach;

(ii) FQ-DROBA (GS): fixed quantizer combined with
DROBA, by using the greedy search approach;

(iii) LQ-DROBA (DP): likelihood ratio-based quantizer
combined with DROBA, by using the dynamic
programming approach;

(iv) LQ-DROBA (GS): likelihood ratio-based quantizer
combined with DROBA, by using the greedy search
approach;

(v) FQ-FBA (b): fixed quantizer combined with the fixed
b-bit allocation principle [16];

(vi) LQ-FBA (b): likelihood ratio-based quantizer com-
bined with the fixed b-bit allocation principle.

We computed the overall detection rate (6), based on the
bit assignment corresponding to various specified string
length L. The logarithm of the detection rates of the overall
detection rate are illustrated in Figure 5. Results show that
DROBA principle generates higher quality strings than the
FBA principle. Moreover, DROBA has the advantage that
an arbitrary length binary string can always be generated.
Regarding the greedy search approach, we observe that
the likelihood ratio based quantizer seems to satisfy the
monotonicity and concaveness requirements, which explains
the same optimal detection rate performance of LQ-DROBA
(DP) and LQ-DROBA (GS). However, in the case of the
fixed quantizer, some features in Table 1 do not satisfy the
concaveness requirement for an optimal solution of GS. This
explains the better performance of FQ-DROBA (DP) than
FQ-DROBA (GS). Note that the performance of LQ-DROBA
(DP) consistently outperforms FQ-DROBA (DP). This is
because of the better performance of the likelihood ratio-
based quantizer.

Table 2 gives the bit assignment {b∗i } of FQ-DROBA
(DP) and FQ-DROBA (GS), at L = 1, . . . , 15. The result
shows that the DROBA principle assigns more bits to dis-
criminative features than the nondiscriminative features. We
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DROBA (GS), FQ-FBA (b), LQ-FBA (b), b = 1, 2, 3, on 5 synthetic
features, at L, L = 1, . . . , 15.

Table 2: The bit assignment {b∗i } of FQ-DROBA (DP) and FQ-
DROBA (GS) at binary string length L,L = 1, . . . , 15.

L {b∗i } of FQ-DROBA (DP) {b∗i } of FQ-DROBA (GS)

0 [0 0 0 0 0] [0 0 0 0 0]

1 [0 0 1 0 0] [0 0 1 0 0]

2 [0 0 1 1 0] [0 0 1 1 0]

3 [2 0 1 0 0] [1 0 1 1 0]

4 [2 0 1 1 0] [2 0 1 1 0]

5 [3 0 1 1 0] [2 0 2 1 0]

6 [3 0 2 1 0] [3 0 2 1 0]

7 [3 0 3 1 0] [3 0 3 1 0]

8 [3 0 2 1 2] [3 0 3 1 1]

9 [3 0 3 1 2] [3 0 3 1 2]

10 [3 0 3 1 3] [3 0 3 2 2]

11 [3 2 3 1 2] [3 0 3 3 2]

12 [3 3 3 1 2] [3 1 3 3 2]

13 [3 2 3 3 2] [3 2 3 3 2]

14 [3 3 3 3 2] [3 2 3 3 3]

15 [3 3 3 3 3] [3 3 3 3 3]

observe that the dynamic programming approach sometimes
shows a jump of assigned bits (e.g., from L = 7 to L = 8 of
feature 5, with δ = 0.34 at L = 8), whereas the bits assigned
through the greedy search approach have to increase one step
at a time (with δ = 0.28 at L = 8). Such inflexibility proves
that the greedy search approach does not provide the optimal
solution in this example.

Table 3: Training, enrollment and verification data, number of
users × number of samples per user (n), and the number of
partitionings for FVC2000, FRGCt and FRGCs.

Training Enrollment Verification Partitionings

FVC2000 80× n 30× 3n/4 30× n/4 20

FRGCt 210× n 65× 2n/3 65× n/3 5

FRGCs 150× n 48× 2n/3 48× n/3 5

5. Experiments

We tested the DROBA principle on three data sets, derived
from the FVC2000 (DB2) fingerprint database [11] and the
FRGC (version 1) [12] face database.

(i) FVC2000. This is the FVC2000 (DB2) fingerprint data
set, containing 8 images of 110 users. Images are aligned
according to a standard core point position, in order to avoid
a one-to-one alignment. The raw measurements contain two
categories: the squared directional field in both x and y
directions, and the Gabor response in 4 orientations (0, π/4,
π/2, 3π/4). Determined by a regular grid of 16 by 16 points
with spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements [7].

(ii) FRGCt. This is the total FRGC (version 1) face dataset,
containing 275 users with various numbers of images, taken
under both controlled and uncontrolled conditions. A set of
standard landmarks, that is, eyes, nose, and mouth, are used
to align the faces, in order to avoid a one-to-one alignment.
The raw measurements are the gray pixel values, leading to a
total of 8762 elements.

(iii) FRGCs. This is a subset of FRGCt, containing 198 users
with at least 2 images per user. The images are taken under
uncontrolled conditions.

Our experiments involved three steps: training, enroll-
ment, and verification. In the training step, we extracted
D independent features, via a combined PCA/LDA method
[10] from a training set. The obtained transformation was
then applied to both the enrollment and verification sets.
In the enrollment step, for every target user, the DROBA
principle was applied, resulting in a bit assignment {b∗i },
with which the features were quantized and coded with a
Gray code. The advantage of the Gray code is that the Ham-
ming distance between two adjacent quantization intervals
is limited to one, which results in a better performance
of a Hamming distance classifier. The concatenation of
the codes from D features formed the L-bit target binary
string, which was stored for each target user together with
{b∗i }. In the verification step, the features of the query
user were quantized and coded according to the {b∗i } of
the claimed identity, and this resulted in a query binary
string. Finally the verification performance was evaluated by
a Hamming distance classifier. A genuine Hamming distance
was computed if the target and the query string originate
from the same identity, otherwise an imposter Hamming
distance was computed. The detection error tradeoff (DET)
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Figure 6: Illustration of the fixed quantizer with equal background probability mass in each interval: background PDF pb,i(v) = N(v, 0, 1)
(dashed); quantization intervals (solid). (a) bi = 0; (b) bi = 1; (c) bi = 2; (d) bi = 3.

curve or the equal error rate (EER) was then constructed
from these distances.

The users selected for training are different from those in
the enrollment and verification. We repeated our experiment
with a number of random partitionings. With, in total, n
samples per user (n = 8 for FVC2000, n ranges from 6 to
48 for FRGCt, and n ranges from 4 to 16 for FRGCs), the
division of the data is indicated in Table 3.

In our experiment, the detection rate was computed
from the fixed quantizer (FQ) [7, 16]. According to the
Central Limit Theorem, we assume that after the PCA/LDA
transformation, with sufficient samples from the entire
populations, the background PDF of every feature can be
modeled as a Gaussian density pb,i(v) = N(v, 0, 1). Hence
the quantization intervals are determined as illustrated in
Figure 6. Furthermore, in DROBA, the detection rate plays
a crucial role. Equation (2) shows that the accuracy of the
detection rate is determined by the underlying genuine user
PDF. Therefore, we applied the following four models.

(i) Model 1. We model the genuine user PDF as a Gaussian
density pg,i(v) = N(v,μi, σi), i = 1, . . . ,D. Besides, the user

has sufficient enrollment samples, so that both the mean
μi and the standard deviation σi are estimated from the
enrollment samples. The detection rate is then calculated
based on this PDF.

(ii) Model 2. We model the genuine user PDF as a Gaussian
density pg,i(v) = N(v,μi, σi), i = 1, . . . ,D, but there are not
sufficient user-specific enrollment samples. Therefore, for
each feature, we assume that the entire populations share the
same standard deviation and thus the σi is computed from
the entire populations in the training set. The μi, however,
is still estimated from the enrollment samples. The detection
rate is then calculated based on this PDF.

(iii) Model 3. In this model we do not determine a specific
genuine user PDF. Instead, we compute a heuristic detection
rate δi, based on the μi, estimated from the enrollment
samples. The δi is defined as

δi(bi) =
{

1, dL,i(bi)× dH,i(bi) > 1,

dL,i(bi)× dH,i(bi), otherwise,
(16)
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Figure 7: Experiment I: the EER performances of the binary strings generated under DROBA and FBA principles, compared with the real-
value feature-based Mahalanobis distance classifier (MC) and likelihood-ratio classifier (LC), at D = 50, for (a) FVC2000, (c) FRGCt, and
(e) FRGCs, with the DET of their best performances in (b), (d), and (f), respectively.
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Table 4: Experiment II: the EER performances of DROBA + Model 1/2/3/4, FBA, MC + Model 1/2 and LC+Model 1/2, at D = 50, for (a)
FVC2000, (b) FRGCt, and (c) FRGCs.

(a)

FVC2000
D = 50 EER = (%)

L = 30 50 80 100 120

DROBA + Model 1 4.0 3.6 4.3 4.6 5.1

DROBA + Model 2 3.4 3.2 4.4 4.9 5.7

DROBA + Model 3 3.7 3.8 4.6 5.4 6.2

DROBA + Model 4 7.0 5.4 4.8 5.5 5.7

FBA — 5.5 — 5.4 —

MC + Model 1 8.0

MC + Model 2 5.2

LC + Model 1 7.4

LC + Mode 2 4.2

(b)

FRGCt
D = 50 EER = (%)

L = 20 50 80 100 120

DROBA + Model 1 3.6 3.6 3.8 4.2 4.9

DROBA + Model 2 3.9 3.8 4.2 4.6 5.2

DROBA + Model 3 4.7 3.9 4.7 4.9 5.6

DROBA + Model 4 8.1 4.3 4.2 4.7 5.7

FBA — 5.0 — 4.7 —

MC + Model 1 5.5

MC + Model 2 4.2

LC + Model 1 4.6

LC + Model 2 2.2

(c)

FRGCs
D = 50 EER = (%)

L = 20 50 80 100 120

DROBA + Model 1 3.4 3.0 3.1 3.3 4.2

DROBA + Model 2 3.0 2.7 2.7 3.3 4.5

DROBA + Model 3 3.0 2.7 3.6 4.0 4.7

DROBA + Model 4 7.8 4.4 3.9 4.2 4.7

FBA — 4.4 — 4.8 —

MC + Model 1 10.3

MC + Model 2 5.0

LC + Model 1 9.5

LC + Model 2 3.9

where dL,i(bi) and dH ,i(bi) stand for the Euclidean distance
of μi to the lower and the higher genuine user interval
boundaries, when quantized into bi bits.

(iv) Model 4. In this model the global detection rates are
empirically computed from the entire populations in the
training set. For every user, we compute the mean of feature
i and evaluate this feature with the samples from the same
user, at various quantization bits bi = 0, . . . , bmax. At each
bi, the number of exact matches ni,m(bi) as well as the total
number of matches ni,t(bi) are recorded. The detection rate

of feature i with bi bits quantization is then the ratio of
ni,m(bi) and ni,t(bi) averaged over all users:

δ̂i(bi) =
∑

all usersni,m(bi)∑
all usersni,t(bi)

. (17)

We then repeat this process for all the features i = 1, . . . ,D.

The detection rates δ̂i(bi) are then used as input of DROBA.
As a result, all the users share the same bit assignment.

Following the four models, experiments with DROBA
were carried out and compared to the real-value based Maha-
lanobis distance classifier (MC), likelihood ratio classifier
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Table 5: Experiment II: the EER performances of DROBA + Model 1/2/3/4, FBA, MC + Model 1/2, and LC + Model 1/2, at L = 50, for (a)
FVC2000, (b) FRGCt, and (c) FRGCs.

(a)

FVC2000
L = 50 EER = (%)

D = 20 30 40 50 60 79

MC + Model 1 7.2 7.3 7.3 8.0 8.2 8.7

MC + Model 2 5.4 5.4 5.3 5.2 5.2 5.4

LC + Model 1 7.3 6.9 7.1 7.4 7.5 7.9

LC + Model 2 4.8 4.6 4.7 4.3 4.3 3.8

DROBA + Model 1 8.4 5.2 4.5 3.6 3.5 2.9

DROBA + Model 2 8.3 5.4 4.0 3.2 3.1 2.7

DROBA + Model 3 8.5 6.2 4.7 3.8 3.4 2.8

DROBA + Model 4 8.2 6.5 5.5 5.4 5.4 5.4

(b)

FRGCt
L = 50 EER = (%)

D = 20 50 80 100 120

MC + Model 1 4.9 5.5 6.9 8.1 9.0

MC + Model 2 3.8 4.2 5.7 6.2 6.9

LC + Model 1 4.5 4.6 5.3 5.8 6.3

LC + Model 2 2.7 2.2 2.2 2.2 2.2

DROBA + Model 1 7.0 3.6 3.0 3.0 3.0

DROBA + Model 2 7.2 3.8 3.8 3.7 3.6

DROBA + Model 3 7.7 4.0 3.8 3.9 4.2

DROBA + Model 4 7.3 4.3 4.3 4.3 4.3

(c)

FRGCs
L = 50 EER = (%)

D = 20 50 80 100 120

MC + Model 1 8.1 10.3 12.1 13.9 14.8

MC + Model 2 4.3 5.0 6.1 6.6 7.2

LC + Model 1 7.7 9.5 11.4 12.6 13.0

LC + Model 2 3.9 3.9 3.9 3.9 3.7

DROBA + Model 1 6.5 3.0 3.0 2.7 2.4

DROBA + Model 2 6.7 2.7 2.5 2.2 2.1

DROBA + Model 3 7.5 2.7 2.7 2.6 2.8

DROBA + Model 4 6.7 4.4 4.4 4.4 4.4

(LC), and the fixed bit allocation principle (FBA). Thus, in
short, the experiments are described as follows.

(i) DROBA + Model 1/2/3/4: which generate the binary
strings based on the fixed quantizer and the DROBA
principle via the dynamic programming approach,
where the detection rates are derived from Model
1/2/3/4, respectively. The binary strings are then
compared with a Hamming distance classifier. Nota-
tion DROBA here refers to FQ-DROBA (DP) in
Section 4.

(ii) FBA: which generates the binary strings based on the
fixed quantizer and the fixed bit allocation principle
[7, 8, 16], which assigns the same number of bits to all
features. The binary strings are then compared with

a Hamming distance classifier. Notation FBA here
refers to FQ-FBA (b) in Section 4.

(iii) MC + Model 1/2: which employ a Mahalanobis
(norm2) distance classifier [20] on the real-valued
features, where the genuine user PDF is derived from
Model 1 or 2, respectively;

(iv) LC + Model 1/2: which employ a likelihood ratio
classifier [21] on the real-valued features, where the
genuine user PDF is derived from Model 1 or 2,
respectively.

In the experiments the maximum number of quan-
tization bits for each feature was fixed to bmax = 3.
This allows us to investigate the impact of the D − L
configuration on the DROBA performances. We conducted
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two experiments: in Experiment I, given D features, we
evaluated the verification performances at various binary
string lengths L; in Experiment II, given a budget of L bits,
we investigated the verification performances with various
numbers of features D. Additionally, since experimental
results of DP and GS approaches are almost the same, we only
present the result of DP.

In Experiment I, Figures 7(a), 7(c), 7(e), and Table 4
show the corresponding EER performances for FVC2000,
FRGCt, and FRGCs, given D = 50 features after PCA/LDA
transformation. All DROBA + Model 1/2/3/4 show similar

behavior: as L increases, the performance first improves, and
then starts to degrade. This could be explained by (6) and (7)
that given D, a low L ends up in a high FAR bound, contrarily
a high L ends up in a low detection rate bound. Therefore,
a moderate L might provide a good tradeoff between FAR
and FRR. For FVC2000 and FRGCs, DROBA + Model 1
and DROBA + Model 2 reveal similar performances, whereas
DROBA + Model 3 has slightly worse performance. In the
case of FRGCt, DROBA + Model 1 constantly outperforms
DROBA + Model 2/3. As a global implementation, DROBA
+ Model 4 performs worse than DROBA + Model 1/2 for
all three datasets, but the difference decreases as L increases.
When compared to DROBA + Model 3, despite a rather poor
performance at small L, DROBA + Model 4 gives comparable
performances at large L. To summarize, given D features, by
applying DROBA, there exists an L that gives the optimal
FAR/FRR performances of a Hamming distance classifier.
The optimal L depends on the Model 1/2/3/4. Furthermore,
we observe that at a low bit budget, user-specific models
(Model 1/2/3) have advantages over global models (Model
4). Unfortunately, when the bit budget becomes too high, all
models become poor. Figures 7(b), 7(d), and 7(f) plot the
DET curves of their best performances.

Comparing the performances of DROBA to FBA in
Figures 7(a), 7(c), and 7(e), we observe that both DROBA
+ Model 1/2 outperform FBA for all three datasets. As
an example of the FRR/FAR for FRGCt in Figure 8, an
explanation might be that DROBA maximizes the detection
rate bound of the Hamming distance classifier, leading to
averagely lower FRR than FBA. At a low L, DROBA + Model
3 outperforms FBA. However, at high L, it might lose its
superiority, as seen in Figures 7(a) and 7(c). This implies
that at a high L, the approximate detection rates—computed
only from the mean—no longer provide enough useful
information for the DROBA principle. We could imagine
that at high L, the bit assignment of DROBA + Model 3
tends to become “random,” so that it is even not competitive
to FBA, which has a uniform bit assignment. DROBA +
Model 4, however, does not show great advantages over FBA.
Since both DROBA + Model 4 and FBA obtain global bit
assignment, we could analyze it for every feature. In Figure 9
we plot their bit assignment at D = 50, L = 50 and 100,
for FRGCt. After PCA/LDA transformation, the features with
lower index are generally more discriminative than those
with higher index. We observe that DROBA + Model 4
consistently assigns more bits to more discriminative features
than less discriminative ones. Contrarily, FBA assigns equal
bits to every feature. This explains the better performances of
DROBA + Model 4.

Comparing the performances of DROBA to MC and LC
in Figures 7(a), 7(c), and 7(e), we observe that at some
lengths L, DROBA + Model 1/2/3 outperform MC + Model
1/2 and LC + Model 1/2, except for LC + Model 2 in FRGCt.
Likewise, DROBA + Model 4 obtains better performances
than MC + Model 1/2 and LC + Model 1 at some lengths
L, but worse performances than LC + Model 2, for all three
datasets.

In Experiment II, we investigated the verification per-
formance with various numbers of features D, given a bit
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Figure 10: Experiment II: the EER performances of the binary strings generated under DROBA and FBA principles, compared with the
real-value feature based Mahalanobis distance classifier (MC) and likelihood-ratio classifier (LC), at L = 50, for (a) FVC2000, (c) FRGCt,
and (e) FRGCs, with the DET of their best performances in (b), (d), and (f), respectively.
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budget L = 50. Figures 10(a), 10(c), 10(e), and Table 5
show the corresponding EER performances for FVC2000,
FRGCt, and FRGCs. We can imagine that more features give
DROBA more freedom to choose the optimal bit assignment,
which theoretically should give equal or better detection
rate bounded at a given string length L. On the other
hand, we know that the PCA/LDA transformation yields
less reliable feature components, as the dimensionality D
increases. This means that at a high D, if the detection
rate model we apply is not robust enough against the
feature unreliability, the computed detection rate might not
be accurate and consequently mislead the DROBA. Results
show that the performances of DROBA + Model 1/2 on
the three datasets consistently improve as D increases. This
suggests that given a larger number of less reliable features,
DROBA + Model 1/2 are still quite effective. Unlike DROBA
+ Model 1/2, DROBA + Model 3 starts to degrade at very
high D, for FRGCt and FRGCs. This suggests that Model
3 is more susceptible to unreliable features. Since it only
uses feature mean to predict the detection rate, when the
dimensionality is high, the feature mean becomes unreliable,
Model 3 no longer computes accurate detection rate. As a
global implementation, DROBA + Model 4 gives relatively
worse performances than DROBA + Model 1/2/3. However,
we observe that when D is larger than a certain value
(50 for FVC2000, 50 for FRGCt, and 20 for FRGCt), the
bit assignment of DROBA + Model 4 does not change at
all, leading to exactly the same performance. This result is
consistent with the PCA/LDA transformation, proving that
globally the features are becoming less discriminative as D
increases, so that DROBA simply discards all the upcom-
ing features. Therefore, by sacrificing the user specificity,
DROBA + Model 4 is immune to unreliable features. Figures
10(b), 10(d), and 10(f) plot the DET curves of their best
performances.

Comparing the performances of DROBA to MC and LC
in Figures 10(a), 10(c), and 10(e), we observe that for all
three data sets, DROBA + Model 1/2/3 easily outperform MC
+ Model 1/2 and LC + Model 1 as D increases. Similar results
are obtained when comparing DROBA + Model 1/2/3 to LC
+ Model 2 in the context of FVC2000 and FRGCs, whereas
for FRGCt, DROBA + Model 1/2/3 do not outperform LC
+ Model 2. Additionally, DROBA + Model 4 outperforms
MC+Model 1 and LC+Model 1, as well as MC + Model
2, except for FVC2000. Unfortunately, for all three datasets,
DROBA + Model 4 does not outperform LC + Model 2.

6. Discussion

Since DROBA decides the bit assignment according to the
detection rate, determining the underlying genuine user
PDF is crucial. However, in practice, it turns out to be
difficult, due to the lack of samples. To solve this problem,
we proposed three user-specific models: (1) Gaussian density
(Model 1), (2) Gaussian density with approximated param-
eters (Model 2), and (3) heuristic model (Model 3). Exper-
imental results suggest that FVC2000 and FRGCs obtain
better performances from Model 2, while FRGCt obtains

better performances from Model 1. Generally speaking, the
genuine user PDF is associated with the biometric modality,
as well as the feature extraction method, thus how to choose
the right model (e.g., Gaussian) is important. Furthermore,
how to accurately estimate the parameters (e.g., μ, σ) in the
model is also a problem to solve. There is no gold standard,
and choosing the right model and estimation method is a
matter of how accurately it fits the features.

Apart from the user-specific models (Model 1/2/3), we
also proposed a global model (Model 4). Our experimental
results suggest that in a system with multiple enrollment
samples per user, it is preferable to choose user-specific
models. Nevertheless, Model 4 still has significant potentials:
it is purely empirical and nonparametric, avoiding all
problems related with model based estimation; it is robust
to unreliable features; it is easily adaptable to all biometric
systems.

Essentially, unlike the real-valued classifiers (e.g., MC
and LC), which fully depend on or “trust” the feature density
model, DROBA only partially depends on such model. Thus
we might see quantization under DROBA as a model-
oriented compression procedure, where the bit allocation
is obtained according to the statistics of the model but the
data variation within every quantization interval is ignored,
leading to a binary string with compressed information. In
fact, in Experiment I, we proved that Hamming distance
classifier with binary strings may outperform the MC and
LC with real-valued features: the applied density model
(e.g., Model 1) is not accurate, so that a compressed
binary representation might be less prone to overfitting. The
compression can be optimized by carefully tuning the D − L
or even the bmax configurations in DROBA.

7. Conclusion

Generating binary strings from real-valued biometric mea-
surements in fact acts as a data compression process. Thus,
in biometric applications, we aim to generate binary strings
that not only retain the discriminative information but also
are robust to intra-class variations, so that the performance
of the classification is ensured, while the binary strings
can be used in various applications. Basically, there are
two factors that influence the performance of the binary
string: (1) the quantizer design of every feature component;
(2) the principle to compose the binary string from all
feature components. In this paper, independent of the
quantizer design, we proposed a detection rate optimized
bit allocation principle (DROBA), which can be achieved by
both a dynamic programming and a greedy search approach.
Consequently DROBA assigns more bits to discriminative
features and fewer bits to nondiscriminative features. This
process is driven by the statistics derived from the training
and enrollment data, based on which we proposed four
models. Experiments on the FVC2000 fingerprint and the
FRGC face database show promising results.

The DROBA principle has the advantage that it is adapt-
able to arbitrary biometric modalities, such as fingerprint
texture, iris, signature, and face. Additionally, the binary
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strings can be used in any kind of binary string-based clas-
sifiers, as well as crypto systems. The practical applications
of the biometric binary strings are not only limited to the
template protection systems but also to systems requiring fast
matching or constrained storage capability. Furthermore,
combined with various detection rate estimation methods,
binary strings generated under DROBA can be a new
promising biometric representation as opposed to the real-
valued representation.

Appendix

A. Proving Optimal of the Dynamic
Programming Approach

The question that has to be answered is whether the dynamic
programming approach presented above will lead to the
optimal bit assignment. The proof is as follows. Denote the
optimal bit allocation over D′ features by

{
b̂i(l)

}
= arg max

bi|
∑
bi=l, bi∈{0,...,bmax}

D′∏
i=1

δi(bi), (A.1)

and denote the maximum obtained by δmax. Assume that
we have a partitioning of the D′ features into two arbitrary
sets. The sets are fully characterized by the indices of the
features, so we can speak of the index sets as well. Let M
and N denote the index sets, such that M ∩ N = ∅ and
M ∪N = {1, . . . ,D′}. Define

δM(l) = max
bi|
∑
bi=l, bi∈{0,...,bmax}

∏
i∈M

δi(bi),

l = 0, . . . , |M|bmax,

δN (l) = max
bi|
∑
bi=l, bi∈{0,...,bmax}

∏
i∈N

δi(bi),

l = 0, . . . , |N |bmax,
(A.2)

Define

l̂M =
∑
i∈M

b̂i(l),

l̂N =
∑
i∈N

b̂i(l).
(A.3)

Now

max
l′,l′′|l′+l′′=l, l′∈M, l′′∈N

δM(l′)δN (l′′)

≥ δM
(
l̂M
)
δN
(
l̂N
)

≥
∏
i∈M

δi
(
b̂i(l)

)∏
i∈N

δi
(
b̂i(l)

)

=
D′∏
i=1

δi
(
b̂i(l)

)

= δmax.

(A.4)

The left-hand side of this inequality is a product of the form

D′∏
i=1

δi(bi), (A.5)

with bi constrained by
∑
bi = l, bi ∈ {0, . . . , bmax}. This

cannot, by definition, be greater than δmax. Therefore, it must
be identical to δmax.

Note that the partitioning into index sets M and N was
arbitrary. If we takeD′ = j,M = {1, . . . , j−1}, andN = { j},
then we have proved that the jth recursion step of the above
algorithm is optimal.
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