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This paper presents a sound source (talker) localization method using only a single microphone, where a Gaussian Mixture Model
(GMM) of clean speech is introduced to estimate the acoustic transfer function from a user’s position. The new method is able to
carry out this estimation without measuring impulse responses. The frame sequence of the acoustic transfer function is estimated
by maximizing the likelihood of training data uttered from a given position, where the cepstral parameters are used to effectively
represent useful clean speech. Using the estimated frame sequence data, the GMM of the acoustic transfer function is created
to deal with the influence of a room impulse response. Then, for each test dataset, we find a maximum-likelihood (ML) GMM
from among the estimated GMMs corresponding to each position. The effectiveness of this method has been confirmed by talker
localization experiments performed in a room environment.
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1. Introduction

Many systems using microphone arrays have been tried in
order to localize sound sources. Conventional techniques,
such as MUSIC and CSP (e.g., [1–4]), use simultaneous
phase information from microphone arrays to estimate
the direction of the arriving signal. There have also been
studies on binaural source localization based on interaural
differences, such as interaural level difference and inter-
aural time difference (e.g., [5, 6]). However, microphone-
array-based systems may not be suitable in some cases
because of their size and cost. Therefore, single-channel
techniques are of interest, especially in small-device-based
scenarios.

The problem of single-microphone source separation is
one of the most challenging scenarios in the field of signal
processing, and some techniques have been described (e.g.,
[7–10]). In our previous work [11, 12], we proposed Hidden
Markov Model (HMM) separation for reverberant speech
recognition, where the observed (reverberant) speech is sepa-
rated into the acoustic transfer function and the clean speech
HMM. Using HMM separation, it is possible to estimate the
acoustic transfer function using some adaptation data (only

several words) uttered from a given position. For this reason,
measurement of impulse responses is not required. Because
the characteristics of the acoustic transfer function depend
on each position, the obtained acoustic transfer function can
be used to localize the talker.

In this paper, we will discuss a new talker local-
ization method using only a single microphone. In our
previous work [11] for reverberant speech recognition,
HMM separation required texts of a user’s utterances in
order to estimate the acoustic transfer function. However,
it is difficult to obtain texts of utterances for talker-
localization estimation tasks. In this paper, the acoustic
transfer function is estimated from observed (reverber-
ant) speech using a clean speech model without hav-
ing to rely on user utterance texts, where a Gaussian
Mixture Model (GMM) is used to model clean speech
features. This estimation is performed in the cepstral
domain employing an approach based upon maximum
likelihood (ML). This is possible because the cepstral
parameters are an effective representation for retaining
useful clean speech information. The results of our talker-
localization experiments show the effectiveness of our
method.
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2. Estimation of the Acoustic Transfer Function

2.1. System Overview. Figure 1 shows the training process
for the acoustic transfer function GMM. First, we record the
reverberant speech data O(θ) from each position θ in order to
build the GMM of the acoustic transfer function for θ. Next,
the frame sequence of the acoustic transfer function ̂H(θ) is
estimated from the reverberant speech O(θ) (any utterance)
using the clean speech acoustic model, where a GMM is used
to model the clean speech feature:

̂H(θ) = arg max
H

Pr
(

O(θ) | H , λS
)

. (1)

Here, λS denotes the set of GMM parameters for clean
speech, while the suffix S represents the clean speech in
the cepstral domain. The clean speech GMM enables us to
estimate the acoustic transfer function from the observed
speech without needing to have user utterance texts (i.e.,
text-independent acoustic transfer estimation). Using the
estimated frame sequence data of the acoustic transfer
function ̂H(θ), the acoustic transfer function GMM for each
position λ(θ)

H is trained.
Figure 2 shows the talker localization process. For test

data, the talker position ̂θ is estimated based on discrimina-
tion of the acoustic transfer function, where the GMMs of the
acoustic transfer function are used. First, the frame sequence
of the acoustic transfer function ̂H is estimated from the
test data (any utterance) using the clean speech acoustic
model. Then, from among the GMMs corresponding to each
position, we find a GMM having the ML in regard to ̂H :

̂θ = arg max
θ

Pr
(

̂H | λ(θ)
H

)

, (2)

where λ(θ)
H denotes the estimated acoustic transfer function

GMM for direction θ (location).

2.2. Cepstrum Representation of Reverberant Speech. The
observed signal (reverberant speech), o(t), in a room envi-
ronment is generally considered as the convolution of clean
speech and the acoustic transfer function:

o(t) =
L−1
∑

l=0

s(t − l)h(l), (3)

where s(t) is a clean speech signal and h(l) is an acoustic
transfer function (room impulse response) from the sound
source to the microphone. The length of the acoustic transfer
function is L. The spectral analysis of the acoustic modeling
is generally carried out using short-term windowing. If the
length L is shorter than that of the window, the observed
complex spectrum is generally represented by

O(ω;n) = S(ω;n) ·H(ω;n). (4)

However, since the length of the acoustic transfer function
is greater than that of the window, the observed spectrum is
approximately represented by O(ω;n) ≈ S(ω;n) · H(ω;n).

...

(Each training position)

Single
microphone

Observed speech
from each position

Estimation of the frame sequence data
of the acoustic transfer function using

the clean speech model

Training of the acoustic transfer function GMM

for each position using ̂H(θ)
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(trained using the
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H

Pr(O(θ) | H , λS)
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θ

O(θ)
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λ(θ)
H

· · ·
θ = 30◦ θ = 60◦

Figure 1: Training process for the acoustic transfer function GMM.

(User’s test position)
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Estimation of the acoustic transfer function
using the clean speech model

̂H

̂θ = arg max
θ

Pr( ̂H | λ(θ)
H )

GMMs for each position · · ·
θ = 30◦ θ = 60◦

Figure 2: Estimation of talker localization based on discrimination
of the acoustic transfer function.

Here O(ω;n), S(ω;n), and H(ω;n) are the short-term
linear complex spectra in analysis window n. Applying the
logarithm transform to the power spectrum, we get

log |O(ω;n)|2 ≈ log |S(ω;n)|2 + log |H(ω;n)|2. (5)

In speech recognition, cepstral parameters are an effec-
tive representation when it comes to retaining useful speech
information. Therefore, we use the cepstrum for acoustic
modeling that is necessary to estimate the acoustic transfer
function. The cepstrum of the observed signal is given by the
inverse Fourier transform of the log spectrum:

Ocep(t;n) ≈ Scep(t;n) + Hcep(t;n), (6)

where Ocep, Scep, and Hcep are cepstra for the observed
signal, clean speech signal, and acoustic transfer function,
respectively. In this paper, we introduce a GMM of the
acoustic transfer function to deal with the influence of a
room impulse response.
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Figure 3: Difference between acoustic transfer functions obtained
by subtraction of short-term-analysis-based speech features in the
cepstrum domain.

2.3. Difference of Acoustic Transfer Functions. Figure 3 shows
the mean values of the cepstrum, H′

cep, that were computed
for each word using the following equations:

Hcep(t;n) ≈ Ocep(t;n)− Scep(t;n), (7)

H′
cep(t) = 1

N

N
∑

n

Hcep(t;n), (8)

where t is the cepstral index. Reverberant speech, O, was
created using linear convolution of clean speech and impulse
response. The impulse responses were taken from the RWCP
sound scene database [13], where the loudspeaker was
located at 30 and 90 degrees from the microphone. The
lengths of the impulse responses are 300 and 0 milliseconds.

The reverberant speech and clean speech were processed
using a 32-millisecond Hamming window, and then for each
frame, n, a set of 16 Mel-Frequency Cepstral Coefficients
(MFCCs) was computed. The 10th and 11th cepstral coef-
ficients for 216 words are plotted in Figure 3. As shown in
this figure (300 milliseconds) a difference between the two
acoustic transfer functions (30 and 90 degrees) appears in
the cepstral domain. The difference shown will be useful for
sound source localization estimation. On the other hand, in
the case of the 0 millisecond impulse response, the influence
of the microphone and the loudspeaker characteristics are
a significant problem. Therefore, it is difficult to discrim-
inate between each position for the 0 millisecond impulse
response.

Also, this figure shows that the variability of the acoustic
transfer function in the cepstral domain appears to be large
for the reverberant speech. When the length of the impulse
response is shorter than the analysis window used for the
spectral analysis of speech, the acoustic transfer function
obtained by subtraction of short-term-analysis-based speech
features in the cepstrum domain comes to be constant over
the whole utterance. However, as the length of the impulse
response for the room reverberation becomes longer than
the analysis window, the variability of the acoustic transfer
function obtained by the short-term analysis will become
large, with acoustic transfer function being approximately
represented by (7). To compensate for this variability, a
GMM is employed to model the acoustic transfer function.

3. Maximum-Likelihood-Based
Parameter Estimation

This section presents a new method for estimating the
GMM of the acoustic transfer function. The estimation is
implemented by maximizing the likelihood of the training
data from a user’s position. In [14], an ML estimation
method to decrease the acoustic mismatch for a telephone
channel was described, and in [15] channel distortion and
noise are simultaneously estimated using an expectation
maximization (EM) method. In this paper, we introduce the
utilization of the GMM of the acoustic transfer function
based on the ML estimation approach to deal with a room
impulse response.

The frame sequence of the acoustic transfer function in
(6) is estimated in an ML manner by using the EM algorithm,
which maximizes the likelihood of the observed speech:

̂H = arg max
H

Pr
(

O | H , λS
)

. (9)

Here, λS denotes the set of clean speech GMM parameters,
while the suffix S represents the clean speech in the cepstral
domain. The EM algorithm is a two-step iterative procedure.
In the first step, called the expectation step, the following
auxiliary function is computed:

Q
(

̂H | H) = E
[

log Pr
(

O, c | ̂H , λS
) | H , λS

]

=
∑

c

Pr
(

O, c | H , λS
)

Pr
(

O | H , λS
) · log Pr

(

O, c | ̂H , λS
)

.

(10)
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Here c represents the unobserved mixture component labels
corresponding to the observation sequence O.

The joint probability of observing sequences O and c can
be calculated as

Pr
(

O, c | ̂H , λS
) =

∏

n(v)

wcn(v) Pr
(

On(v) | ̂H , λS
)

, (11)

where w is the mixture weight and On(v) is the cepstrum at
the nth frame for the vth training data (observation data).
Since we consider the acoustic transfer function as additive
noise in the cepstral domain, the mean to mixture k in the
model λO is derived by adding the acoustic transfer function.
Therefore, (11) can be written as

Pr
(

O, c | ̂H , λS
) =

∏

n(v)

wcn(v) ·N
(

On(v) ;μ(S)
kn(v)

+ ̂Hn(v) ,Σ(S)
kn(v)

)

,

(12)

where N(O;μ,Σ) denotes the multivariate Gaussian distribu-
tion. It is straightforward to derive that [16]

Q
(

̂H | H) =
∑

k

∑

n(v)

Pr
(

On(v) , cn(v) = k | λS
)

logwk

+
∑

k

∑

n(v)

Pr
(

On(v) , cn(v) = k | λS
)

· logN
(

On(v) ;μ(S)
k + ̂Hn(v) ,Σ(S)

k

)

.

(13)

Here μ(S)
k and Σ(S)

k are the kth mean vector and the (diagonal)
covariance matrix in the clean speech GMM, respectively. It
is possible to train those parameters by using a clean speech
database.

Next, we focus only on the term involving H :

Q
(

̂H | H)

=
∑

k

∑

n(v)

Pr
(

On(v) , cn(v) = k | λS
)

· logN
(

On(v) ;μ(S)
k + ̂Hn(v) ,Σ(S)

k

)

= −
∑

k

∑

n(v)

γk,n(v)

D
∑

d=1

{

1
2

log (2π)Dσ (S)2

k,d

+

(

On(v),d − μ(S)
k,d − ̂Hn(v),d

)2

2σ (S)2

k,d

}

,

γk,n(v) = Pr
(

On(v) , k | λS
)

.
(14)

Here D is the dimension of the observation vector On, and

μ(S)
k,d and σ (S)2

k,d are the dth mean value and the dth diagonal
variance value of the kth component in the clean speech
GMM, respectively.

The maximization step (M-step) in the EM algorithm
becomes “max Q( ̂H | H).” The re-estimation formula can,
therefore, be derived, knowing that ∂Q( ̂H | H)/∂ ̂H = 0 as

̂Hn(v),d =
∑

k γk,n(v)

((

On(v),d − μ(S)
k,d

)

/σ (S)2

k,d

)

∑

k

(

γk,n(v) /σ (S)2

k,d

) . (15)
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Figure 4: Experiment room environment for simulation.

After calculating the frame sequence data of the acoustic
transfer function for all training data (several words), the
GMM for the acoustic transfer function is created. The mth
mean vector and covariance matrix in the acoustic transfer
function GMM (λ(θ)

H ) for the direction (location) θ can be
represented using the term ̂Hn as follows:

μ(H)
m =

∑

v

∑

n(v)

γm,n(v) ̂Hn(v)

γm
,

Σ(H)
m =

∑

v

∑

n(v)

γm,n(v)

(

̂Hn(v) − μ(H)
m

)T(
̂Hn(v) − μ(H)

m

)

γm
.

(16)

Here n(v) denotes the frame number for vth training data.
Finally, using the estimated GMM of the acoustic transfer

function, the estimation of talker localization is handled in
an ML framework:

̂θ = arg max
θ

Pr
(

̂H | λ(θ)
H

)

, (17)

where λ(θ)
H denotes the estimated GMM for θ direction

(location), and a GMM having the maximum-likelihood is
found for each test data from among the estimated GMMs
corresponding to each position.

4. Experiments

4.1. Simulation Experimental Conditions. The new talker
localization method was evaluated in both a simulated rever-
berant environment and a real environment. In the simulated
environment, the reverberant speech was simulated by a
linear convolution of clean speech and impulse response. The
impulse response was taken from the RWCP database in real
acoustical environments [13]. The reverberation time was
300 milliseconds, and the distance to the microphone was
about 2 meters. The size of the recording room was about
6.7 m × 4.2 m (width × depth). Figures 4 and 5 show the
experimental room environment and the impulse response
(90 degrees), respectively.

The speech signal was sampled at 12 kHz and windowed
with a 32-millisecond Hamming window every 8 millisec-
onds. The experiment utilized the speech data of four males
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Figure 5: Impulse response (90 degrees, reverberation time: 300
milliseconds).

in the ATR Japanese speech database. The clean speech GMM
(speaker-dependent model) was trained using 2620 words
and has 64 Gaussian mixture components. The test data for
one location consisted of 1000 words, and 16-order MFCCs
were used as feature vectors. The total number of test data
for one location was 1000 (words) × 4 (males). The number
of training data for the acoustic transfer function GMM was
10 words and 50 words. The speech data for training the
clean speech model, training the acoustic transfer function
and testing were spoken by the same speakers but had
different text utterances, respectively. The speaker’s position
for training and testing consisted of three positions (30,
90, and 130 degrees), five positions (10, 50, 90, 130, and
170 degrees), seven positions (30, 50, 70, . . . , 130, and 150
degrees) and nine positions (10, 30, 50, 70, . . . , 150, and 170
degrees). Then, for each set of test data, we found a GMM
having the ML from among those GMMs corresponding to
each position. These experiments were carried out for each
speaker, and the localization accuracy was averaged by four
talkers.

4.2. Performance in a Simulated Reverberant Environment.
Figure 6 shows the localization accuracy in the three-position
estimation task, where 50 words are used for the estimation
of the acoustic transfer function. As can be seen from this
figure, by increasing the number of Gaussian mixture com-
ponents for the acoustic transfer function, the localization
accuracy is improved. We can expect that the GMM for
the acoustic transfer function is effective for carrying out
localization estimation.

Figure 7 shows the results for a different number of
training data, where the number of Gaussian mixture
components for the acoustic transfer function is 16. The
performance of the training using ten words may be a bit
poor due to the lack of data for estimating the acoustic
transfer function. Increasing the amount of training data (50
words) improves in the performance.

In the proposed method, the frame sequence of the
acoustic transfer function is separated from the observed
speech using (15), and the GMM of the acoustic transfer
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function is trained by (16) using the separated sequence data.
On the other hand, a simple way to carry out voice (talker)
localization may be to use the GMM of the observed speech
without the separation of the acoustic transfer function. The
GMM of the observed speech can be derived in a similar way
as in (16):

μ(O)
m =

∑

v

∑

n(v)

γm,n(v)On(v)

γm
,

Σ(O)
m =

∑

v

∑

n(v)

γm,n(v)

(

On(v) − μ(O)
m

)T(

On(v) − μ(O)
m

)

γm
.

(18)

The GMM of the observed speech includes not only
the acoustic transfer function but also clean speech, which
is meaningless information for sound source localization.
Figure 8 shows the comparison of four methods. The first
method is our proposed method and the second is the
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method using GMM of the observed speech without the
separation of the acoustic transfer function. The third is a
simpler method that uses the cepstral mean of the observed
speech instead of GMM. (Then, the position that has the
minimum distance from the learned cepstral mean to that
of the test data is selected as the talker’s position.) The
fourth is a CSP (Cross-power Spectrum Phase) algorithm
based on two microphones, where the CSP uses simultaneous
phase information from microphone arrays to estimate
the location of the arriving signal [2]. As shown in this
figure, the use of the GMM of the observed speech had
a higher accuracy than that of the mean of the observed
speech, and, the use of the GMM of the acoustic transfer
function results in a higher accuracy than that of GMM of
the observed speech. The proposed method separates the
acoustic transfer function from the short observed speech
signal, so the GMM of the acoustic transfer function will not
be affected greatly by the characteristics of the clean speech
(phoneme). As it did with each test word, it is able to achieve
good performance regardless of the content of the speech
utterance, but the localization accuracy of the methods using
just one microphone decreases as the number of training
positions increases. On the other hand, the CSP algorithm
based on two microphones has high accuracy even in the 9-
position task. As the proposed method (single microphone
only) uses the acoustic transfer function estimated from a
user’s utterance, the accuracy is low.

4.3. Performance in Simulated Noisy Reverberant Environ-
ments and Using a Speaker-Independent SpeechModel. Figure
9 shows the localization accuracy for noisy environments.
The observed speech data was simulated by adding pink
noise to clean speech convoluted using the impulse response
so that the signal to noise ratio (SNR) were 25 dB, 15 dB, and
5 dB. As shown in Figure 9, the localization accuracy at the
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Figure 9: Localization accuracy for noisy environments.
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SNR of 25 dB decreases about 30% in comparison to that in
a noiseless environment. The localization accuracy decreases
further as the SNR decreases.

Figure 10 shows the comparison of the performance
between a speaker-dependent speech model and a
speaker-independent speech model. For training a speaker-
independent clean speech model and a speaker-independent
acoustic transfer function model, the speech data spoken
by four males in the ASJ Japanese speech database were
used. Then, the clean speech GMM was trained using 160
sentences (40 sentences × 4 males) and it has 256 Gaussian
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mixture components. The acoustic transfer function for
training locations was estimated by this clean speech model
from 10 sentences for each male. The total number of
training data for the acoustic transfer function GMM was 40
(10 sentences × 4 males) sentences. For training the speaker-
dependent model and testing, the speech data spoken by
four males in the ATR Japanese speech database were used
in the same way as described in Section 4.1. The speech
data for the test were provided by the same speakers used to
train the speaker-dependent model, but different speakers
were used to train the speaker-independent model. Both
the speaker-dependent GMM and the speaker-independent
GMM for the acoustic transfer function have 16 Gaussian
mixture components. As shown in Figure 10, the localization
accuracy of the speaker-independent speech model decreases
about 20% in comparison to the speaker-dependent speech
model.

4.4. Performance Using Speaker-Dependent Speech Model in
a Real Environment. The proposed method, which uses a
speaker-dependent speech model, was also evaluated in a
real environment. The distance to the microphone was 1.5 m
and the height of the microphone was about 0.45 m. The
size of the recording room was about 5.5 m × 3.6 m × 2.7 m
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(width × depth × height). Figure 11 depicts the room envi-
ronment of the experiment. The experiment used speech
data, spoken by two males, in the ASJ Japanese speech
database. The clean speech GMM (speaker-dependent
model) was trained using 40 sentences and has 64 Gaussian
mixture components. The test data for one location consisted
of 200, 100, and 66 segments, where one segment has a
time length of 1, 2, and 3 seconds, respectively. The number
of training data for the acoustic transfer function was 10
sentences. The speech data for training the clean speech
model, training the acoustic transfer function, and testing
were spoken by the same speakers, but they had different
text utterances, respectively. The experiments were carried
out for each speaker and the localization accuracy of the two
speakers was averaged.

Figure 12 shows the comparison of the performance
using different test segment lengths. There were three speaker
positions for training and testing (45, 90, and 135 degrees)
and one loudspeaker (BOSE Mediamate II) was used for
each position. As shown in this figure, the longer the length
of the segment was, the more the localization accuracy
increased, since the mean of estimated acoustic transfer
function became stable. Figure 13 shows the effect when
the orientation of the speaker changed from that of the
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Figure 15: Mean acoustic transfer function values for five positions
(top graph) and mean acoustic transfer function values for three
speaker orientations (0 deg, 45 deg, and 90 deg) at a position of
45 deg and 90 deg (bottom graph).

speaker for training. There were five speaker positions for
training (45, 65, 90, 115, and 135 degrees). There were
two speaker positions for the test (45 and 90 degrees), and
the orientation of the speaker changed to 0, 45, and 90
degrees, as shown in Figure 14. As shown in Figure 13, as
the orientation of speaker changed, the localization accuracy
decreased. Figure 15 shows the plot of acoustic transfer
function estimated for each position and orientation of
speaker. The plot of the training data is the mean value of
all training data, and that for the test data is the mean value
of test data per 40 seconds. As shown in Figure 15, as the
orientation of the speaker changed from that for training, the
estimated acoustic transfer functions were distributed over
the distance away from the position of training data. As a

result, these estimated acoustic transfer functions were not
correctly recognized.

5. Conclusion

This paper has described a voice (talker) localization method
using a single microphone. The sequence of the acoustic
transfer function is estimated by maximizing the likelihood
of training data uttered from a position, where the cepstral
parameters are used to effectively represent useful clean
speech information. The GMM of the acoustic transfer
function based on the ML estimation approach is introduced
to deal with a room impulse response. The experiment
results in a room environment confirmed its effectiveness for
location estimation tasks, but the proposed method requires
the measurement of speech for each room environment
in advance, and the localization accuracy decreases as the
number of training positions increases. In addition, not
only the position of speaker but also various factors (e.g.,
orientation of the speaker) affect the acoustic transfer
function. Future work will include efforts to improve both
localization estimation from more locations and estimation
when the conditions other than speaker position change.
We also hope to improve the localization accuracy in noisy
environments and for speaker-independent speech models.
Also, we will investigate a text-independent technique based
on HMM in the modeling of the speech content.
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