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1. Introduction

Traditionally, signal enhancement techniques for hearing
aids (HAs) were mainly developed independently for each
ear [1–4]. However, since the human auditory system is a
binaural system combining the signals received from both
ears for audio perception, providing merely bilateral systems
(that operate independently for each ear) to the hearing-
aid user may distort crucial binaural information needed
to localize sound sources correctly and to improve speech
perception in noise. Foreseeing the availability of wireless
technologies for connecting the two ears, several binaural
processing strategies have therefore been presented in the last
decade [5–10]. In [5], a binaural adaptive noise reduction
algorithm exploiting one microphone signal from each ear
has been proposed. Interaural time difference cues of speech
signals were preserved by processing only the high-frequency
components while leaving the low frequencies unchanged.
Binaural spectral subtraction is proposed in [6]. It utilizes
cross-correlation analysis of the two microphone signals for
a more reliable estimation of the common noise power
spectrum, without requiring stationarity for the interfering
noise as the single-microphone versions do. Binaural multi-
channel Wiener filtering approaches preserving binaural

cues were also proposed, for example, in [7–9], and signal
enhancement techniques based on blind source separation
(BSS) were presented in [10].

Research on feedback suppression and control system
theory in general has also given rise to numerous hearing-
aid specific publications in recent years. The behavior of
unilateral closed-loop systems and the ability of adaptive
feedback cancellation algorithms to compensate for the
feedback has been extensively studied in the literature (see,
e.g., [11–15]). But despite the progress in binaural signal
enhancement, binaural systems have not been considered in
this context. In this paper, we therefore present a theoretical
analysis of a binaural system combining adaptive feedback
cancellation (AFC) and binaural adaptive filtering (BAF)
techniques for signal enhancement in hearing aids.

The paper is organized as follows. An efficient binaural
configuration combining AFC and BAF is described in
Section 2. Generic vector/matrix notations are introduced
for each part of the processing chain. Interaction effects
concerning the AFC are then presented in Section 3. It
includes a derivation of the ideal binaural AFC solution, a
convergence analysis of the AFC filters based on the binaural
Wiener solution, and a stability analysis of the binaural
system. Interaction effects concerning the BAF are discussed
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in Section 4. Here, to illustrate our argumentation, a BSS
scheme has been chosen as an example for adaptive binaural
filtering. Experimental conditions and results are finally
presented in Sections 5 and 6 before providing concluding
remarks in Section 7.

2. Signal Model

AFC and BAF techniques can be combined in two different
ways. The feedback cancellation can be performed directly on
the microphone inputs, or it can be applied at a later stage,
to the BAF outputs. The second variant requires in general
fewer filters but it has also several drawbacks. Actually, when
the AFC comes after the BAF in the processing chain, the
feedback cancellation task is complicated by the necessity
to follow the continuously time-varying BAF filters. It may
also significantly increase the necessary length of the AFC
filters. Moreover, the BAF cannot benefit from the feedback
cancellation effectuated by the AFC in this case. Especially at
high HA amplification levels, the presence of strong feedback
components in the sensor inputs may, therefore, seriously
disturb the functioning of the BAF. These are structurally the
same effects as those encountered when combining adaptive
beamforming with acoustic echo cancellation (AEC) [16].

In this paper, we will therefore concentrate on the
“AFC-first” alternative, where AFC is followed by the BAF.
Figure 1 depicts the signal model adopted in this study. Each
component of the signal model will be described separately
in the following and generic vector/matrix notations will
be introduced to carry out a general analysis of the overall
system in Sections 3 and 4.

2.1. Notations. In this paper, lower-case boldface characters
represent (row) vectors capturing signals or the filters of
single-input-multiple-output (SIMO) systems. Accordingly,
multiple-input-single-output (MISO) systems are described
by transposed vectors. Matrices denoting multiple-input-
multiple-output (MIMO) systems are represented by upper-
case boldface characters. The transposition of a vector or a
matrix will be denoted by the superscript {·}T .

2.2. The Microphone Signals. We consider here multi-sensor
hearing aid devices with P microphones at each ear (see
Figure 1), where P typically ranges between one and three.
Because of the reverberation in the acoustical environment,
Q point source signals sq (q = 1, . . . ,Q) are filtered by a
MIMO mixing system (one Q × P MIMO system for each
ear in the figure) modeled by finite impulse response (FIR)
filters. This can be expressed in the z-domain as:

xs
Ip(z) =

Q∑

q=1

sq(z)hqIp(z) I ∈ {L, R}, (1)

where xs
Ip(z) is the z-domain representation of the received

source signal mixture at the pth sensor of the left (I = L)
and right (I = R) hearing aid, respectively. hqLp(z) and
hqRp(z) denote the transfer functions (polynomes of order
up to several thousands typically) between the qth source

and the pth sensor at the left and right ears, respectively.
One of the point sources may be seen as the target source
to be extracted, the remaining Q − 1 being considered as
interfering point sources. For the sake of simplicity, the z-
transform dependency (z) will be omitted in the rest of this
paper, as long as the notation is not ambiguous.

The acoustic feedback originating from the loudspeakers
(LS) uL and uR at the left and right ears, respectively,
is modeled by four 1 × P SIMO systems of FIR filters.
fLLp and fRLp represent the (z-domain) transfer functions
(polynomes of order up to several hundreds typically) from
the loudspeakers to the pth sensor on the left side, and
fLRp and fRRp represent the transfer functions from the
loudspeakers to the pth sensor on the right side. The
feedback components captured by the pth microphone of
each ear can therefore be expressed in the z-domain as

xu
Ip = uL fLIp + uR fRIp I ∈ {L, R}. (2)

Note that as long as the energy of the two LS signals are
comparable, the “cross” feedback signals (traveling from one
ear to the other) are negligible compared to the “direct”
feedback signals (occuring on each side independently).
With the feedback paths (FBP) used in this study (see the
description of the evaluation data in Section 5.3), an energy
difference ranging from 15 to 30 dB has been observed
between the “direct” and “cross” FBP impulse responses.
When the HA gains are set at similar levels in both ears,
the “cross” FBPs can then be neglected. But the impact of
the “cross” feedback signals becomes more significant when
a large difference exists between the two HA gains. Here,
therefore, we explicitly account for the two types of feedback
by modelling both the “direct” paths (with transfer functions
fLLp and fRRp , p = 1, . . . ,P) and the “cross” paths (with
transfer functions fRLp and fLRp , p = 1, . . . ,P) by FIR filters.

Diffuse noise signals nLp and nRp , p = 1, . . . ,P constitute
the last microphone signal components on the left and right
ears, respectively. The z-domain representation of the pth
sensor signal at each ear is finally given by:

xIp = xs
Ip + xn

Ip + xu
Ip I ∈ {L, R}. (3)

This can be reformulated in a compact matrix form
jointly capturing the P microphone signals of each HA:

x = xs + xn + xu = sH + xn + uF, (4)

where we have used the z-domain signal vectors

s = [s1, . . . , sQ
]
, (5)

xs
L =

[
xs

L1
, . . . , xs

LP

]
, (6)

xs
R =

[
xs

R1
, . . . , xs

RP

]
, (7)

xs =
[

xs
L xs

R

]
, (8)

u =
[
uL uR

]
, (9)
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Figure 1: Signal model of the AFC-BAF combination.

as well as the z-domain matrices

HL =

⎡
⎢⎢⎢⎢⎣

h1L1 · · · h1LP

...
. . .

...

hQL1 · · · hQLP

⎤
⎥⎥⎥⎥⎦

, (10)

HR =

⎡
⎢⎢⎢⎢⎣

h1R1 · · · h1RP

...
. . .

...

hQR1 · · · hQRP

⎤
⎥⎥⎥⎥⎦

, (11)

H = [HL HR], (12)

fLL =
[
fLL1 , . . . , fLLP

]
, (13)

fRL =
[
fRL1 , . . . , fRLP

]
, (14)

FL =
[

fTLL fTRL

]T
, (15)

fLR =
[
fLR1 , . . . , fLRP

]
, (16)

fRR =
[
fRR1 , . . . , fRRP

]
, (17)

FR =
[

fTLR fTRR

]T
, (18)

F =
[

FL FR

]
=
⎡
⎣

fLL fLR

fRL fRR

⎤
⎦. (19)

Furthermore, xn and xu capturing the noise and feedback
components present in the microphone signals are defined
in a similar way to xs. The sensor signal decomposition (4)
can be further refined by distinguishing between target and
interfering sources:

xs = xstar
+ xsint = starhtar + sintHint. (20)

star refers to the target source and sint is a subset of s capturing
the Q − 1 remaining interfering sources. htar is a row of H
which captures the transfer functions from the target source
to the sensors and Hint is a matrix containing the remaining
Q− 1 rows of H. Like the other vectors and matrices defined
above, these four entities can be further decomposed into
their left and right subsets, labeled with the indices L and R,
respectively.

2.3. The AFC Processing. As can be seen from Figure 1, we
apply here AFC to remove the feedback components present
in the sensor signals, before passing them to the BAF. Feed-
back cancellation is achieved by trying to produce replicas of
these undesired components, using a set of adaptive filters.
The solution adopted here consists of two 1×P SIMO systems
of adaptive FIR filters, with transfer functions bLp and bRp

between the left (resp. right) loudspeaker and the pth sensor
on the left (resp. right) side. The output

yIp = uIbIp I ∈ {L, R} (21)

of the pth filter on the left (resp. right) side is then subtracted
from the pth sensor signal on the left (resp. right) side,
producing a residual signal

eIp = xIp − yIp I ∈ {L, R}, (22)

which is, ideally, free of any feedback components. (21) and
(22) can be reformulated in matrix form as follows:

e = x − y = x− uB, (23)

with the block-diagonal constraint

B
!= Bc =

⎡
⎣

bL 0

0 bR

⎤
⎦ (24)
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put on the AFC system. The vectors e and y, capturing
the z-domain representations of the residual and AFC
output signals, respectively, are defined in analogous way
to xs in (8). As can be seen from (21) and (22), we
perform here bilateral feedback cancellation (as opposed to
binaural operations) since AFC is performed for each ear
separately. This is reflected in (24), where we force the off-
diagonal terms to be zero instead of reproducing the acoustic
feedback system F with its set of four SIMO systems. The
reason for this will become clear in Section 3.1. Guidelines
regarding an arbitrary (i.e., unconstrained) AFC system B
(defined similarly to F in this case) will also be provided
at some points in the paper. The superscript {·}c is used
to distinguish constrained systems Bc defined by (24) from
arbitrary (unconstrained) systems B (with possibly non-zero
off-diagonal terms).

2.4. The BAF Processing. The BAF filters perform spatial
filtering to enhance the signal coming from one of the Q
external point sources. This is performed here binaurally,
that is, by combining signals from both ears (see Figure 1).
The binaural filtering operations can be described by a set of
four P × 1 MISO systems of adaptive FIR filters. This can be
expressed in the z-domain as follows:

vI =
P∑

p=1

eLpwLpI + eRpwRpI I ∈ {L, R}, (25)

where wLpI and wRpI, p = 1, . . . ,P, I ∈ {L, R} are the
transfer functions applied on the pth sensor of the left and
right hearing aids, respectively. To reformulate (25) in matrix
form, we define the vector

v =
[
vL vR

]
, (26)

which jointly captures the z-domain representations of the
two BAF outputs, and the vector and matrices

wLL =
[
wL1L, . . . ,wLPL

]
, (27)

wRL =
[
wR1L, . . . ,wRPL

]
, (28)

wL =
[

wLL wRL

]
, (29)

wLR =
[
wL1R, . . . ,wLPR

]
, (30)

wRR =
[
wR1R, . . . ,wRPR

]
, (31)

wR =
[

wLR wRR

]
, (32)

W =
[

wT
L wT

R

]
=
⎡
⎣

wT
LL wT

LR

wT
RL wT

RR

⎤
⎦, (33)

related to the transfer functions of the MIMO BAF system.
We can finally express (25) as:

v = e W. (34)

2.5. The Forward Paths. Conventional HA processing
(mainly a gain correction) is performed on the output of
the AFC-BAF combination, before being played back by the
loudspeakers:

uI = vI gI I ∈ {L, R}, (35)

where gL and gR model the HA processing in the z-domain, at
the left and right ears, respectively. In the literature, this part
of the processing chain is often referred to as the forward path
(in opposition to the acoustic feedback path). To facilitate the
analysis, we will assume that the HA processing is linear and
time-invariant (at least between two adaptation steps) in this
study. (35) can be conveniently written in matrix form as:

u = v Diag
{

g
}

, (36)

with

g =
[
gL gR

]
. (37)

The Diag{·} operator applied to a vector builds a diagonal
matrix with the vector entries placed on the main diagonal.

Note that for simplicity, we assumed that the number of
sensors P used on each device for digital signal processing
was equal. The above notations as well as the following
analysis are however readily applicable to asymmetrical con-
figurations also, simply by resizing the above-defined vectors
and matrices, or by setting the corresponding microphone
signals and all the associated transfer functions to zero. In
particular, the unilateral case can be seen as a special case of
the binaural structure discussed in this paper, with one or
more microphones used on one side, but none on the other
side.

3. Interaction Effects on the Feedback
Cancellation

The structure depicted in Figure 1 for binaural HAs mainly
deviates from the well-known unilateral case by the pres-
ence of binaural spatial filtering. The binaural structure
is characterized by a significantly more complex closed-
loop system, possibly with multiple microphone inputs, but
most importantly with two connected LS outputs, which
considerably complicates the analysis of the system. However,
we will see in the following how, under certain conditions,
we can exploit the compact matrix notations introduced in
the previous section, to describe the behavior of the closed-
loop system. We will draw some interesting conclusions on
the present binaural system, emphasizing its deviation from
the standard unilateral case in terms of ideal cancellation
solution, convergence of the AFC filters and system stability.

3.1. The Ideal Binaural AFC Solution. In the unilateral and
single-channel case, the adaptation of the (single) AFC filter
tries to adjust the compensation signal (the filter output)
to the (single-channel) acoustic feedback signal. Under ideal
conditions, this approach guarantees perfect removal of the
undesired feedback components and simultaneously pre-
vents the occurrence of howling caused by system instabilities
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Figure 2: Equivalent signal model of the AFC-BAF combination under the assumption (40).

[11] (the stability of the binaural closed-loop system will
be discussed in Section 3.3). The adaptation of the filter
coefficients towards the desired solution is usually achieved
using a gradient-descent-like learning rule, in its simplest
form using the least mean square (LMS) algorithm [17]. The
functioning of the AFC in the binaural configuration shown
in Figure 1 is similar.

The residual signal vector (23) can be decomposed into
its source, noise and feedback components using (4):

e = xs + xn + u(F− B)︸ ︷︷ ︸
eFB

, (38)

where B denotes an arbitrary (unconstrained) AFC system

matrix (Section 2.3). eFB =
[

eFB
L eFB

R

]
= [eFB

L1
, . . . , eFB

LP
, eFB

R1
, . . . ,

eFB
RP

] captures the z-domain representations of the residual
feedback components to be removed by the AFC. The only
way to perfectly remove the feedback components from the
residual signals (i.e., eFB = 0), for arbitrary output signal
vectors u, is to have

B = F =̂ B̂. (39)

B̂ denotes the ideal AFC solution in the unconstrained case.
This is the binaural analogon to the ideal AFC solution in
the unilateral case, where perfect cancellation is achieved
by reproducing an exact replica of the acoustical FBP. In
practice, this solution is however very difficult to reach
adaptively because it requires the two signals uL and uR

to be uncorrelated, which is obviously not fulfilled in our
binaural HA scenario since the two HAs are connected
(the correlation is actually highly desirable since the HAs
should form a spatial image of the acoustic scene, which
implies that the two LS signals must be correlated to reflect
interaural time and level differences). This problem has been
extensively described in the literature on multi-channel AEC,
where it is referred to as the “non-uniqueness problem”.
Several attempts have been reported in the literature to partly

alleviate this issue (see, e.g., [18–20]). These techniques may
be useful in the HA case also, but this is beyond the scope of
the present work.

In this paper, instead of trying to solve the problem
mentioned above, we explicitly account for the correlation
of the two LS output signals. The relation between the HA
outputs can be tracked back to the relation existing between
the BAF outputs vL and vR (Figure 1), which are generated
from the same set of sensors and aim at reproducing
a binaural impression of the same acoustical scene. The
relation between vL and vR can be described by a linear
operator cLR(z) transforming vL(z) into vR(z) such that:

vR = vLcLR ∀vL, (40)

which is actually perfectly true if and only if cLR transforms
wL into wR:

wR = wLcLR. (41)

Therefore, the assumption (40) will only be an approxima-
tion in general, except for a specific class of BAF systems
satisfying (41). The BSS algorithm discussed in Section 4
belongs to this class. Figure 2 shows the equivalent signal
model resulting from (40). As can be seen from the figure,
cLR can be equivalently considered as being part of the right
forward path to further simplify the analysis. Accordingly, we
then define the new vector

g̃ = [g̃L g̃R
] = [gL cLRgR

]
(42)

jointly capturing cLR and the HA processing. Provided that
gL and gR are linear, (41) (and hence (40)) is equivalent to
assuming the existence of a linear dependency between the
LS outputs, which we can express as follows:

u = vLg̃ = uL

g̃L
g̃ = uR

g̃R
g̃. (43)
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This assumption implies that only one filter (instead of
two, one for each LS signal) suffices to cancel the feedback
components in each sensor channel. It corresponds to the
constraint (24) mentioned in Section 2.3, which forces the

AFC system matrix B to be block-diagonal (B
!= Bc). The

required number of AFC filters reduces accordingly from
2× 2P to 2P.

Using the constraint (24) and the assumption (43) in
(38), we can derive the constrained ideal AFC solution
minimizing eFB

I , I ∈ {L, R}, considering each side separately:

eFB
I = uFI − uIbI

= uI

g̃I
g̃FI − uIbI

= uI

⎡
⎣

g̃FIg̃
−1
I︸ ︷︷ ︸

b̂I

−bI

⎤
⎦ I ∈ {L, R}. (44)

Here, b̂I denote the ideal AFC solution for the left or right
HA. It can be easily verified that inserting (44) into (23) leads
to the following residual signal decomposition:

e = xs + xn + u
(

B̂c − Bc
)

︸ ︷︷ ︸
eFB

, (45)

where

B̂c = Bdiag
{

b̂L, b̂R

}
(46)

denotes the ideal AFC solution when B is constrained to be
block-diagonal (B

!= Bc) and under the assumption (43).
The Bdiag {·} operator is the block-wise counterpart of the
Diag {·} operator. Applied to a list of vectors, it builds a
block-diagonal matrix with the listed vectors placed on the
main diagonal of the block-matrix, respectively.

To illustrate these results, we expand the ideal AFC
solution (46) using (15) and (18):

b̂L =
(
g̃LfLL + g̃RfRL

)
g̃−1

L

= fLL︸︷︷︸
direct

+ g̃R/g̃LfRL︸ ︷︷ ︸
cross

,

b̂R =
(
g̃RfRR + g̃LfLR

)
g̃−1

R

= fRR︸︷︷︸
direct

+ g̃R/g̃LfRL︸ ︷︷ ︸
cross

.

(47)

For each filter, we can clearly identify two terms due to,
respectively, the “direct” and “cross” FBPs (see Section 2.2).
Contrary to the “direct” terms, the “cross” terms are
identifiable only under the assumption (43) that the LS
outputs are linearly dependent. Should this assumption not
hold because of, for example, some non-linearities in the
forward paths, the “cross” FBPs would not be completely
identifiable. The feedback signals propagating from one ear

to the other would then act as a disturbance to the AFC
adaptation process. Note, however, that since the amplitude
of the “cross” FBPs is negligible compared to the amplitude
of the “direct” FBPs (Section 2.2), the consequences would
be very limited as long as the HA gains are set to similar
amplification levels, as can be seen from (47). It should
also be noted that the forward path generally includes some
(small) decorrelation delays DL and DR to help the AFC
filters to converge to their desired solution (see Section 3.2).
If those delays are set differently for each ear, causality of
the “cross” terms in (47) will not always be guaranteed, in
which case the ideal solution will not be achievable with
the present scheme. This situation can be easily avoided by
either setting the decorrelation delays DL = DR equal for
each ear (which appears to be the most reasonable choice to
avoid artificial interaural time differences), or by delaying the
LS signals (but using the non-delayed signals as AFC filter
inputs). However, since it would further increase the overall
delay from the microphone inputs to the LS outputs, the
latter choice appears unattractive in the HA scenario.

3.2. The Binaural Wiener AFC Solution. In the configuration
depicted in Figure 2, similar to the standard unilateral
case (see, e.g., [12]), conventional gradient-descent-based
learning rules do not lead to the ideal solution discussed
in Section 3.1 but to the so-called Wiener solution [17].
Actually, instead of minimizing the feedback components
eFB in the residual signals, the AFC filters are optimized by
minimizing the mean-squared error of the overall residual
signals (38).

In the following, we conduct therefore a convergence
analysis of the binaural system depicted in Figure 2, by
deriving the Wiener solution of the system in the frequency
domain:

bWiener
I

(
z = e jω

)
= rxIuI

(
e jω
)
r−1
uIuI

(
e jω
)

=
(

ruuI FI + rxs
IuI + rxn

I uI

)
r−1
uIuI

(48)

= g̃FIg̃
−1
I︸ ︷︷ ︸

b̂I(z=e jω)

+rxs
IuIr

−1
uIuI

+ rxn
I uIr

−1
uIuI︸ ︷︷ ︸

b̆I(z=e jω)

I∈{L, R},

(49)

where the frequency dependency (e jω) was omitted in (48)
and (49) for the sake of simplicity, like in the rest of this

section. b̂I(z = e jω) is recognized as the (frequency-domain)
ideal AFC solution discussed in Section 3.1, and b̆I(z = e jω)
denotes a (frequency-domain) bias term. The assumption
(43) has been exploited in (48) to obtain the above final
result. ruIuI represents the (auto-) power spectral density of
uI, I ∈ {L, R}, and rxIuI = [rxI1uI , . . . , rxIP uI ], I ∈ {L, R}, is
a vector capturing cross-power spectral densities. The cross-
power spectral density vectors rxs

IuI and rxn
I uI are defined in a

similar way.
The Wiener solution (49) shows that the optimal solution

is biased due to the correlation of the different source
contributions xs and xn with the reference inputs uI, I ∈
{L, R} (i.e., the LS outputs), of the AFC filters. The bias
term b̆I in (49) can be further decomposed like in (20),
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distinguishing between desired (target source) and undesired
(interfering point sources and diffuse noise) sound sources:

b̆Wiener
I

(
e jω
)
= rxStar

I uI
r−1
uIuI︸ ︷︷ ︸

due to target source

+ r
xSint

I uI
r−1
uIuI

+ rxn
I uIr

−1
uIuI

︸ ︷︷ ︸
due to undesired sources

I ∈ {L, R}.

(50)

By nature, the spatially uncorrelated diffuse noise compo-
nents xn will be only weakly correlated with the LS outputs.
The third bias term will have therefore only a limited impact
on the convergence of the AFC filters. The diffuse noise
sources will mainly act as a disturbance. Depending on
the signal enhancement technique used, they might even
be partly removed. But above all, the (multi-channel) BAF
performs spatial filtering, which mainly affects the interfer-
ing point sources. Ideally, the interfering sources may even
vanish from the LS outputs, in which case the second bias
term would simply disappear. In practice, the interference
sources will never be completely removed. Hence the amount
of bias introduced by the interfering sources will largely
depend on the interference rejection performance of the BAF.
However, like in the unilateral hearing aids, the main source
of estimation errors comes from the target source. Actually,
since the BAF aims at producing outputs which are as close as
possible to the original target source signal, the first bias term
due to the (spectrally colored) target source will be much
more problematic.

One simple way to reduce the correlation between the
target source and the LS outputs is to insert some delays DL

and DR in the forward paths [12]. The benefit of this method
is however very limited in the HA scenario where only tiny
processing delays (5 to 10 ms for moderate hearing losses) are
allowed to avoid noticeable effects due to unprocessed signals
leaking into the ear canal and interfering with the processed
signals. Other more complicated approaches applying a
prewhitening of the AFC inputs have been proposed for
the unilateral case [21, 22], which could also help in the
binaural case. We may also recall a well-known result from
the feedback cancellation literature: the bias of the AFC
solution decreases when the HA gain increases, that is, when
the signal-to-feedback ratio (SFR) at the AFC inputs (the
microphones) decreases. This statement also applies to the
binaural case. This can be easily seen from (50) where
the auto-power spectral density r−1

uIuI
decreases quadratically

whereas the cross-power spectral densities increase only
linearly with increasing LS signal levels.

Note that the above derivation of the Wiener solution
has been performed under the assumption (43) that the LS
outputs are linearly dependent. When this assumption does
not hold, an additional term appears in the Wiener solution.
We may illustrate this exemplarily for the left side, starting
from (48):

bWiener
L

(
e jω
)
= fLL + ruRuLr

−1
uLuL

fRL︸ ︷︷ ︸
desired solution

+ rxs
LuLr

−1
uLuL

+ rxn
LuLr

−1
uLuL︸ ︷︷ ︸

bias

.

(51)

The bias term is identical to the one already obtained in (50),
while the desired term is now split into two parts. The first
one is related to the “direct” FBPs. The second term involves
the “cross” FBPs and shows that gradient-based optimization
algorithms will try to exploit the correlation of the LS outputs
(when existing) to remove the feedback signal components
traveling from one ear to the other. In the extreme case that
the two LS signals are totally decorrelated (i.e., ruRuL = 0),
this term disappears and the “cross” feedback signals cannot
be compensated. Note, however, that it would only have a
very limited impact as long as the HA gains are set to similar
amplification levels, as we saw in Section 3.1.

3.3. The Binaural Stability Condition. In this section, we
formulate the stability condition of the binaural closed-loop
system, starting from the general case before applying the
block-diagonal constraint (24). We first need to express the
responses uL and uR of the binaural system (Figure 1) on
the left and right side, respectively, to an external excitation
xs + xn. This can be done in the z-domain as follows:

uL = [xs + xn + u(F− B)]wT
L gL

= (xs + xn)wT
L gL︸ ︷︷ ︸

ûL

+ uL(FL: − BL:)wT
L gL︸ ︷︷ ︸

kLL

+ uR(FR: − BR:)wT
L gL︸ ︷︷ ︸

kRL

= ûL + uRkRL

1− kLL
, (52)

uR = [ xs + xn + u(F− B)]wT
RgR

= (xs + xn)wT
RgR︸ ︷︷ ︸

ûR

+ uL (FL: − BL:)wT
RgR︸ ︷︷ ︸

kLR

+ uR (FR: − BR:)wT
RgR︸ ︷︷ ︸

kRR

= ûR + uLkLR

1− kRR
, (53)

where FL: and BL: denote the first row of F and B, respectively,
that is, the transfer functions applied to the left LS signal. FR:

and BR: denote the second row of F and B, respectively, that
is, the transfer functions applied to the right LS signal. ûL and
ûR represent the z-domain representations of the ideal system
responses, once the feedback signals have been completely
removed:

û =
[
ûL ûR

]
= (xs + xn)W Diag

{
g
}
. (54)

kLL, kRL, kLR, and kRR can be interpreted as the open-loop
transfer functions (OLTFs) of the system. They can be seen
as the entries of the OLTF matrix K defined as follows:

K =
⎡
⎣
kLL kLR

kRL kRR

⎤
⎦ = (F− B)W Diag

{
g
}
. (55)
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Combining (52) and (53) finally yields the relations:

uL = (1− kRR)ûL + kRLûR

1− k
,

uR = (1− kLL)ûR + kLRûL

1− k
,

(56)

with

k = kLL + kRR + kLRkRL − kLLkRR

= tr {K} − det {K},
(57)

where the operators tr {·} and det {·} denote the trace and
determinant of a matrix, respectively.

Similar to the unilateral case [11], (56) indicate that
the binaural closed-loop system is stable as long as the
magnitude of k(z = e jω) does not exceed one for any angular
frequency ω:

∣∣∣k
(
z = e jω

)∣∣∣ < 1, ∀ω. (58)

Here, the phase condition has been ignored, as usual in the
literature on AFC [14]. Note that the function k in (57) and
hence the stability of the binaural system, depend on the
current state of the BAF filters.

The above derivations are valid in the general case.
No particular assumption has been made and the AFC
system has not been constrained to be block-diagonal. In the
following, we will consider the class of algorithms satisfying
the assumption (41), implying that the two BAF outputs
are linearly dependent. In this case, the ideal system output
vector (54) becomes

û = (xs + xn)wT
L g̃. (59)

Furthermore, it can easily be verified that the following
relations are satisfied in this case:

kRLûR = kRRûL, (60)

kLRûL = kLLûR, (61)

det {K} = 0. (62)

The closed-loop response (56) of the binaural system
simplifies, therefore, in this case to

u = 1
1− k

û, (63)

where k, defined in (57), reduces to

k = tr {K}. (64)

Finally, when applying additionally the block-diagonal con-
straint (24) on the AFC system, (64) further simplifies to

k = g̃
(

B̂c − Bc
)

wT
L . (65)

The stability condition (58) formulated on k for the general
case still applies here.

The above results show that in the unconstrained (con-
strained, resp.) case, when the AFC filters reach their ideal
solution B = F (Bc = B̂c, resp.), the function k in (57)
((65), resp.) is equal to zero. Hence the stability condition
(58) is always fulfilled, regardless of the HA amplification
levels used, and the LS outputs become ideal, with u = û
as expected.

4. Interaction Effects on the Binaural Adaptive
Filtering

The presence of feedback in the microphone signals is usually
not taken into account when developing signal enhancement
techniques for hearing aids. In this section, we consider the
configuration depicted in Figure 1 and focus exemplarily
on BSS techniques as possible candidates to implement
the BAF, thereby analyzing the impact of feedback on BSS
and discussing possible interaction effects with an AFC
algorithm.

4.1. Overview on Blind Source Separation. The aim of blind
source separation is to recover the original source signals
from an observed set of signal mixtures. The term “blind”
implies that the mixing process and the original source
signals are unknown. In acoustical scenarios, like in the
hearing-aid application, the source signals are mixed in a
convolutive manner. The (convolutive) acoustical mixing
system can be modeled as a MIMO system H of FIR
filters (see Section 2.2). The case where the number Q of
(simultaneously active) sources is equal to the number 2 ×
P of microphones (assuming P channels for each ear (see
Section 2.2)) is referred to as the determined case. The case
where Q < 2× P is called overdetermined, while Q > 2× P is
denoted as underdetermined.

The underdetermined BSS problem can be handled based
on time-frequency masking techniques, which rely on the
sparseness of the sound sources (see, e.g., [23, 24]). In this
paper, we assume that the number of sources does not exceed
the number of microphones. Separation can then be per-
formed using independent component analysis (ICA) meth-
ods, merely under the assumption of statistical independence
of the original source signals [25]. ICA achieves separation
by applying a demixing MIMO system A of FIR filters on
the microphone signals, hence providing an estimate of each
source at the outputs of the demixing system. This is achieved
by adapting the weights of the demixing filters to force the
output signals to become statistically independent. Because
of the adaptation criterion exploiting the independence of
the sources, a distinction between desired and undesired
sources is unnecessary. Adaptation of the BSS filters is
therefore possible even when all sources are simultaneously
active, in contrast to more conventional techniques based on
Wiener filtering [8] or adaptive beamforming [26].

One way to solve the BSS problem is to transform the
mixtures to the frequency domain using the discrete Fourier
transform (DFT) and apply ICA techniques in each DFT-bin
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independently (see e.g., [27, 28]). This approach is referred
to as the narrowband approach, in contrast with broadband
approaches which process all frequency bins simultaneously.
Narrowband approaches are conceptually simpler but they
suffer from a permutation and scaling ambiguity in each
frequency bin, which must be tackled by additional heuristic
mechanisms. Note however that to solve the permutation
problem, information on the sensor positions is usually
required and free-field sound wave propagation is assumed
(see, e.g., [29, 30]). Unfortunately, in the binaural HA
application, the distance between the microphones on each
side of the head will generally not be known exactly and head
shadowing effects will cause a disturbance of the wavefront.
In this paper, we consider a broadband ICA approach [31,
32] based on the TRINICON framework [33]. Separation
is performed exploiting second-order statistics, under the
assumption that the (mutually independent) source signals
are non-white and non-stationary (like speech). Since this
broadband approach does not rely on accurate knowledge of
the sensor placement, it is robust against unknown micro-
phone array deformations or disturbance of the wavefront. It
has already been used for binaural HAs in [10, 34].

Since BSS allows the reconstruction of the original source
signals up to an unknown permutation, we cannot know a-
priori which output contains the target source. Here, it is
assumed that the target source is located approximately in
front of the HA user, which is a standard assumption in state-
of-the-art HAs. Based on the approach presented in [35], the
output containing the most frontal source is then selected
after estimating the time-difference-of-arrival (TDOA) of
each separated source. This is done by exploiting the
ability of the broadband BSS algorithm [31, 32] to perform
blind system identification of the acoustical mixing system.
Figure 3 illustrates the resulting AFC-BSS combination. Note
that the BSS algorithm can be embedded into the general
binaural configuration depicted in Figure 1, with the BAF
filters wL and wR set identically to the BSS filters producing
the selected (monaural) BSS output:

wL = wR =
[

aLL aRL

]
if the left output is selected, (66)

wL = wR =
[

aLR aRR

]
if the right output is selected.

(67)

The BSS algorithm satisfies, therefore, the assumption (41)
and the AFC-BSS combination can be equivalently described
by Figure 2, with cLR = 1. In the following, v =̂ vL = vR refers
to the selected BSS output presented (after amplification
in the forward paths) to the HA user at both ears, and
w =̂ wL = wR denotes the transfer functions of the selected
BSS filters (common to both LS outputs). Note finally that
post-processing filters may be used to recover spatial cues
[10]. They can be modelled as being part of the forward paths
g̃L and g̃R.

4.2. Discussion. In the HA scenario, since the LS output sig-
nals feed back into the microphones, the closed-loop system
formed by the HAs participates in the source mixing process,
together with the acoustical mixing system. Therefore, the

BSS inputs result from a mixture of the external sources
and the feedback signals coming from the loudspeakers. But
because of the closed-loop system bringing the HA inputs
to the two LS outputs, the feedback signals are correlated
with the original external source signals. To understand the
impact of feedback on the separation performance of a BSS
algorithm, we describe below the overall mixing process.

The closed-loop transfer function from the external
sources (the point sources and the diffuse noise sources) to
the BSS inputs (i.e, the residual signals after AFC) can be
expressed in the z-domain by inserting (59) and (63) into
(45):

e = (xs + xn) +
1

1− k
(xs + xn)wT g̃

(
B̂c − Bc

)

= s
[

H +
1

1− k
HwT g̃(B̂c − Bc)

]

︸ ︷︷ ︸
es

+ xn
[

I +
1

1− k
wT g̃(B̂c − Bc)

]

︸ ︷︷ ︸
en

,

(68)

where Bc and B̂c refer to the AFC system and its ideal solution
(46), respectively, under the block-diagonal constraint (24).
k characterizes the stability of the binaural closed-loop
system and is defined by (65). From (68), we can identify two
independent components es and en present in the BSS inputs
and originating from the external point sources and from the
diffuse noise, respectively. As mentioned in Section 4.1, the
BSS algorithm allows to separate point sources, additional
diffuse noise having only a limited impact on the separation
performance [32]. We therefore concentrate on the first term
in (68):

es = sH + s
1

1− k
HwT g̃(B̂c − Bc)

︸ ︷︷ ︸
H̆

, (69)

which produces an additional mixing system H̆ introduced
by the acoustical feedback (and the required AFC filters).
Ideally, the BSS filters should converge to a solution which
minimizes the contribution vsint

of the interfering point
sources sint at the BSS output v, that is,

vsint = sintHintwT
︸ ︷︷ ︸

acoustical mixing

+ sintH̆intwT
︸ ︷︷ ︸
feedback loop

!= 0. (70)

Hint refers to the acoustical mixing of the interfering sources
sint, as defined in Section 2.2. H̆int can be defined in a similar
way and describes the mixing of the interfering sources
introduced by the feedback loop.

In the absence of feedback (and of AFC filters), the
second term in (70) disappears and BSS can extract the target
source by unraveling the acoustical mixing system H, which
is the desired solution. Note that this solution also allows
to estimate the position of each source, which is necessary
to select the output of interest, as discussed in Section 4.1.
However, when strong feedback signal components are
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Figure 3: Signal model of the AFC-BSS combination.

present at the BSS inputs, the BSS solution becomes biased
since the algorithm will try to unravel the feedback loop H̆
instead of targetting the acoustical mixing system H only.
The importance of the bias depends on the magnitude
response of the filters captured by H̆ in (70), relative to the
magnitude response of the filters captured by H. Contrary
to the AFC bias encountered in Section 3.2, the BSS bias
therefore decreases with increasing SFR.

The above discussion concerning BSS algorithms can be
generalized to any signal enhancement techniques involving
adaptive filters. The presence of feedback at the algorithm’s
inputs will always cause some adaptation problems. Fortu-
nately, placing an AFC in front of the BAF like in Figure 1
can help increasing the SFR at the BAF inputs. In particular,
when the AFC filters reach their ideal solution (i.e., Bc = B̂c),
then H̆ becomes zero and the bias term due to the feedback
loop in (70) disappears, regardless of the amount of sound
amplification applied in the forward paths.

5. Evaluation Setup

To validate the theoretical analysis conducted in Sections
3 and 4, the binaural configuration depicted in Figure 3
was experimentally evaluated for the combination of a
feedback canceler and the blind source separation algorithm
introduced in Section 4.1.

5.1. Algorithms. The BSS processing was performed using
a two-channel version of the algorithm introduced in
Section 4.1, picking up the front microphone at each ear (i.e.,
P = 1). Four adaptive BSS filters needed to be computed at
each adaptation step. The output containing the target source
(the most frontal one) was selected based on BSS-internal
source localization (see Section 4.1, and [35]). To obtain

meaningful results which are, as far as possible, independent
of the AFC implementation used, the AFC filter update
was performed based on the frequency-domain adaptive
filtering (FDAF) algorithm [36]. The FDAF algorithm allows
for an individual step-size control for each DFT bin and
a bin-wise optimum control mechanism of the step-size
parameter, derived from [13, 37]. In practice, this optimum
step-size control mechanism is inappropriate since it requires
the knowledge of signals which are not available under
real conditions, but it allows us to minimize the impact
of a particular AFC implementation by providing useful
information on the achievable AFC performance. Since we
used two microphones, the (block-diagonal constrained)
AFC consisted of two adaptive filters (see Figure 3).

Finally, to avoid other sources of interaction effects
and concentrate on the AFC-BSS combination, we consid-
ered a simple linear time-invariant frequency-independent
hearing-aid processing in the forward paths (i.e., gL(z) = gL

and gR(z) = gR). Furthermore, in all the results presented in

Section 4, the same HA gains gL = gR
!= g and decorrelation

delays (see Section 3.2) DL = DR = D were applied at both
ears. The selected BSS output was therefore amplified by a
factor g, delayed by D and played back at the two LS outputs.

5.2. Performance Measures. We saw in the previous sections
that our binaural configuration significantly differs from
what can usually be found in the literature on unilateral
HAs. To be able to objectively evaluate the algorithms’
performance in this context, especially concerning the AFC,
we need to adapt some of the already existing and commonly
used performance measures to the new binaural configura-
tion. This issue is discussed in the following, based on the
outcomes of the theoretical analysis presented in Sections 3
and 4.
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Figure 4: Illustration of the stability margin.

5.2.1. Feedback Cancellation Performance Measures. In the
conventional unilateral case, the feedback cancellation per-
formance is usually measured in terms of misalignment
between the (single) FBP estimate and the true (single) FBP
(which is the ideal solution in the unilateral case), as well as
in terms of Added Stable Gain (ASG) reflecting the benefit of
AFC for the user [14].

In the binaural configuration considered in this study, the
misalignment should measure the mismatch between each
AFC filter and its corresponding ideal solution. This can be
computed in the frequency domain as follows:

�bIp = 10 log10

∑
ω

∣∣∣bIp(e jω)− b̂Ip(e jω)
∣∣∣

2

∑
ω

∣∣∣b̂Ip(e jω)
∣∣∣

2 I ∈ {L, R}.

(71)

The ideal binaural AFC solution has been defined in (39)
for the general case, and in (44) under the block-diagonal
constraint (24) and assumption (43). In the results presented
in Section 4, the misalignment has been averaged over all
AFC filters (two filters in our case).

In general, it is not possible to calculate an ASG in
the binaural case since the function k(e jω) characterizing
the stability of the system depends on both gains gL and
gR (Section 3.3). It is however possible to calculate an
added stability margin (ASM) measuring the additional gain
margin (the distance of 20log10|k(e jω)| to 0dB, see Figure 4)
obtained by the AFC

ASM=20 log10

(
min
ω

1∣∣k(e jω)
∣∣

)

−20 log10

(
min
ω

1∣∣k(e jω)
∣∣

B=0

)
,

(72)

where k(z) has been defined in (57) and |k(e jω)|B=0 is the
initial magnitude of k(z = e jω), without AFC. Since the
assumption (41) is valid in our case (with cLR = 1) and since
we force our AFC system to be block-diagonal, we can alter-
natively use the simplified expression of k given by (65). Note

that the initial stability margin 20log10(minω1/|k(e jω)|B=0)
as well as the margin with AFC 20 log10(minω1/|k(e jω)|), and
hence the ASM, depend not only on the acoustical (binaural)
FBPs, but also on the current state of the BAF filters. Also,

when gL = gR
!= g, k becomes directly proportional to g and

the ASM can be interpreted as an ASG.
Additionally, the SFR measured at the BSS and AFC

inputs should be taken into account when assessing the AFC-
BSS combination since it directly influences the performance
of the algorithms. The SFR is defined in the following as the
signal power ratio between the components coming from
the external sources (without distinction between desired
and interfering sources), and the components coming from
loudspeakers (i.e., the feedback signals).

5.2.2. Signal Enhancement Performance Measures. The sep-
aration performance of the BSS algorithm is evaluated in
terms of signal-to-interference ratio (SIR), that is, the signal
power ratio between the components coming from the target
source and the components coming from the interfering
source(s). Although the feedback components xu and the
AFC filter outputs y (i.e., the compensation signals) contain
some signal coming from the external sources s (which
causes a bias of the BSS solution, as discussed in Section 4),
we will ignore them in the SIR calculation since these
components are undesired. An SIR gain can then be obtained
as the difference between the SIR at the BSS inputs and
the SIR at the BSS outputs. It reflects the ability of BSS to
extract the desired components from the signal mixture xs,
regardless of the amount of feedback (or background noise)
present. Since only one BSS output is presented to the HA
user (Section 4.1), we average the input SIR over all BSS
input channels (here two), but we consider only the selected
BSS output for the output SIR calculations.

5.3. Experimental Conditions. Since a two-channel ICA-
based BSS algorithm can only separate two point sources
(Section 4.1), no diffuse noise has been added to the sensor
signal mixture (i.e., xn = 0) and only two point sources were
considered (one target source and one interfering source).

Head-related impulse responses (HRIR) were measured
using a pair of Siemens Life (BTE) hearing aid cases with
two microphones and a single receiver (loudspeaker) inside
each device (no processor). The cases were mounted on a
real person and connected, via a pre-amplifier box, to a
(laptop) PC equipped with a multi-channel RME Multiface
sound card. Measurements were made in the following
environments:

(i) a low-reverberation chamber (T60 ≈ 50 ms),

(ii) a living-room-like environment (T60 ≈ 300 ms).

The source signal components xs were then generated by
convolving speech signals with the recorded HRIRs, with the
target and interfering sources placed at azimuths 0◦ (in front
of the HA user) and 90◦ (facing the right ear), respectively.
The target and interfering sources were approximately of
equal (long-time) signal power.



12 EURASIP Journal on Advances in Signal Processing

60

40

20

0

−20

(d
B

)

0 10 20 30 40 50

Hearing-aid gain (dB)

Vent size 2 mm

Critical gain
without

FBC

Reference SIRgain

SIRgain

SFRBSS in

SFRBSS out

(a)

60

40

20

0

−20

(d
B

)

0 10 20 30 40 50

Hearing-aid gain (dB)

Vent size 3 mm

Critical gain
without

FBC

Reference SIRgain

SIRgain

SFRBSS in

SFRBSS out

(b)

60

40

20

0

−20

(d
B

)

0 10 20 30 40 50

Hearing-aid gain (dB)

Vent open

Critical gain
without FBC

Reference SIRgain

SIRgain

SFRBSS in

SFRBSS out

(c)

Figure 5: BSS performance for increasing HA gain, in a low-reverberation chamber.

To generate the feedback components xu, binaural FBPs
(“direct” and “cross” FBPs, see Section 2.2) measured from
Siemens BTE hearing aids were used. These recordings have
been made for different vent sizes: 2 mm, 3 mm and open and
in the following scenario:

(i) left HA mounted on a manikin without obstruction,

(ii) right HA mounted on a manikin with a telephone as
obstruction.

The digital signal processing was performed at a sampling
frequency of 16 kHz, picking up the front microphone at
each ear (i.e., P = 1).

6. Experimental Results

In the following, experimental results involving the combi-
nation of AFC and BSS are shown and discussed. BSS filters
of 1024 coefficients each were applied, the AFC filter length
was set to 256 and decorrelation delays of 5 ms were included
in the forward paths.

6.1. Impact of Feedback on BSS. The discussion of Section 4
indicates that a deterioration of the BSS performance is
expected at low input SFR, due to a bias introduced by the
feedback loop. To determine to which extent the amount
of feedback deteriorates the achievable source separation,
the performance of the (adaptive) BSS algorithm was
experimentally evaluated for different amounts of feedback
by varying the amplification level g. Preliminary tests in the
absence of AFC showed that the feedback had almost no
impact on the BSS performance as long as the system was
stable (i.e., as long as |k(e jω)|B=0 < 1, ∀ω) because the SFR
at the BSS inputs was kept high (greater than 20 dB). This
basically validates the traditional way signal enhancement
techniques for hearing aids have been developed, ignoring
the presence of feedback.

Signal enhancement algorithms, however, can be subject
to higher input SFR levels when an AFC is used to stabilize
the system. To be able to further increase the gains and
the amount of feedback signal in the microphone inputs
while preventing system instability, the feedback components
present at the BSS output v were artificially suppressed. This

is equivalent to performing AFC on the BSS output, under
ideal conditions. It guarantees the stability of the system
(with ASM = +∞), regardless of the HA amplification
level, but does not reduce the SFR at the BSS inputs. The
results after convergence of the BSS algorithm are presented
in Figures 5 and 6 for different rooms and vent sizes. The
reference lines show the gain in SIR achieved by BSS in the
absence of feedback (and hence in the absence of AFC).
The critical gain depicted by vertical dashed lines in the
figures, corresponds to the maximum stable gain without
AFC, that is, the gain for which the initial stability margin
20 log10(minω1/|k(e jω)|B=0) becomes zero.

At low gains, the feedback has very little impact on the
SIR gain because the input SFR is sufficiently high in all tested
scenarios. We see also that the interference rejection causes a
decrease in SFR (from the BSS inputs to the output) since
parts of the external source components are attenuated. This
should be beneficial to an AFC algorithm since it reduces the
bias of the AFC Wiener solution due to the interfering source,
as discussed in Section 3.2. However, at high gains, where
the input SFR is low (less than 10 dB), the large amount of
feedback causes a significant deterioration of the interference
rejection performance. Moreover, it should be noted that at
low gains, the input SFR decreases proportionally to the gain,
as expected. We see, however, from the figures that the input
SFR suddenly drops at higher gains, when the amount of
feedback becomes significant (see, e.g., the transition from
g = 20 dB to g = 25 dB, in Figure 6, for an open vent). Since
BSS has no influence on the signal power of the external
sources (the “S” component in the SFR), it means that BSS
amplifies the LS signals (and hence the feedback signals at
the microphones, that is, the “F” component in the SFR).
This undesired effect is due to the bias introduced by the
feedback loop (Section 4.2) and can be interpreted as follows:
two mechanisms enter into play. The first one unravels the
acoustical mixing system. It produces LS signals which are
dominated by the target source (see the positive SIR gains
in the figures), as desired. The second mechanism consists
in amplifying the sensor signals. As long as the feedback
level is small, this second mechanism is almost invisible since
it would amplify signals coming from both sources. But at
higher gains, where the amount of feedback in the BSS inputs
become more significant, this second mechanism becomes
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Figure 6: BSS performance for increasing HA gain, in a living-room environment.
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Figure 7: Performance of the AFC-BSS combination in two acoustical environments. The measured FPBs for a vent of size 2 mm were used.

more important since it acts mainly in favor of the target
source. This second mechanism illustrates the impact of the
feedback loop on the BSS algorithm at high feedback levels.
It shows the necessity to have the AFC placed before BSS, so
that BSS can benefit from a higher input SFR.

6.2. Overall Behavior of the AFC-BSS Combination. The full
AFC-BSS combination has been evaluated for a vent size of
2 mm, in the low-reverberation chamber as well as in the
living-room-like environment (Section 5.3). Figure 7 depicts
the BSS and AFC performance obtained after convergence.
Like in Figures 5 and 6, the reference lines show the gain in
SIR achieved by BSS in the absence of feedback (and hence in
the absence of AFC).

The results confirm the observations made in the pre-
vious section. With the AFC applied directly on the sensor
signals, the BSS algorithm could indeed benefit from the
ability of the AFC to keep the SFR at the BSS inputs at high
levels for every considered HA gains. Therefore, BSS always
provided SIR gains which were very close to the reference
SIR gain obtained without feedback, even at high gains. This
contrasts with the results obtained in Figures 5 and 6, where
an ideal AFC was applied at the BSS output instead of being
applied first.

Note that the SFR at the AFC outputs correspond here
to the SFR at the BSS inputs. The gain in SFR (SFRBSSin −
SFRAFCin , i.e., the feedback attenuation) achieved by the AFC

algorithm can be therefore directly visualized from Figure 7.
As expected from the discussion presented in Section 3.1, the
two AFC filters used were sufficient to efficiently compensate
both the “direct” and “cross” feedback signals, and hence
avoid instability of the binaural closed-loop system. Like in
the unilateral case and as expected from the convergence
analysis conducted in Section 3.2, the best AFC results were
obtained at low input SFR levels, that is, at high gains. The
AFC performance was also better in the low-reverberation
chamber than in the living-room-like environment, as can be
seen from the higher SFR levels at the BSS inputs, the higher
ASM values and the lower misalignments. This result seems
surprising at the first sight, since the FBPs were identical in
both environments. It can be however easily justified by the
analytical results presented in Section 3.2. We saw actually
that the correlation between the external source signals and
the LS signals introduce a bias of the AFC Wiener solution.
The bias due to the target source is barely influenced by
the BSS results since BSS left the target signal (almost)
unchanged in both environments. But the BSS performance
influences directly the amount of residual interfering signal
present at the LS outputs, and hence the bias of the AFC
Wiener solution due to the interfering source. In general,
since reverberation increases the length of the acoustical
mixing filters (and hence the necessary BSS filter length,
typically), the more reverberant the environment, the lower
the achieved separation results (for a given BSS filter length).
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This is confirmed here by the SIR results shown in the figures.
The difference in AFC performance comes therefore from
the higher amount of residual interfering signal present at
the LS outputs in the living-room-like environment, which
increases the bias of the AFC Wiener solution.

The AFC does not suffer from any particular negative
interactions with the BSS algorithm since it comes first in
the processing chain, but rather benefits from BSS, especially
in the low-reverberation chamber, as we just saw. Note that
the situation is very different when the AFC is applied after
BSS. In this case, the AFC filters need to quickly follow the
continuously time-varying BSS filters, which prevents proper
convergence of the AFC filters, even with time-invariant
FBPs.

7. Conclusions

An analysis of a system combining adaptive feedback cancel-
lation and adaptive binaural filtering for signal enhancement
in hearing aids was presented. To illustrate our study, a blind
source separation algorithm was chosen as an example for
adaptive binaural filtering. A number of interaction effects
could be identified. Moreover, to correctly understand the
behavior of the AFC, the system was described and analyzed
in detail. A new stability condition adapted to the binaural
configuration could be derived, and adequate performance
measures were proposed which account for the specificities
of the binaural system. Experimental evaluations confirmed
and illustrated the theoretical findings.

The ideal AFC solution in the new binaural configuration
could be identified but a steady-state analysis showed that
the AFC suffers from a bias in its optimum (Wiener)
solution. This bias, similar to the unilateral case, is due to the
correlation between feedback and external source signals. It
was also demonstrated theoretically as well as experimentally
that a signal enhancement algorithm could help reducing this
bias. The correlation between feedback and external source
signals also causes a bias of the BAF solution. But contrary to
the bias encountered by the AFC, the BAF bias increases with
increasing HA amplification levels. Fortunately, this bias can
be reduced by applying AFC on the sensor signals directly,
instead of applying it on the BAF outputs.

The analysis also showed that two SIMO AFC systems of
adaptive filters can effectively compensate for the four SIMO
FBP systems when the outputs are sufficiently correlated (see
Section 3.1). Should this condition not be fulfilled because
of, for example, some non-linearities in the forward paths,
the “cross” feedback signals travelling from one ear to the
other would not be completely identifiable. But we saw
that since the amplitude of the “cross” FBPs is usually
negligible compared to the amplitude of the “direct” FBPs,
the consequences would be very limited as long as the HA
gains are set to similar amplification levels.
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