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Low-cost estimation of stationary signals and reduced-complexity tracking of nonstationary processes are well motivated tasks
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the network-wide estimates adaptively. The novel approach does not require a Hamiltonian cycle or a special bridge subset of
sensors, while communications among sensors are allowed to be noisy. A mean-square error (MSE) performance analysis of D-
LMS is conducted in the presence of a time-varying parameter vector, which adheres to a first-order autoregressive model. For
sensor observations that are related to the parameter vector of interest via a linear Gaussian model and after adopting simplifying
independence assumptions, exact closed-form expressions are derived for the global and sensor-level MSE evolution as well as
its steady-state (s.s.) values. Mean and MSE-sense stability of D-LMS are also established. Interestingly, extensive numerical tests
demonstrate that for small step-sizes the results accurately extend to the pragmatic setting whereby sensors acquire temporally
correlated, not necessarily Gaussian data.
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1. Introduction

The advent of wireless sensor networks (WSNs) has created
renewed interest in the field of distributed computing, calling
for collaborative solutions that enable low-cost estimation
of stationary signals as well as reduced-complexity tracking
of nonstationary processes. Different from WSN topologies
that include a fusion center (FC), ad hoc ones are devoid
of hierarchies and rely on in-network processing to effect
agreement among sensors on the estimate of interest. A
great body of literature has been amassed in recent years,
building-up the field of consensus-based distributed signal
processing; the reader is referred to the tutorial in [1] for
general results and a vast list of related works. Formidable
challenges arise as emergent WSN-based estimation applica-
tions demand promptly available, yet accurate local estimates
under increasingly restrictive and unpredictable operational
constraints. Specifically, often times sensors need to perform
estimation in a constantly changing environment without
having available a (statistical) model for the underlying

processes of interest. This has motivated the development
of distributed adaptive estimation schemes, generalizing the
notion of adaptive filtering to a setup involving networked
sensing/processing devices [2, Section I.B].

The first such approach introduced a sequential scheme,
whereby information circulation through a topological cycle
in conjunction with least mean-square- (LMS-) type adap-
tive filtering per sensor allows the network to account for
time variations in the signal statistics [3]. For more general
estimators, a similar stochastic incremental gradient descent
algorithm was developed in [4], which subsumes [3] as
a special case. While appealing for small-size WSNs, such
schemes inherently require a Hamiltonian cycle through
which signal estimates are continuously refined. In the
eventuality of a sensor failure, determination of a new cycle is
an NP-hard problem [5], thus challenging the applicability of
incremental schemes in medium- to large-size WSNs. Time-
critical applications may encounter additional challenges,
since the delay for a local estimate update may be significant
as the network; hence, the cycle size scales.
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Without topological constraints and by fully exploiting
the available links in the network, the so-termed (combine-
then-adapt) diffusion LMS [6] offers an improved alternative
at the price of increasing communication cost. Performance
gains result from interchanging the order of the aforemen-
tioned steps, that is, adapt-then-combine [7], leading to
the diffusion LMS variant originally proposed in [8]. An
alternative to reduce steady-state (s.s.) estimation errors
involves diffusing raw sensor observations and regression
vectors per neighborhood [7]. This facilitates the flow of
new data across the WSN but can degrade performance
in the presence of communication noise and essentially
doubles the communication cost. Tailored to applications in
which fast convergence is at a premium and increased com-
putational burden per sensor can be afforded, distributed
recursive least squares (RLS) counterparts can be found in
[2, 9, 10].

The present paper develops a fully distributed (D-)
LMS-type algorithm, which performs consensus-based, in-
network, adaptive estimation for linear regression applica-
tions. It is applicable to general ad hoc WSNs, can account
for additive communication noise, and does not require
circulation through a Hamiltonian cycle. Different from [11]
and the model-based distributed Kalman trackers in [12–
14], D-LMS can be applied to a wide class of distributed
estimation tasks as it requires no knowledge of the sensor
data model. The algorithm is derived in Section 3, by
minimizing a separable reformulation of the convex LMS
cost using distributed optimization techniques; namely the
alternating-direction method of multipliers (AD-MoM) [15,
page 253]. Relative to the D-LMS variant in [16], the present
reformulation of the LMS cost circumvents the requirement
of the special type of sensors comprising the so-called
bridge sensor subset; see also [13, 17]. As a byproduct, this
approach results in a fully distributed algorithm whereby
all sensors perform identical tasks, without introducing
hierarchies that may require intricate recovery protocols to
cope with sensor failures. Utilization of a constant step-size
endows D-LMS with tracking capabilities, without hurting
its resilience to communication noise. This is desirable in
a constantly changing environment, within which WSNs
are envisioned to operate. Interestingly, it is shown in
Section 3.2 that whenever the use of powerful channel codes
renders inter-sensor links virtually noise-free, the D-LMS
algorithm can be modified to achieve an identical com-
munication overhead, at improved convergence rates with
respect to (w.r.t.) [6] as illustrated via extensive numerical
simulations.

A main contribution of the present paper pertains to
a detailed mean-square error (MSE) tracking performance
analysis for D-LMS (Section 5). Evaluating the performance
of (centralized) adaptive filters in nonstationary environ-
ments is a challenging problem in its own right; prior art
is surveyed in, for example, [18], [19, page 120], [20, page
357] and the extensive list of references therein. To the best
of our knowledge, this paper conducts a tracking analysis
for the first time in the context of distributed adaptive
algorithms used by WSNs. This setting introduces unique
challenges in the analysis such as space-time sensor data

and multiple sources of additive noise, a consequence of
imperfect sensors and communication links. The approach
pursued here capitalizes on an equivalent representation
of the local recursions comprising D-LMS, as a global
dynamical system described by a difference-equation derived
in Section 4.1. The covariance matrix of the resulting state
is then shown to encompass all the information needed to
evaluate the relevant global and sensor-level performance
metrics (Section 4.2). Alternative analysis techniques include
the energy-conservation approach in [21], [20, page 287] and
stochastic averaging [19, page 229]. For performance analysis
of distributed adaptive algorithms seeking time-invariant
parameters, the former has been applied in [3, 6, 7], while
the latter can be found in [16].

For a time-varying parameter fluctuating as a first-order
autoregressive [AR(1)] process, and sensor observations that
are linearly related to it, the simplifying independence Gaus-
sian setting assumptions [19, page 110], [20, page 448] are
key enablers towards deriving exact closed-form expressions
for the MSE evolution and its s.s. value (Section 5.2). Mean
and MSE stability are also established, revealing sufficient
conditions under which s.s. is attained. The AR(1) model
subsumes a time-invariant parameter as a special case,
and performance results for the stationary case are readily
obtained as a byproduct. Hence, the estimation/tracking
capabilities of D-LMS in the presence of: (i) time-invariant;
and (ii) time-varying parameters can be contrasted in a uni-
fied fashion. Of particular interest in these two scenarios are
the corresponding s.s. MSE versus step-size characteristics,
which reveal fundamental insights and differences similar to
those observed in the classic LMS algorithm (Section 5.3).
All in all, the importance of the aforementioned results
is threefold: (i) an exact tracking MSE characterization is
provided for D-LMS; (ii) for the stationary case and ideal
inter-sensor links, similar results for the diffusion LMS
algorithm [6] lay a common ground for fair comparisons;
and (iii) for small step-sizes the conclusions extend to
temporally correlated (non-)Gaussian data. Numerical tests
corroborating the theoretical findings of this paper are
presented in Section 6, while concluding remarks are given
in Section 7.

Notation 1. Operators ⊗, ◦, (·)T , (·)†, λmax(·), tr(·),
diag(·), bdiag(·), E[·], vec[·] will denote Kronecker product,
Hadamard product, transposition, matrix pseudo-inverse,
spectral radius, matrix trace, diagonal matrix, block diagonal
matrix, expectation, and matrix vectorization, respectively.
Functions max(·, ·) and min(·, ·) respectively denote the
maximum and minimum value of their scalar arguments.
For both vector and matrices, ‖ · ‖ will stand for the 2-
norm and | · | for the cardinality of a set. Positive definite
matrices will be denoted by M � 0. The n×n identity matrix
will be represented by In, while 1n will denote the n × 1
vector of all ones and 1n×m := 1n1T

m. Similar notation will
be adopted for vectors (matrices) of all zeros. For matrix
M ∈ Rm×n, range(M) := {y ∈ Rm : y = Mx for some
x ∈ Rn} and nullspace(M) := {x ∈ Rn : Mx = 0m}. The ith
vector in the canonical basis for Rn will be denoted by bn,i,
i = 1, . . . ,n.
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2. NetworkModel and
Estimation Problem Statement

Consider an ad hoc WSN with sensors {1, . . . , J} := J.
To effect energy-aware communications, sensor j commu-
nicates only with its (nearby) single-hop neighbors in N j ⊆
J. Under the natural assumption of symmetric inter-sensor
links, the WSN is modeled as an undirected graph G(V,E).
The vertices in V correspond to the sensors and hence are
biunivocally mapped to the elements of J, while the edges in
E represent the available wireless links. Global connectivity
information is captured by the symmetric adjacency matrix
E ∈ RJ×J , where [E]i j = 1 if i ∈ N j and [E]i j = 0 otherwise.
By convention [E] j j = 1 for all j ∈ J so that G is not
simple. The graph Laplacian L ∈ RJ×J will be useful in the
sequel, where L := D−E, and D := diag(|N1|, . . . , |NJ |). The
adjustment of the sensors’ transmission power as well as the
initial WSN deployment are assumed to render G connected.
This is a minimum requirement ensuring that sensors’ data
can percolate across the whole WSN. Different from [3, 4, 6],
the present network model accounts explicitly for non-ideal
sensor-to-sensor links, through a zero-mean additive noise
vector ηij(t) with covariance matrix Rηj,i := E[ηij(t)η

i
j(t)

T]
corrupting signals received at sensor j from sensor i at

discrete-time instant t. The noise vectors {ηij(t)}
i∈N j

j∈J are
assumed temporally and spatially uncorrelated.

The WSN is deployed to estimate a signal vector
s0(t) ∈ Rp×1 in a collaborative fashion subject to single-
hop communication constraints, by resorting to the linear
LMS criterion; see, for example, [20, page 171]. Per time
instant t = 0, 1, 2, . . . , each sensor has available a regression
vector h j(t) ∈ Rp×1 and a scalar observation xj(t), both
assumed zero-mean without loss of generality. The network-
wide snapshot of data at time instant t can be compactly
represented in the global vector x(t) := [x1(t) · · · xJ(t)]T ∈
Rp×1 and regression matrix H(t) := [h1(t) · · ·hJ(t)]T ∈
RJ×p. A similar data setting was considered in [6]. The global
LMS estimator of interest can be written as [3, 6, 16]

ŝ(t) = arg min
s

E
[

‖x(t)−H(t)s‖2
]

= arg min
s

J
∑

j=1

E
[

(

xj(t)− hT
j (t)s

)2
]

.
(1)

Suitable reformulation may be needed in order to acquire
{h j(t)} j∈J based on the available information across sensors.
There are no general guidelines to this end, which is dictated
by the specific estimation/tracking problem at hand. For
example, in target tracking applications where sensors rely
on power or range measurements, the nonlinear data models
must be linearized before obtaining regressors as a function
of sensor observations; see, for example, [22, page 137].
Another possibility is to obtain the regression vectors from
the physics of the problem, using standard kinematic models;
see, for example, [22, Chapter 6]. A distributed power
spectrum estimation problem was described in [16, Remark
1], where regressors are formed by stacking the last p local
sensor observations.

Remark 1 (Motivation for adaptive processing). The gra-
dient of the differentiable cost in (1) depends on the
(cross-) covariances RH(t) := E[HT(t)H(t)] and rHx(t) :=
E[HT(t)x(t)]. Any attempt to iteratively obtain ŝ(t) via
gradient-based optimization algorithms will require knowl-
edge of RH(t) and rHx(t). In many WSN applications
however, this information may be either unavailable or
time-varying, and thus impossible to acquire continuously.
Tuned with the reduced-complexity requirements of WSNs,
the arguably simplest approach involves approximating the
expectations coarsely via instantaneous realizations of the
sensor data as in the classical LMS, that is, RH(t) ≈
HT(t)H(t) and rHx(t) ≈ HT(t)x(t).

This exemplification of the adaptive step in turn leads
to centralized stochastic (noisy) gradient iterations, which
one expects to perform well after sufficient data are acquired
and the unknown statistics are learnt. Still, the challenge is
to enable such learning mechanisms even when data is not
centrally available, that is, when entries of x(t) and rows
of H(t) are scattered across the WSN. In this context, the
present paper aims to develop a fully distributed LMS-type
algorithm, which relies on in-network, adaptive processing
of the available information across the WSN.

3. The D-LMS Algorithm

In this section we introduce the D-LMS algorithm, first
going through the algorithmic construction steps and salient
features of its operation. The approach followed includes
three main building blocks: (i) recast (1) into an equivalent
separable form which facilitates distributed implementation;
(ii) split the optimization problem into simpler subtasks
executed locally at each sensor; and (iii) invoke a stochastic
approximation iteration to obtain an adaptive LMS-type
algorithm that can both handle the unavailability of (cross-)
covariance information, and also remain robust to signal
variations. Important differences w.r.t. the related approach
in [16] are encountered in steps (i) and (ii); see also Remark 2
for a summary of the merits of the present contribution
relative to [16].

To distribute the cost in (1), replace the global variable s
which couples the per-sensor summands with auxiliary local
variables s := {s j}Jj=1 representing candidate estimates of s
per sensor. These local estimates are utilized to reformulate
(1) as the following convex constrained minimization prob-
lem:

{

ŝ j(t)
}J

j=1
= arg min

s

J
∑

i=1

E
[

(

xi(t)− hT
i (t)si

)2
]

,

s.t. s j = s j′ , j ∈ J, j′ ∈ N j .

(2)

The set of equality constraints in (2) involves variables of
neighboring sensors only, forcing an agreement across each
sensor’s neighborhood. If the WSN graph G is connected,
these constraints impose network-wide consensus a fortiori,
that is, s j = s j′ for all j, j′ ∈ J. As an immediate
consequence, one finds that the optimization problems (1)
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and (2) are equivalent in the sense that their optimal
solutions coincide; that is, ŝ j(t) = ŝ(t), for all j ∈ J.

3.1. Algorithm Construction. In order to tackle (2) in a
distributed fashion, we will resort to the AD-MoM [15,
page 253]. Towards this end, consider the auxiliary variables

z := {z
j′

j }
j′∈N j

j∈J and replace the constraints in (2) with the
equivalent ones

s j = z
j′

j , s j′ = z
j′

j , j ∈ J, j′ ∈ N j , j /= j′. (3)

The sole purpose of the variables z is to facilitate application
of the AD-MoM, and they will be eventually eliminated
due to their inherent redundancy. Next, associate Lagrange

multipliers [v, u] := {v
j′

j , u
j′

j }
j′∈N j

j∈J with the constraints
in (3), and form the quadratically augmented Lagrangian
function

La[s, z, v, u]

=
J
∑

j=1

E
[

(

xj(t + 1)− hT
j (t + 1)s j

)2
]

+
J
∑

j=1

∑

j′∈N j

[

(

v
j′

j

)T(

s j − z
j′

j

)

+
(

u
j′

j

)T(

s j − z
j
j′

)

]

+
J
∑

j=1

∑

j′∈N j

c

2

[
∥

∥

∥s j − z
j′

j

∥

∥

∥

2
+
∥

∥

∥s j − z
j
j′

∥

∥

∥

2
]

,

(4)

where c > 0 is a penalty coefficient. Sensor j will locally
store and update a total of 3|N j| + 1 vectors in Rp×1, namely

s j and {z
j′

j , v
j′

j , u
j′

j } j′∈N j
. We reiterate however, that in the

process of deriving the local updating recursions many of
these variables will turn out to be redundant.

The AD-MoM entails an iterative process comprising
three steps per time instant t = 0, 1, 2, . . . .

[S1] Multiplier updates:

v
j′

j (t) = v
j′

j (t − 1) + c
(

s j(t)− z
j′

j (t)
)

, j ∈ J, j′ ∈ N j ,

(5)

u
j′

j (t) = u
j′

j (t − 1) + c
(

s j(t)−z
j
j′(t)

)

, j ∈ J, j′ ∈ N j .

(6)

[S2] Local estimate updates:

s(t + 1) = arg min
s

La[s, z(t), v(t), u(t)]. (7)

[S3] Auxiliary variable updates:

z(t + 1) = arg min
z

La[s(t + 1), z, v(t), u(t)]. (8)

The multiplier recursions in [S1] correspond to gradient
ascent iterations seeking the optimal dual prices, and are
customary in various methods of multipliers [15, Chapter 3].
On the other hand, [S2] and [S3] represent block coordinate
descent steps which respectively update s and z in a cyclic
fashion. At each step while minimizing the augmented
Lagrangian, the variables not being updated are treated as
fixed constants and substituted with their most up to date
values. Interestingly, it is shown in Appendix A that [S1]–
[S3] boil down to the following simple set of subtasks carried
out locally at each sensor j ∈ J,

v
j′

j (t) = v
j′

j (t − 1) +
c

2

(

s j(t)− s j′(t)
)

, j′ ∈ N j , (9)

s j(t + 1) = arg min
s j

⎡

⎣E
[

(

xj(t + 1)− hT
j (t + 1)s j

)2
]

+
∑

j′∈N j

[

v
j′

j (t)− v
j
j′(t)

]T
s j

+c
∑

j′∈N j

∥

∥

∥

∥
s j − 1

2

(

s j(t) + s j′(t)
)

∥

∥

∥

∥

2
⎤

⎦.

(10)

As promised, the set of auxiliary variables [z, u] have been
eliminated; and each sensor, say the jth, has to store
and update only (|N j| + 1)p scalars. To carry out the
unconstrained minimization in (10), observe that the cost
is convex and differentiable. Thus, the first-order necessary
condition is also sufficient for optimality. Computing the
gradient with respect to s j and setting the result equal to zero,
yields

E

⎡

⎣− 2h j(t + 1)
(

xj(t + 1)− hT
j (t + 1)s j

)

+
∑

j′∈N j

{

v
j′
j (t)−v

j
j′(t)+2c

(

s j− 1
2

(

s j(t)+s j′(t)
)

)}

⎤

⎦=0p.

(11)

It is now apparent that s j(t+1) can be obtained as the root of
an equation of the form f(s j) := E[ϕ(s j , xj(t+1), h j(t+1))] =
0p, where ϕ stands for the function inside the expectation in
(11) and corresponds to the stochastic gradient of the cost in
(10). In lieu of local (cross-) covariance information, namely
rhjxj := E[h j(t + 1)xj(t + 1)] and Rhj := E[h j(t + 1)hT

j (t +
1)], the root of f(s j) = 0p is not computable in closed
form since f is unknown. Hence, motivated by stochastic
approximation techniques ( such as the celebrated Robbins-
Monro algorithm; see e.g., [23, Chapter 1]) which iteratively
find the root of an unknown function f(s j) given a time-
seriesof noisy observations {ϕ(s j(t), xj(t + 1), h j(t + 1))}∞t=0,
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the proposed recursion for every j ∈ J is

s j(t + 1)

= s j(t) + μj

⎡

⎣2h j(t + 1)ej(t + 1)

−
∑

j′∈N j

(

v
j′

j (t)−v
j
j′(t)

)

−c
∑

j′∈N j

(

s j(t)−s j′(t)
)

⎤

⎦,

(12)

where μj is a constant step-size and ej(t + 1) := xj(t +
1) − hT

j (t + 1)s j(t) is the local a priori error. Recursions
(9) and (12) are tabulated as Algorithm 1, and constitute
the D-LMS algorithm that can be arbitrarily initialized.
To capture the effects of receiving noise corrupting the
variables exchanged among neighboring sensors, the D-LMS
recursions are modified to yield

v
j′

j (t) = v
j′

j (t−1)+
c

2

(

s j(t)−
(

s j′(t)+η
j′

j (t)
))

, j′ ∈ N j ,

(13)

s j(t + 1) = s j(t) + μj

⎡

⎣2h j(t + 1)ej(t + 1)

−
∑

j′∈N j

(

v
j′

j (t)−
(

v
j
j′(t) + η

j′

j (t)
))

−c
∑

j′∈N j

(

s j(t)−
(

s j′(t) + η
j′

j (t)
))

⎤

⎦,

(14)

where η
j′

j (t) and η
j′

j (t) denote the additive communication

noise present in the reception of s j′(t) and v
j
j′(t) at sensor

j, respectively. In detail, during time instant t + 1 sensor j

receives the local estimates {s j′(t) + η
j′

j (t)} j′∈N j
and plugs

them into (13) to evaluate v
j′

j (t) for j′ ∈ N j . Each one

of the updated local Lagrange multipliers {v
j′

j (t)} j′∈N j
is

subsequently transmitted to the corresponding neighbor

j′ ∈ N j . Then, upon reception of {v
j
j′(t) + η

j′

j (t)} j′∈N j
, the

multipliers are jointly used along with {s j′(t) + η
j′

j (t)} j′∈N j

and the newly acquired local data {xj(t + 1), h j(t + 1)} to
obtain s j(t + 1) via (14). The (t + 1)-st iteration is concluded
after sensor j broadcasts s j(t + 1) to its neighbors.

The use of a constant step-size μj endows D-LMS
with tracking capabilities. This is desirable in a con-
stantly changing environment, within which WSNs are
envisioned to operate. Some related consensus-based esti-
mation approaches compromise adaptability, by introducing
a diminishing step-size to suppress the error-propagation
effects of communication noise; see, for example, [24, 25]. D-
LMS is shown to be robust against communication noise in
Section 5, a property directly inherited from the AD-MoM;
see also [17] for related claims in single-shot non-adaptive
distributed estimation.

Arbitrarily initialize {s j(0)}Jj=1 and {v
j′
j (−1)} j

′∈N j

j∈J .
for t = 0, 1, . . . do

All j ∈ J: transmit s j(t) to neighbors in N j .

All j ∈ J: update {v
j′
j (t)} j′∈N j using (13).

All j ∈ J: transmit v
j′
j (t) to each j′ ∈ N j .

All j ∈ J: update s j(t + 1) using (14).
end for

Algorithm 1: D-LMS.

Remark 2 (Comparison with [16]). A similar consensus-
based LMS algorithm was put forth in [16]. To enable task
parallelization via AD-MoM while ensuring that estimates
agree across the whole WSN, the approach in [16] refor-
mulates (1) by relying on the so called bridge sensor subset.
Not only setting-up—but also readjusting the bridge sensor
set, for example, when sensors inevitably fail in battery-
limited WSN deployments—requires additional coordina-
tion among sensors with an associated communication
overhead. Compared to [16], the approach followed here
does not require such a bridge sensor set, and in this sense, it
offers a fully distributed, robust, and resource efficient LMS-
type algorithm for use in ad hoc WSNs. The contributions in
this paper are relevant to the D-LMS variant in [16] too, as
the performance analysis in the forthcoming sections carries
over with minor adjustments; see also [26].

3.2. D-LMS Algorithm with Ideal Links. Consider an ideal
scenario whereby sensors are able to communicate via error-
free links. Such an operational setup may arise, for example,
whenever the use of powerful channel codes renders inter-
sensor links virtually noise-free. Next, we show that under
such assumptions, D-LMS can be simplified to yield a set
of local recursions which are equivalent to (9) and (12),
while incurring notably lower communication and reduced
computational complexities w.r.t. to the original version of
the algorithm.

Specifically, note first that if the Lagrange multipliers v

are initialized such that v
j′

j (−1) = −v
j
j′(−1) with j ∈ J and

j′ ∈ N j , then in the absence of communication noise one

finds from (9) that v
j′

j (t) = −v
j
j′(t) for all t ≥ 0. By relying on

this identity and starting from (12), we arrive at a simplified
recursion to update the local estimates s j(t + 1) for all j ∈ J

s j(t + 1) = s j(t) + μj

⎡

⎣2h j(t + 1)ej(t + 1)− 2
∑

j′∈N j

v
j′

j (t)

−c
∑

j′∈N j

(

s j(t)− s j′(t)
)

⎤

⎦.

(15)

The specific initialization requirement for the multipliers
is not restrictive, as it can be readily satisfied by selecting

v
j′
j (−1) = 0p for j ∈ J and j′ ∈ N j without the need of

extra coordination among sensors.
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The second summand inside the square brackets in (15)

incorporates only the local multipliers {v
j′
j (t)} j∈N j

stored
at sensor j. Hence, multipliers need not be communicated
to the neighboring sensors at all. What is more, multipliers
enter (15) only through their local sum across j′ ∈ N j , so
that there is no need to keep track of them separately. This
motivates introducing the new set of local variables p j(t) :=
2
∑

j′∈N j
v
j′
j (t) for j = 1, . . . , J , which have to be updated in

conjunction with s j(t). The updating rule for p j(t) follows
immediately from (9), and the final recursions per sensor
j ∈ J are

p j(t) = p j(t − 1) + c
∑

j′∈N j

(

s j(t)− s j′(t)
)

(16)

s j(t + 1) = s j(t) + μj

⎡

⎣2h j(t + 1)ej(t + 1)− p j(t)

−c
∑

j′∈N j

(

s j(t)− s j′(t)
)

⎤

⎦.

(17)

Interestingly, (16)-(17) require each sensor to store and
update only 2p scalars, regardless of the WSN topology and
corresponding neighborhood sizes. While diffusion LMS [6]
needs half the number of scalar recursions, in D-LMS (cf.
(13)-(14)) sensor j has to store and update (|N j| + 1)p
scalars. With regards to communication cost incurred by the
D-LMS variant in (16)-(17), on a per-iteration basis, sensor
j receives |N j|p scalars due to {s j′(t)} j′∈N j

and transmits p
scalars corresponding to s j(t+1); exactly as in diffusion LMS.
Recall that D-LMS in (13)-(14) incurs an additional cost
of 2|N j|p communicated scalars due to the reception and

transmission of {v
j
j′(t)} j′∈N j

and {v
j′
j (t)} j′∈N j

, respectively.
Recursions (16)-(17) (also tabulated as Algorithm 2) are

equivalent to D-LMS whenever η
j′
j (t) = η

j′
j (t) = 0p in (13)-

(14). Hence, both will achieve identical convergence rates
and estimation performance, making Algorithm 2 the most
attractive alternative when noise is not an issue as corrobo-
rated via the numerical tests in Section 6. However, there is
a price paid for the reduced amount of communications and
computational savings as clarified on the ensuing remark.

Remark 3 (Communication noise resilience). The D-LMS
variant in (16)-(17) is only applicable when communi-
cation links are ideal. Being equivalent to D-LMS under
this assumption, one might still be tempted to replace

{s j′(t)} j′∈N j
with {s j′(t) + η

j′

j (t)} j′∈N j
in recursions (16)-

(17) to capture the effects of noise corrupting the exchanged
local estimates. As it turns out, in the process of running
(16)-(17) noise will accumulate resulting in local estimates
whose variance grows unbounded as t → ∞. The reduced
communication overhead is thus counterbalanced by the
lack of resilience in the presence of communication noise.
As a byproduct, this highlights the key role played by the
Lagrange multiplier exchanges in rendering D-LMS—and
generally all MoM-based distributed algorithms—robust to
communication noise; see also [17] for further details.

4. Analysis Preliminaries

Our approach to performance analysis relies on a com-
pact error-form representation of D-LMS as a linear time-
varying stochastic difference equation. As discussed in this
section, the resulting estimation error covariance matrix
encompasses all the information needed to evaluate the
relevant performance metrics; namely MSE, excess mean-
square error (EMSE) and mean-square deviation (MSD).
The aforementioned figures of merit ultimately assess the
performance of D-LMS, both on a per-sensor basis and
collectively by considering the WSN as a whole.

4.1. Error-Form D-LMS. In this subsection, we start from the
D-LMS recursions in (13)-(14) and characterize the evolu-
tion of the local estimation errors {y1, j(t) := s j(t)− s0(t)}Jj=1

and multiplier-based quantities {y2, j(t) := ∑

j′∈N j
(v

j′

j (t −
1) − v

j
j′(t − 1))}Jj=1 . It turns out that a convenient

global state capturing the spatio-temporal dynamics of
D-LMS can be defined as y(t) := [yT

1 (t) yT
2 (t)]T =

[yT
1,1(t) · · · yT

1,J(t) yT
2,1(t) · · · yT

2,J(t)]T . While the need of the
local errors within y1(t) is apparent, augmentation with the
seemingly unnecessary y2(t) will prove useful to obtain a
simple, first-order difference equation for y(t). Otherwise,
a first-order recursion for y1(t) is impossible. In order to
proceed, we shall require for all j ∈ J that

(a1) Sensor observations obey xj(t) = hT
j (t)s0(t−1)+ε j(t),

where the zero-mean white noise {ε j(t)} has variance
σ2
ε j .

Linear models are commonly used throughout the adaptive
signal processing literature to facilitate stability and perfor-
mance analysis, for example, [20], [19, Chapters 5,9], [3, 6,
16]. Observation noise variances can differ across sensors,
accounting for faulty sensing devices presumably leading to
larger values of σ2

ε j .

Remark 4 (Sensor data assumptions). An attractive feature
of D-LMS is that it can be applied to a wide class of
distributed linear regression problems. Indeed, D-LMS does
not require prior knowledge of a data model to describe the
sensor observations, as the underlying process statistics are
learnt “on-the-fly”. In this sense, D-LMS differs from the
distributed Kalman filtering approaches in [12–14], which
are only applicable when state and observation models are
available locally at each sensor. When it comes to stability and
performance evaluation however, a meaningful “ground-
truth” model should be adopted to carry out the analysis
and enable fair comparison among competing alternatives.
It is true that assumption (a1) delimitates the scope of the
forthcoming analysis, though by no means restrains D-LMS
from being applied in broader settings.

To concisely capture the effects of both observation
and communication noise on the estimation errors
across the WSN, define the J p × 1 noise vectors
ε(t) := 2μ[hT

1 (t)ε1(t) · · ·hT
J (t)εJ(t)]T and η(t) :=
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[ηT1 (t) · · ·ηTJ (t)]T , where vectors {η j(t)} j∈J are given
by

η j(t) :=
∑

j′∈N j

η
j′

j (t) (18)

and Rη := E[η(t)ηT(t)]. The vector in (18) amounts to
the accumulated communication noise at sensor j, due to
the reception of all required multipliers at time t, namely

{v
j
j′(t)} j′∈N j

. Next, introduce the p(
∑J

j=1 |N j|)× 1 vector

η(t) :=
[

{

(

η1
j′(t)

)T
}

j′∈N1

· · ·
{

(

ηJj′(t)
)T
}

j′∈NJ

]T

(19)

which comprises the receiver noises corrupting transmis-
sions of local estimates across the whole network at time
instant t, and define Rη := E[η(t)ηT(t)]. Finally, let
Lc := cL ⊗ Ip ∈ RJ p×J p be a matrix capturing the
WSN topology through the (scaled) graph Laplacian L, and
arrange the instantaneous outer products of regression vec-
tors in Rh(t) := bdiag(h1(t)hT

1 (t), . . . , hJ(t)hT
J (t)) ∈ RJ p×J p.

Based on these definitions and assuming for simplicity in
exposition that μj = μ for all j ∈ J, the following
instrumental lemma is established in Appendix B.

Lemma 5. Under (a1) and for t ≥ 0, the global state y(t)
evolves according to

y(t + 1) = bdiag
(

IJ p, Lc

)

z(t + 1) +

⎡

⎣

μIJ p

0J p×J p

⎤

⎦η(t)

+

⎡

⎣

μ
(

3Pα − Pβ

)

Pβ − Pα

⎤

⎦η(t),

(20)

where the inner state z(t) := [zT1 (t) zT2 (t)]T is arbitrarily
initialized and updated according to

z(t + 1) = Φ
(

t + 1,μ
)

z(t) +

⎡

⎣

ε(t + 1)

0J p

⎤

⎦

−
⎡

⎣

1J ⊗ (s0(t + 1)− s0(t))

0J p

⎤

⎦

+ Φ
(

t + 1,μ
)

⎡

⎣

μIJ p

0J p×J p

⎤

⎦η(t − 1)

+ Φ
(

t + 1,μ
)

⎡

⎣

μ
(

3Pα − Pβ

)

C

⎤

⎦η(t − 1)

(21)

and the 2J p × 2J p transition matrix Φ(t,μ) consists of the
blocks [Φ(t,μ)]11 = IJ p − 2μ(Rh(t) + Lc), [Φ(t,μ)]12 = −μLc

and [Φ(t,μ)]21 = [Φ(t,μ)]22 = LcL†c . The matrix C is chosen
such that LcC = Pα − Pβ, where the structure of the time-
invariant matrices Pα and Pβ is given in Appendix B.

The desired state y(t) is obtained as a rank-deficient
linear transformation of the inner state z(t), plus a stochastic

Arbitrarily initialize {s j(0)}Jj=1 and set {p j(−1) = 0p} j∈J .
For t = 0, 1, . . . do

All j ∈ J: transmit s j(t) to neighbors in N j .
All j ∈ J: update p j(t) using (16).
All j ∈ J: update s j(t + 1) using (17).

end for

Algorithm 2: D-LMS with Ideal Links.

offset due to the effects of communication noise. A linear,
time-varying, first-order difference equation describes the
dynamics of z(t), and hence of y(t), via the algebraic trans-
formation in (20). The time-varying nature of (20)-(21) is
inherited from Φ(t,μ) that depends on the regression vectors
within Rh(t). Four stochastic inputs are clearly discernible
from (21): (i) communication noise η(t − 1) affecting
the transmission of local estimates; (ii) communication
noise η(t − 1) contaminating the Lagrange multipliers; (iii)
observation noise within ε(t+ 1); and (iv) a forcing term due
to the true “parameter speed” s0(t + 1)− s0(t).

4.2. Performance Metrics. When it comes to performance
evaluation of adaptive algorithms, it is customary to consider
as figures of merit the so-called MSE, excess mean-square
error (EMSE) and mean-square deviation (MSD) [19, 20].
In the present setup for distributed adaptive estimation, it
is pertinent to address both global (network-wide) and local
(per-sensor) performance [6]. After recalling the definitions
of the local a priori error ej(t) := xj(t) − hT

j (t)s j(t − 1) and
local estimation error y1, j(t) := s j(t) − s0(t), the per-sensor
performance metrics are defined as

MSE j(t) := E
[

e2
j (t)

]

,

EMSE j(t) := E
[

(

hT
j (t)y1, j(t − 1)

)2
]

,

MSD j(t) := E
[
∥

∥

∥y1, j(t)
∥

∥

∥

2
]

,

(22)

whereas their global counterparts are defined as the respec-
tive averages across sensors, for example, MSE(t) :=
J−1

∑J
j=1 E[ej(t)

2] and so on. Assume for all j ∈ J that

(a2) Vectors {h j(t)} are spatio-temporally white with
covariance matrix Rhj � 0p×p; and

(a3) Vectors {h j(t)}, {ε j(t)}, {η j′

j (t)} j′∈N j
and

{η j′

j (t)} j′∈N j
are independent.

Assumptions (a1)–(a3) comprise the widely adopted inde-
pendence setting, which is instrumental in rendering the
subsequent performance analysis tractable; see for example,
[19, page 110], [20, page 448]. Clearly, (a2) can be violated in,
for example, FIR filtering of signals (regressors) with a shift
structure as in the distributed power spectrum estimation
problem described in [16, Remark 1]. Nonetheless, for small
step-sizes the upshot of the analysis extends to correlated
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data as will be demonstrated via computer simulations in
Section 6.

Next, we show that it suffices to evaluate the state
covariance matrix Ry(t) := E[y(t)yT(t)] in order to assess the
aforementioned performance metrics. To this end, note that
by virtue of (a1) it is possible to write ej(t) = −hT

j (t)y1, j(t −
1) + ε j(t). Because y1, j(t − 1) is independent of the zero-
mean {h j(t), ε j(t)} under (a1)–(a3), from the previous
relationship between the a priori and estimation errors one
finds that MSE j(t) = EMSE j(t) + σ2

ε j . Hence, it suffices to
focus on the evaluation of EMSE j(t), through which MSE j(t)
can also be determined. If Ry1, j (t) := E[y1, j(t)yT

1, j(t)] denotes
the jth local error covariance matrix, then MSD j(t) =
tr(Ry1, j (t)); and under (a1)–(a3), a simple manipulation
yields

EMSE j(t) = E
[

tr
(

(

hT
j (t)y1, j(t − 1)

)2
)]

= tr
(

E
[

h j(t)hT
j (t)y1, j(t − 1)yT

1, j(t − 1)
])

= tr
(

E
[

h j(t)hT
j (t)

]

E
[

y1, j(t − 1)yT
1, j(t − 1)

])

= tr
(

Rhj Ry1, j (t − 1)
)

.

(23)

Observe that the global error covariance matrix corresponds
to the J p × J p upper left submatrix [Ry(t)]11 of Ry(t).
Further, its jth p × p diagonal submatrix ( j = 1, . . . , J)
denoted by [Ry(t)]11, j is Ry1, j (t). It follows that with Rh :=
E[Rh(t)] = bdiag(Rh1 , . . . , RhJ ), the global performance
metrics are given by MSD(t) = J−1tr([Ry(t)]11) and
EMSE(t) = J−1tr(Rh[Ry(t − 1)]11). In a nutshell, deriving
a closed-form expression for Ry(t) enables the evaluation of
all performance metrics of interest.

5. Performance Analysis of D-LMS Tracking

In this section, a performance analysis is conducted for
the D-LMS tracking algorithm. For that purpose, we first
introduce a commonly adopted model for the time-varying
parameter s0(t), and resort to a simplifying Gaussian
assumption on the regression vectors to complement (a1)–
(a3). Main results include deriving an exact closed-form
recursion for the global error covariance matrix [Ry(t)]11,
and establishing the existence of step-sizes ensuring stability
of D-LMS both in the mean and MSE-sense. Expressions for
the s.s. local and global figures of merit are also provided.
To conclude, the s.s. EMSE is viewed as a function of the
step-size, and is compared for time-invariant and time-
varying parameters. While in the former case the trend
is monotonically increasing, when tracking slowly time-
varying processes there exists a non-vanishing optimal step-
size minimizing the limiting error.

To characterize fluctuations of the time-varying parame-
ter s0(t), consider for all j ∈ J:

(a4) First-order autoregressive [AR(1)] model, that is,

s0(t) = s0 + s̆(t),

s̆(t) = Θs̆(t − 1) + ζ(t)
(24)

where Θ ∈ Rp×p has eigenvalues with modulus within
[0, 1), the driving noise {ζ(t)} is zero-mean, white with
covariance matrix Rζ � 0p×p; and E[s̆(−1)] = 0p.

Under (a4), the perturbation due to the parameter
velocity in (21) becomes

−
⎡

⎣

1J ⊗ (s0(t + 1)− s0(t))

0J p

⎤

⎦

=
⎡

⎣

1J ⊗
(

Ip −Θ
)

s̆(t)

0J p

⎤

⎦−
⎡

⎣

1J ⊗ ζ(t + 1)

0J p

⎤

⎦,

(25)

and its expectation vanishes for all t ≥ 0. Further, (a3) is
augmented and replaced by

(a5) Vectors {h j(t)}, {ε j(t)}, {ζ(t)}, s̆(−1), {η j′
j (t)} j′∈N j

and {η j′
j (t)} j′∈N j

are independent.

The model in (a4) provides a simple description of a
time-varying parameter, and has been widely adopted to
evaluate the performance of (centralized) adaptive filters [19,
page 121], [20, page 360]. The true parameter s0(t) has
been split into a “DC level” s0 which is superimposed to
the “AC component” s̆(t), with fluctuations adhering to a
stable vector AR(1) process. Two other models of interest are
obtained by simple modifications to (a4):

(a4.1) Time-invariant parameter, that is, s0(t) = s0 is
subsumed by (a4), by selecting Θ = Rζ = 0p×p.

(a4.2) Random-walk model, that is, s0(t) = s0(t − 1) +
ζ(t), where {ζ(t)} is zero-mean, white, with covariance
matrix Rζ � 0; and E[s0(−1)] = 0p. Such a model is
obtained by letting s0 = 0p and Θ = Ip in (a4).

A random-walk is the simplest stochastic model to describe
variations of s0(t), and has been also considered for per-
formance analysis of trackers; see, for example, [19, page
121] and [20, page 359]. It could be arguably thought as not
meaningful due to its increasing variance, thus violating the
sensor’s limited dynamical range which requires E[x2

j (t)] <
∞, for all t. To circumvent this problem, the forthcoming
analysis generalizes [26] by considering the (asymptotically)
stationary case in (a4). When Θ is a stable matrix, that
is, λmax(Θ) < 1, the s.s. covariance matrix of s0(t) has
finite entries, and obeys the Lyapunov equation Rs0 (∞) =
ΘRs0 (∞)ΘT + Rζ . In any case, the model is simple but well
justified as the resulting analysis sheds sufficient light on the
key aspects of D-LMS when it comes to tracking.

5.1. Mean Stability. From Lemma 5 it is straightforward
to establish that local estimates obtained via D-LMS are
asymptotically unbiased, implying that consensus in the
mean-sense is achieved on s0.
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Proposition 6. Under (a1)-(a2) and (a4)-(a5), the D-LMS
algorithm achieves consensus in the mean, that is,

lim
t→∞

E
[

y1, j(t)
]

= 0p, ∀ j ∈ J (26)

provided the step-size is chosen such that μ ∈ (0,μu) with

μu := min
(

2
λmax(Rh + Lc)

,
2

λmax(2Rh + (3/2)Lc)

)

. (27)

Proof. Based on the independence setting assumptions (a1)-
(a2), (a5) and since the data is zero-mean, one obtains
after taking expectations on (20) and (21) that E[y(t)] =
bdiag(IJ p, Lc)E[z(t)] and E[z(t)] = Φ(μ)E[z(t − 1)], where
Φ(μ) := E[Φ(t,μ)]. Assumption (a4) was also invoked to
render the expectation of (25) null. The following lemma
specifies the step-size values under which Φ(μ) is a stable
matrix.

Lemma 7. If μ > 0 is chosen smaller than (27), then Φ(μ) is a
stable matrix, that is, λmax(Φ(μ)) < 1.

Proof. Following steps similar to those in [17, Appendix H],
it is possible to express the eigenvalues of Φ(μ) as the roots
of a second-order polynomial to determine bounds on μ
that ensure λmax(Φ(μ)) < 1. Further, for sufficiently small
μ the eigenvalues with largest modulus correspond to a
complex conjugate pair, while the spectral radius scales as
λmax(Φ(μ)) ∼ 1− μκ, where κ > 0 is a finite constant.

From Lemma 7 and the theory of linear time-invariant
dynamical systems, E[z(t)] is exponentially convergent to
zero for μ ∈ (0,μu). Noting that E[y1(t)] = E[z1(t)]
(cf. (20)), the result follows.

Interestingly, μu resembles the first-order (mean) stability
bound for the centralized LMS algorithm, namely 2/λmax(Rh)
[19, page 111]. The main difference here is that this bound
is also affected by the topology of the WSN, via the graph
Laplacian matrix within Lc.

5.2. MSE Stability and Performance Evaluation. Turning to
MSE stability and performance analysis, observe from the
upper J p × 1 block of y(t + 1) in (20) that y1(t + 1) =
z1(t + 1) + μ[η(t) + (3Pα − Pβ)η(t)]. Under (a2) and (a5),
z1(t+ 1) is independent of the zero-mean {η(t),η(t)}; hence,

[

Ry(t)
]

11
= [Rz(t)]11 + μ2

×
[

Rη +
(

3Pα − Pβ

)

Rη

(

3Pα − Pβ

)T
]

(28)

based on which we obtain Rz(t) := E[z(t)zT(t)]. From
the coupling between z(t) and s̆(t) entering through (25),

it is convenient to consider the augmented state ž(t) :=
[zT(t) 1T

J ⊗ s̆T(t)]T in order to perform covariance calcula-
tions [19, page 124]. From (21), (a4) and (25), one finds that
ž(t) can be recursively updated as

ž(t + 1) =

⎡

⎢

⎣

Φ
(

t + 1,μ
)

[

(

IJ ⊗
(

Ip −Θ
))T

0J p×J p

]T

0J p×2J p IJ ⊗Θ

⎤

⎥

⎦z̆(t)

+

⎡

⎣

ε(t + 1)

02J p

⎤

⎦ +

⎡

⎢

⎢

⎢

⎣

−1J ⊗ ζ(t + 1)

0J p

1J ⊗ ζ(t + 1)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎣

Φ
(

t + 1,μ
)

0J p×2J p

⎤

⎦

(

ημ(t − 1) + ημ(t − 1)
)

(29)

:= Ω
(

t + 1,μ
)

ž(t) + ν(t + 1), (30)

where for notational convenience Ω(t+1,μ) denotes the new
transition matrix and ν(t + 1) encapsulates all three forcing
terms. Note that in writing (29) we have introduced

ημ(t) :=
⎡

⎣

μIJ p

0J p×J p

⎤

⎦η(t), ημ(t) :=
⎡

⎣

μ
(

3Pα − Pβ

)

C

⎤

⎦η(t)

(31)

while the structure of the respective covariance matrices
Rημ := E[ημ(t)ηTμ (t)] and Rημ := E[ημ(t)ηTμ (t)] is given in
Appendix C.

By definition of the augmented state ž(t), the desired
covariance matrix Rz(t) clearly corresponds to the 2J p ×
2J p upper left submatrix of Rž(t) := E[ž(t)žT(t)].
Towards obtaining a closed-form expression for Rž(t),
observe that for all j ∈ J there exist p × p unitary
matrices U j that are arranged in U := bdiag(U1, . . . , UJ)

such that U jRhj U
T
j = Λ j = diag(λ

j
1, . . . , λ

j
p), and also

URhUT = Λ = bdiag(Λ1, . . . ,ΛJ). For the subse-
quent arguments, it will prove useful to introduce the
(invertible) change of variables z̃(t) := ˜Už(t) with
˜U := bdiag(U, I2J p). To proceed, specialize (a2) by
assuming that:

(a6) Vectors {h j(t)} are spatio-temporally white Gaussian
with covariance matrix Rhj � 0p.

The Gaussianity assumption is instrumental in obtaining
closed-form expressions for the regressors’ fourth-order
moments, which arise in the evaluation of Rz̃(t+ 1) as shown
next.
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Proposition 8. Under (a4)–(a6) and for t ≥ 0, the covariance
matrix of z̃(t) obeys the first-order matrix recursion given by

Rz̃(t + 1) =M
(

˜Ω
(

μ
)

, Rz̃(t)
)

+ M
(

˜Φ
(

μ
)

, bdiag
(

U, IJ p
)

×
(

Rημ + Rημ

)

bdiag
(

UT , IJ p
))

+ 4μ2bdiag
(

σ2
ε1
Λ1, . . . , σ2

εJΛJ , 02J p×2J p

)

+ ˜U
((

[−1 0 1]T[−1 0 1]
)

⊗ (1J×J ⊗ Rζ
)

)

˜UT

(32)

with ˜Ω(μ) := ˜UE[Ω(t,μ)]˜UT and ˜Φ(μ) := ˜UE[[Φ(t +
1,μ)T 02J p×J p]T]bdiag(UT , IJ p)), while

M(S, T)

:= STST + 4μ2bdiag
((

IJ ⊗ 1p×p
)

◦Λ[T]11Λ, 02J p×2J p

)

+ 4μ2bdiag
(

tr
(

Λ1[T]11,1

)

Λ1, . . . , tr
(

ΛJ[T]11,J

)

ΛJ , 02J p×2J p

)

.

(33)

Proof. In the transformed space, (30) becomes z̃(t) =
˜Ω(t,μ)z̃(t − 1) + ν̃(t), where ˜Ω(t,μ) := ˜UΩ(t,μ)˜UT and
ν̃(t) := ˜Uν(t). Using (a4)–(a6), it follows that E[ ˜Ω(t,μ)z̃(t −
1)ν̃T(t)] = 03J p×3J p. Therefore, Rz̃(t) = E[ ˜Ω(t,μ)Rz̃(t −
1) ˜Ω

T
(t,μ)] + E[ν̃(t)ν̃T(t)] and we start by showing that the

first expectation is M( ˜Ω(μ), Rz̃(t−1)). Split ˜Ω(t,μ) = Ω(μ)−
2μbdiag(R

˜h(t), 02J p×2J p) into its deterministic and random
components, and drop for simplicity the t − 1 argument in
Rz̃(t − 1) to obtain

E
[

˜Ω
(

t,μ
)

Rz̃ ˜Ω
T(
t,μ
)

]

= Ω
(

μ
)

Rz̃Ω
T(
μ
)

+ 4μ2E
[

bdiag
(

R
˜h(t), 02J p×2J p

)

Rz̃bdiag
(

R
˜h(t), 02J p×2J p

)]

− 2μ
[

Ω
(

μ
)

Rz̃bdiag
(

Λ, 02J p×2J p

)

+
(

Ω
(

μ
)

Rz̃bdiag
(

Λ, 02J p×2J p

))T
]

.

(34)

The second summand in the rhs of (34) has the structure
4μ2bdiag(A, 02J p×2J p), where A ∈ RJ p×J p can be partitioned
into p × p blocks

[A]i, j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E
[

˜h j(t)˜hT
j (t)[Rz̃]11, j

˜h j(t)˜hT
j (t)

]

= 2Λ j[Rz̃]11, jΛ j + tr
(

Λ j[Rz̃]11, j

)

Λ j , i = j

E
[

˜hi(t)˜hT
i (t)[Rz̃]11,i, j

˜h j(t)˜hT
j (t)

]

= Rhi[Rz̃]11,i, jRhj , i /= j

(35)

for i, j = 1, . . . , J . To evaluate the regressor’s fourth-
order moments in the diagonal blocks of A, we have relied

on the Gaussianity of ˜h j(t) for all j ∈ J, which follows
from (a6). The expectations in the nondiagonal blocks
follow immediately as regressors are also assumed spatially
uncorrelated. Substituting in (34) and regrouping terms one
obtains

˜Ω
(

μ
)

Rz̃ ˜Ω
T(
μ
)

= Ω
(

μ
)

Rz̃Ω
T(
μ
)

+ 4μ2bdiag
(

A− bdiag
(

[A]1,1, . . . , [A]J ,J
)

, 02J p×2J p

)

+ 4μ2bdiag
(

Λ1[Rz̃]11,1Λ1, . . . ,ΛJ[Rz̃]11,JΛJ , 02J p×J p
)

− 2μ
[

Ω
(

μ
)

Rz̃bdiag
(

Λ, 02J p×2J p

)

+
(

Ω
(

μ
)

Rz̃bdiag
(

Λ, 02J p×2J p

))T
]

(36)

which finally yields

E
[

˜Ω
(

t,μ
)

Rz̃ ˜Ω
T(
t,μ
)

]

= ˜Ω
(

μ
)

Rz̃ ˜Ω
T(
μ
)

+ 4μ2bdiag
(

Λ1[Rz̃]11,1Λ1, . . . ,ΛJ[Rz̃]11,JΛJ , 02J p×J p
)

+4μ2bdiag
(

tr
(

Λ1[Rz̃]11,1

)

Λ1, . . ., tr
(

ΛJ[Rz̃]11,J

)

ΛJ , 02J p×J p
)

.

(37)

Simple manipulations on the second term in the rhs of (37)
lead to the desired result (cf. (33)). Back to the remaining
covariance Rν̃ := E[ν̃(t)ν̃T(t)], because the three noise terms
within ν̃(t) (cf. (29)) are pairwise independent and zero-
mean, we have that

Rν̃ = E
[

˜U
[

Φ
(

t + 1,μ
)T 02J p×J p

]T(

Rημ + Rημ

)

×
(

˜U
[

Φ
(

t + 1,μ
)T 02J p×J p

]T
)T
]

+ 4μ2bdiag
(

σ2
ε1
Λ1, . . . , σ2

εJΛJ , 02J p×2J p

)

+ ˜U
((

[−1 0 1]T[−1 0 1]
)

⊗ (1J×J ⊗ Rζ
)

)

˜UT ,

(38)

where the last two terms follow after using (a4)–(a6), and
correspond to the covariance matrices of the second and
third vectors in the rhs of (29). The structure of Rημ and Rημ

is provided in Appendix C. The first expectation in (38) can

be treated similarly as E[ ˜Ω(t,μ)Rz̃(t−1) ˜Ω
T

(t,μ)] to yield the
second summand in the rhs of (32).

The covariance recursion in Proposition 8 (indirectly)
characterizes the exact tracking MSE evolution of the D-LMS
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algorithm, under the white Gaussian setting assumptions
and the vector AR(1) model for s0(t). With the appropriate
simplifications indicated in (a4.1) and (a4.2), (32) enables
performance evaluation when the parameter vector of inter-
est, s0(t), is either time-invariant or adheres to a random-
walk model. For example, under (a4.1) the last matrix in
the rhs of (32) vanishes because Rζ = 0p×p while the inner

structure of ˜Ω(μ) should be adapted to Θ = 0p×p.
Starting from Proposition 8, the recipe towards obtaining

the performance metrics described in Section 4.2 is the
following. Given (32) and upon inverting the change of
variables to yield Rž(t) = ˜UTRz̃(t)˜U, one can readily extract
[Rz(t)]11 as the upper-left J p×J p submatrix of Rž(t). Closed-
form evaluation of the MSE(t), EMSE(t) and MSD(t) for all
t ≥ 0 and every sensor j ∈ J is now possible by using (28)
to obtain [Ry(t)]11, and then resorting to the formulae in
Section 4.2.

The next step is to reformulate (32) into a first-order
vector recursion which is better suited for stability analysis.
Specifically, (32) can be vectorized to obtain vec[Rz̃(t +
1)] = vec[M( ˜Ω(μ), Rz̃(t))] + vec[Rν̃]. As asserted in the
following lemma, further simplification is possible by relying
on properties of the matrix vectorization operator [27]. It is
shown in Appendix D the following.

Lemma 9. Under (a4)–(a6) and for t ≥ 0, the vectorized
covariance matrix of z̃(t) obeys the first-order vector recursion
given by

vec[Rz̃(t + 1)] = ˜Ψ
(

μ
)

vec[Rz̃(t)] + vec[Rν̃]. (39)

The (3J p)2 × (3J p)2 transition matrix ˜Ψ(μ) is

˜Ψ
(

μ
)

:= ˜Ω
(

μ
)⊗ ˜Ω

(

μ
)

+ 4μ2

×
⎡

⎣

(

bdiag
(

Λ, 02J p×2J p

)

⊗ bdiag
(

Λ, 02J p×2J p

))

×diag
(

vec
[

I3J ⊗ 1p×p
])

+
J
∑

j=1

q jqT
j

⎤

⎦

(40)

where q j := vec[diag(b3J , j)⊗Λ j] for all j ∈ J.

An immediate consequence of Lemma 9 is that the
D-LMS algorithm is MSE stable if λmax( ˜Ψ(μ)) < 1.
Although deriving explicit bounds on μ for stability appears
intractable, the following proposition provides an important
existence result.

Proposition 10. Under (a1), (a4)–(a6) the D-LMS algorithm
is MSE stable, that is, limt→∞[Ry(t)]11 has bounded entries,
provided that μ > 0 is chosen sufficiently small.

Proof. The eigenvalues of ˜Ω(μ) ⊗ ˜Ω(μ) are the pairwise
products of those of ˜Ω(μ). From (40) it is possible to upper-
bound λmax( ˜Ψ(μ)) ≤ λmax( ˜Ω(μ))2 + κ1μ2, with κ1 a finite
positive constant. Given the block upper-triangular structure

of E[Ω(t,μ)] (cf. (29)) which has the same eigenvalues as
˜Ω(μ), for κ2 ∈ (0,∞) one obtains that λmax( ˜Ω(μ)) =
max(λmax(Φ(μ)),λmax(Θ)) ∼ max(1 − μκ2, λmax(Θ)), where
the scaling of λmax(Φ(μ)) follows from the proof of Lemma 7.
By virtue of (a4), λmax(Θ) ∈ [0, 1) and is independent of
μ. Hence, λmax( ˜Ω(μ)) ∼ 1 − μκ2 for μ small enough so
that λmax( ˜Ψ(μ)) ≤ 1 − μ[2κ2 − μ(κ2

2 + κ1)], which can be
made smaller than one for μ > 0 sufficiently small. This
readily implies that limt→∞Rz̃(t) has bounded entries, and
can be established also for limt→∞[Ry(t)]11 via the process
described after Proposition 8.

While the proof for Proposition 10 is still valid for a
time-invariant parameter vector, the argument clearly breaks
down for the random-walk model because λmax(Θ) =
λmax(Ip) = 1. In this case, Rs0 (t) grows unbounded; thus,
one would expect that the same happens to the inner state
z(t). However, note that the coupling between z(t) and s0(t)
arising in (25) disappears under (a4.2). For this reason,
it is possible to reproduce all previous results by working
just with z(t) (instead of ž(t)) to finally conclude that
Proposition 10 holds true for the random-walk model also
[26].

Next, we consider an alternative notion of stochastic sta-
bility that can be inferred from Proposition 10. Specifically,
it is possible to show that under the white Gaussian setting
assumptions, the error norm ‖y1(t)‖ remains most of the
time in a finite interval, that is, errors are weakly stochastic
bounded (WSB) [18], [19, page 110]. This WSB stability
guarantees that for any θ > 0 there exists a δ > 0 such
that Pr[‖y1(t)‖ < δ] = 1 − θ uniformly in t. It is a weak
notion of stability, providing an alternative for the analysis
of adaptive filters when the presence of, for example, time-
correlated data, renders variance calculations impossible;
see also [16, 18]. Nevertheless, it is an important practical
notion as it ensures—on a per-realization basis—that there
is no probability mass allowing estimation errors escape to
infinity. Similar to Proposition 10, this property holds for the
D-LMS algorithm in the presence of communication noise.

Proposition 11. Under (a1), (a4)–(a6) and if the step-size μ >
0 is chosen sufficiently small, then the D-LMS algorithm yields
estimation errors which are WSB; that is,

lim
δ→∞

sup
t≥0

Pr
[∥

∥y1(t)
∥

∥ ≥ δ
] = 0. (41)

Proof. Chebyshev’s inequality implies that

Pr
[∥

∥y1(t)
∥

∥ ≥ δ
] ≤

E
[
∥

∥y1(t)
∥

∥
2
]

δ2
=

tr
([

Ry(t)
]

11

)

δ2
. (42)

From Proposition 10, limt→∞[Ry(t)]11 has bounded entries,
implying that supt≥0tr([Ry(t)]11) < ∞. Taking the limit as
δ → ∞, while relying on the bound in (42) yields the desired
result.

5.3. MSE Performance in Steady-State. Under the stability
conditions in Proposition 10, the s.s. covariance matrix
Rz̃(∞) := limt→∞Rz̃(t) has bounded entries. Lemma 9
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enables the evaluation of vec[Rz̃(∞)] as a fixed point of (39);
thus,

vec[Rz̃(∞)] =
(

I(3J p)2 − ˜Ψ
(

μ
)

)−1
vec[Rν̃]. (43)

Note that if D-LMS is MSE stable, that is, ˜Ψ(μ) is a stable
matrix, matrix (I(3J p)2− ˜Ψ(μ))−1 is guaranteed to exist thanks
to Gershgorin’s circle theorem. Exactly as before, all relevant
local and global figures of merit in s.s. can be evaluated
provided [Ry(∞)]11 is available (cf. Section 4.2). Just reshape
(43) to obtain Rz̃(∞), undo the change of variables to extract
Rz(∞) from Rž(∞), and finally use (28).

While MSE stability ensures, for example, a bounded
EMSE(∞), satisfactory tracking of s0(t) ultimately requires
the error to be small. This will depend on μ and the
speed of parameter variation roughly dictated by tr(1J×J ⊗
Rζ) = Jtr(Rζ). For simplicity in exposition, consider in the
sequel that communication links are ideal so that Rημ =
Rημ = 02J p×2J p in (32). Interestingly, whenever Jtr(Rζ) is

comparable to 4μ2
∑J

j=1 σ
2
ε j tr(Λ j), there exists an optimal μ�

minimizing EMSE(∞); see also the numerical examples in
Section 6. Because the latter term is O(μ2), tr(Rζ) should
also be small to ensure that EMSE(∞) has an acceptable
level. This further implies that D-LMS can track satisfactorily
slowly time-varying processes. Inevitable communication-
induced delays will affect the D-LMS algorithm, and may
further limit the tracking capabilities of the proposed
scheme. However, delay analysis falls beyond the scope of the
present paper.

The existence of a μ� should not be surprising, given the
known results for the centralized LMS algorithm, [20, page
367], [19, page 123]. Excessive adaptation leads to the same
MSE inflation as in the absence of parameter variation, while
if μ is too small the tracking ability may be lost and once again
an MSE penalty is expected. To gain some insight into this
tradeoff for the D-LMS algorithm, recall from Section 4.2
and (43) that

EMSE(∞) = 1
J

J
∑

j=1

tr
(

Rhj

[

Ry(∞)
]

11, j

)

= 1
J

J
∑

j=1

tr
(

Λ j[Rz̃(∞)]11, j

)

= 1
J

J
∑

j=1

qT
j vec[Rz̃(∞)]

= 1
J

J
∑

j=1

qT
j

(

I(3J p)2 − ˜Ψ
(

μ
)

)−1
vec[Rν̃],

(44)

where in obtaining the third equality we used that tr(RTS) =
vec[R]T vec[S], and the {q j}Jj=1 were defined as in Lemma 9.
Now, in the absence of communication noise (cf. (32))

Rν̃ = 4μ2bdiag
(

σ2
ε1
Λ1, . . . , σ2

εJΛJ , 02J p×2J p

)

+ ˜U
((

[−1 0 1]T[−1 0 1]
)

⊗ (1J×J ⊗ Rζ
)

)

˜UT
(45)

so that the term due to observation noise is O(μ2), and
the second summand due to parameter nonstationarities is
O(1). Roughly, (I(3J p)2 − ˜Ψ(μ))−1 = O(μ−1) and one finds
from (44) that EMSE(∞) = O(μ−1) for small μ, whereas
EMSE(∞) = O(μ) for moderate- to large values of the
step-size approaching the stability bound. This advocates
the existence of an optimal step-size μ� minimizing the s.s.
EMSE. Unfortunately, deriving an explicit formula for μ�

is a formidable task. If needed however, 1−D minimization
can be carried out numerically using, for example, Newton’s
method, as the derivatives of the EMSE(∞) cost in (44) are
readily computable in closed form.

If Jtr(Rζ) �4μ2
∑J

j=1 σ
2
ε j tr(Λ j), then Rν̃ ≈

˜U(([−1 0 1]T[−1 0 1]) ⊗ (1J×J ⊗ Rζ))˜UT in the whole
range of stable step-sizes so that EMSE(∞) = O(μ−1), and
will not attain a minimum. To achieve the best tracking
performance in this scenario, the step-size should be
chosen as large as possible while ensuring stability. The
other extreme Jtr(Rζ) � 4μ2

∑J
j=1 σ

2
ε j tr(Λ j) corresponds

to a small degree of nonstationarity, which in the limit
Rζ → 0p×p leads to the time-invariant parameter model in
(a4.1). Then, Rν̃ ≈ 4μ2bdiag(σ2

ε1
Λ1, . . . , σ2

εJΛJ , 02J p×2J p), and
as expected EMSE(∞) = O(μ). The s.s. error can be reduced
as much as needed by choosing μ sufficiently small, but this
comes at the price of reduced convergence rates.

6. Numerical Tests

Here we corroborate the analytical results of Section 5
through numerical experiments. Substantiating the com-
ments in Remark 4, the usefulness of the analysis is cor-
roborated as the results extend accurately beyond the white
Gaussian data setting, allowing for correlated data provided
the step-size is small enough. For J = 20 sensors, a
connected ad hoc WSN is generated as a realization of the
random geometric graph model on the unity square, with
communication range r = 0.3. Hence, sensors are deployed
uniformly at random over [0, 1]2 and an edge joining two
sensors is included in E whenever their Euclidean distance
does not exceed r; see Figure 1. To model noisy links, additive
white Gaussian noise (AWGN) with variance σ2

η = 10−2 is
added at the receiving end.

With p = 4, observations obey a linear model (cf. (a1))
with sensing WGN of spatial variance profile σ2

ε j = 10−1αj ,
where αj ∼ U[0, 1] (uniform distribution) and i.i.d.. The

regression vectors h j(t) = [hj(t) · · ·hj(t − p + 1)]T have a
shift structure and entries which evolve according to hj(t) =
(1 − ρ)βjhj(t − 1) + √

ρωj(t) for all j ∈ J. We choose
ρ = 5× 10−1, the βj ∼U[0, 1] i.i.d. in space, and the driving
white noise ωj(t) ∼U[−√3σωj ,

√
3σωj ] has a spatial variance

profile given by σ2
ωj
= 2γj with γj ∼ U[0, 1] and i.i.d..

The local regressor’s covariance matrices Rhj have symmetric
Toeplitz structure, whereby the elements on the ith diagonal
are [Rhj ]i+l,l = [(1− ρ)βj]

iρσ2
ωj
/(1 − [(1− ρ)βj]

2) for i =
0, 1, . . . , p−1 and 1 ≤ i+l ≤ p (i = 0 corresponds to the main
diagonal). Observe that the data is temporally-correlated and
non-Gaussian, implying that (a6) does not hold here. Two
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Figure 1: An ad hoc WSN with J = 20 sensors.
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Figure 2: Global performance evaluation for a time-invariant
parameter.

test cases will be considered with regards to the nature of
s0(t):

TC1: Large-amplitude slowly time-varying parameters
adhering to (a4) with s0 = 0p and Θ = (1 −
10−4) diag(θ1, . . . , θp) with θi ∼ U[0, 1] for i =
1, . . . , p. The driving noise is normally distributed
with Rζ = 10−4Ip.

TC2: Time-invariant parameters adhering to (a4.1), with
s0 = 1p.

For all experimental performance curves obtained by run-
ning the algorithms, the ensemble averages are approximated
via sample averaging 500 runs of the experiment.

First, under TC2 and μ = 5 × 10−2, c = 1 for D-
LMS, Figure 2 depicts the network performance through

the evolution of EMSE(t) and MSD(t) figures of merit.
Both noisy and ideal links are considered, while for the
latter case the D-LMS variant in Section 3.2 has been
used. Even though the simulated data does not adhere
to (a6), the empirical curves closely follow the theoretical
trajectories evaluated via Proposition 8 (and the formulae
in Section 4.2). The s.s. limiting values found in Section 5.3
are also extremely accurate. As intuitively expected and
analytically corroborated via the noise-related additive terms
in (28) and (32), the performance penalty due to non-ideal
links is also apparent. Theoretical error trajectory curves for
the diffusion LMS [6, equations (73)-(74)] with Metropolis
combining weights are also included. While in this case
diffusion LMS has a slight edge on s.s. performance, note
that it comes at the price of a much slower convergence
rate. Similar overall conclusions can be drawn from the plots
in Figure 3, that gauge local performance of two randomly
selected representative sensors. Even though the noise levels
of both sensors are dissimilar (σ2

ε3
= 7.2 × 10−2 and σ2

ε12
=

2.3 × 10−2), effective percolation of information across the
WSN renders the s.s performance of both sensors very
simliar. The curves for D-LMS with noisy links have been
removed in the interest of clarity.

Turning our attention to the tracking performance of
the D-LMS algorithm, Figures 2 and 3 are reproduced
under TC1 as Figures 4 and 5. Once more, it is appealing
how well the theoretical findings in Section 5.2 agree with
the true behavior for all t ≥ 0. Curves for diffusion
LMS are not included as time-varying parameters have not
been considered in [6]. To conclude, Figure 6 corroborates
the discussion in Section 5.3, by showing the theoretically
assessed dependence of the s.s. global quantities EMSE(∞)
and MSD(∞) on μ, under both TC1 and TC2. While the
trend is similar for moderate- to large step-sizes, for small
μ the MSE penalty in the tracking setup due to lack of
adaptation becomes dominant, and is increasingly severe as
μ → 0. The existence of μ� ≈ 5 × 10−2 is also highlighted
by Figure 6. From another perspective, Figure 7 illustrates
how the adaptation level affects the resulting per-sensor
estimates when tracking time-varying parameters with D-
LMS. Under TC1 and for μ = 5× 10−4 (slow adaptation; see
also Figure 6) and μ = 5 × 10−2 (near optimal adaptation),
we depict the third entry of the parameter vector [s0(t)]3

and the respective estimates from the randomly chosen
sixth sensor. Under optimal adaptation the sensor estimate
closely follows the true variations, while—as expected—for
the smaller step-size D-LMS fails to provide an accurate
estimate.

7. Concluding Remarks

We developed a distributed LMS-type adaptive estima-
tion/tracking algorithm for use in ad hoc WSNs, in which
sensors communicate only with their single-hop neighbors
via noisy wireless links. The crux of our approach is to
reformulate the convex global LMS estimator as a separable
constrained optimization problem, which is well-suited for
distributed implementation. Capitalizing on this favorable
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Figure 3: Local performance evaluation for a time-invariant
parameter: empirical and theoretical curves for sensors 3 and 12
under ideal links.
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Figure 4: Global performance evaluation for a time-varying
parameter.

structure through the AD-MoM, we arrived after using
a stochastic approximation iteration to simple adaptive
recursions executed locally per sensor. Sensors percolate
their updated local estimate and Lagrange multipliers in the
neighborhood, a means to efficiently and robustly dissemi-
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Figure 5: Local performance evaluation for a time-varying parame-
ter: empirical and theoretical curves for sensors 3 and 12, both with
and without communication noise.
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Figure 6: Global s.s. EMSE and MSD versus step-size dependencies.

nate newly acquired sensor data across the WSN. The novel
scheme does not require a Hamiltonian cycle or a subset
of bridge sensors, and can tackle linear regression problems
in which a statistical data model is not available. When
communication noise is not an issue, a cost-effective variant
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Figure 7: Tracking with D-LMS: slow and optimal adaptation
levels.

of D-LMS can be used which circumvents communicating
Lagrange multipliers yet incurs no performance penalty.

A detailed MSE tracking performance analysis was
conducted for D-LMS, when the parameter fluctuations
adhere to a stable first-order AR model. By deriving an exact
recursion for the global error covariance matrix under the
white Gaussian setting assumptions, the network-wide and
per-sensor performance metrics became available for any
t, and in particular as t → ∞. D-LMS was shown stable
in the mean and MSE-sense in the presence of additive
receiver noise, provided μ > 0 is sufficiently small. As a
corollary, the resulting local estimation errors satisfy the
WSB property and hence remain within a finite interval
with overwhelming probability. The tracking analysis led
to the conclusion that—different from the time-invariant
case whereby one should decrease μ to reduce the s.s.
error—for a slowly time-varying parameter there exists an
optimal μ�. While a vanishing step-size renders D-LMS
incapable of adapting to the underlying variations, a large
one amplifies both observation and communication noise.
Numerical simulations demonstrated that the analytical
findings of this paper carry over to more pragmatic setups,
including temporally correlated (non-) Gaussian sensor
data.

Appendices

A. Proof of (9)-(10)

Starting with [S3], observe that the per sensor decomposable
structure of (2) is also present in the the augmented

Lagrangian. Thus, (8) decouples into
∑J

j=1 |N j| quadratic
sub-problems

z
j′
j (t + 1)

= arg min
z
j′
j

[

−
[

v
j′

j (t) + u
j
j′(t)

]T
z
j′
j

+
c

2

[
∥

∥

∥s j(t + 1)− z
j′
j

∥

∥

∥

2
+
∥

∥

∥s j′(t + 1)− z
j′
j

∥

∥

∥

2
]]

(A.1)

which admit the closed-form solutions

z
j′
j (t + 1) = 1

2c

[

v
j′

j (t) + u
j
j′(t)

]T

+
1
2

[

s j(t + 1) + s j′(t + 1)
]

, j ∈ J, j′ ∈ N j .

(A.2)

Using (A.2) to eliminate z
j′
j (t) and z

j
j′(t) from (5) and (6)

respectively, a simple induction argument establishes that if

the initial Lagrange multipliers obey v
j′
j (−1) = −u

j
j′(−1),

then v
j′
j (t) = −u

j
j′(t) for all t ≥ 0 where j ∈ J and j′ ∈ N j .

The set u of multipliers has been shown redundant, and (A.2)
readily simplifies to

z
j′
j (t + 1) = 1

2

[

s j(t + 1) + s j′(t + 1)
]

, j ∈ J, j′ ∈ N j .

(A.3)

The symmetry in (A.3) implies that z
j′
j (t) = z

j
j′(t) for all t ≥

0. Upon substituting (A.3) in (5), the validity of (9) follows
readily.

Next, observe that the optimization (7) in [S2] can be
split into J sub-problems

s j(t + 1) = arg min
s j

⎡

⎣E
[

(

xj(t + 1)− hT
j (t + 1)s j

)2
]

+
∑

j′∈N j

[

v
j′

j (t) + u
j′

j (t)
]T

s j

+
c

2

∑

j′∈N j

[
∥

∥

∥s j − z
j′
j (t)

∥

∥

∥

2
+
∥

∥

∥s j − z
j
j′(t)

∥

∥

∥

2
]

⎤

⎦.

(A.4)

To arrive at (10), use the identities: (i) u
j′
j (t) = −v

j
j′(t)

to eliminate u
j′
j (t) from (A.4); and (ii) z

j′
j (t) = z

j
j′(t) to

recognize that the two quadratic terms in the last summand

of (A.4) are identical, while z
j′
j (t) can be eliminated using

(A.3).
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B. Proof of Lemma 5

Introduce first the J p × 1 communication noise super-
vectors ηα(t) := [(ηα1(t))T · · · (ηαJ (t))T]T and ηβ(t) :=
[(η

β
1(t))T · · · (η

β
J (t))T]T , where for j ∈ J

ηαj (t) := c

2

∑

j′∈N j

η
j′
j (t), η

β
j (t) := c

2

∑

j′∈N j

η
j
j′(t). (B.1)

In order to relate these vectors with η(t) in (19), we introduce
two J p × (

∑J
j=1 |N j|)p matrices Pα := [p1 · · ·pJ]

T and

Pβ := [p′1 · · ·p′J]
T . The (

∑J
j=1 |N j|)p × p submatrices p j ,

p
′
j are given by p′j := [(p′j,1)T · · · (p′j,J)

T]T and p′j,r :=
[(p j,1′)T · · · (p j,J′)T]T , with p j,r , p j′,r defined for r =
1, . . . , J as

pT
j,r :=

⎧

⎪

⎨

⎪

⎩

c

2
bT
|Nr |,r( j) ⊗ Ip if j ∈ Nr ,

0p×|Nr |p if j /∈Nr ,

(

p′j,r
)T

:=

⎧

⎪

⎨

⎪

⎩

c

2
11×|Nr | ⊗ Ip if r = j,

0p×|Nr |p if r /= j.

(B.2)

Note that r( j) ∈ {1, . . . , |Nr|} denotes the order in which
ηrj(t) appears in {ηrj′(t)} j′∈Nr

(cf. (19)). It is straightforward
to verify that ηα(t) = Pαη(t) and ηβ(t) = Pβη(t).

The proof entails two steps, the first one being summa-
rized in the following lemma.

Lemma 12. Under (a1) and for t ≥ 0, the global state y(t)
evolves according to

y(t + 1) = Υ
(

t + 1,μ
)

y(t) +

⎡

⎣

ε(t + 1)

0

⎤

⎦

−
⎡

⎣

1J ⊗ (s0(t + 1)− s0(t))

0

⎤

⎦

+

⎡

⎣

μIJ p

0

⎤

⎦η(t) +

⎡

⎣

μ3IJ p

−IJ p

⎤

⎦ηα(t)−
⎡

⎣

μIJ p

−IJ p

⎤

⎦ηβ(t),

(B.3)

where the 2J p × 2J p transition matrix Υ(t,μ) consists of the
J p× J p blocks [Υ(t,μ)]11 = IJ p−2μ(Rh(t) + Lc), [Υ(t,μ)]12 =
−μIJ p, [Υ(t,μ)]21 = Lc and [Υ(t,μ)]22 = IJ p. The initial
condition y(0) should be selected as y(0) = bdiag(IJ p, Lc)y′(0),
where y′(0) is any vector in R2J p.

Proof. After summing v
j′
j (t)− v

j
j′(t) over j′ ∈ N j , it follows

from (13) that for all j ∈ J

y2, j(t + 1) :=
∑

j′∈N j

(

v
j′

j (t)− v
j
j′(t)

)

= y2, j(t)

+ c
∑

j′∈N j

(

s j(t)− s j′(t)
)

− c

2

∑

j′∈N j

(

η
j′

j (t)− η
j
j′(t)

)

(B.4)

= y2, j(t) + c
∑

j′∈N j

(

y1, j(t)− y1, j′(t)
)

− ηαj (t) + η
β
j (t),

(B.5)

where the last equality was obtained after adding and
subtracting c|N j|s0(t) from the rhs of (B.4), and relying on
the definitions in (B.1). Next, starting from (14) and upon:
(i) using (a1) to eliminate ej(t + 1) = −hT

j (t + 1)y1, j(t) +
ε j(t+1) from (14); (ii) subtracting s0(t+1)+s0(t) from both
sides of (14); (iii) replacing the sums of noise vectors with
the quantities defined in (18) and (B.1); and (iv) recognizing
y2, j(t + 1) in the rhs of (14) and substituting it with (B.5),
one arrives at

y1, j(t + 1) = y1, j(t) + μ

⎡

⎣− 2h j(t + 1)hT
j (t + 1)y1, j(t)

−y2, j(t)− 2c
∑

j′∈N j

(

y1, j(t)− y1, j′(t)
)

⎤

⎦

+ 3μηαj (t)− μη
β
j (t) + μη j(t)

+ 2μh j(t + 1)ε j(t + 1)− (s0(t + 1)− s0(t)).
(B.6)

Again, the term 2c
∑

j′∈N j
(y1, j(t)− y1, j′(t)) inside the square

brackets is obtained in error-form after adding and subtract-
ing 2c|N j|s0(t).

What remains to be shown is that after stacking the
recursions (B.6) and (B.5) for j = 1, . . . , J to form the one for
y(t + 1), we can obtain the compact representation in (B.3).
Consider first the forcing terms in (B.3). Stacking the channel
noise terms from (B.6) and (B.5), readily yields the last three
terms in (B.3). Likewise, independently stacking the terms
2μh j(t+ 1)ε j(t+ 1) for j = 1, . . . , J and s0(t+ 1)− s0(t) yields
the second and third terms in the rhs of (B.3), which are due
to the observation noise and parameter velocity, respectively.
These terms are not present in (B.5), which explains the zero
vectors at the lower part of the second and third terms in
(B.3).

To specify the structure of the transition matrix Υ(t,μ),
note that the first term on the rhs of (B.5) explains
why [Υ(t,μ)]22 = IJ p. Similarly, the second term inside
the square brackets in (B.6) explains why [Υ(t,μ)]12 =
−μIJ p. Next, it follows readily that upon stacking the
terms c

∑

j′∈N j
(y1, j(t) − y1, j′(t)), which correspond to a
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scaled Laplacian-based combination of p × 1 vectors, one
obtains c(L ⊗ Ip)y1(t) = Lcy1(t). This justifies why
[Υ(t,μ)]21 = Lc. Using similar arguments and recalling that
Rh(t) := bdiag(h1(t)hT

1 (t), . . . , hJ(t)hT
J (t)), we establish that

[Υ(t,μ)]11 = IJ p − 2μ(Rh(t) + Lc).

Although the vectors {y1, j(0)}Jj=1 are decoupled so that
y1(0) can be chosen arbitrarily, this is not the case for
{y2, j(0)}Jj=1 which are coupled and satisfy

J
∑

j=1

y2, j(t) =
J
∑

j=1

∑

j′∈N j

(

v
j′
j (t − 1)− v

j
j′(t − 1)

)

= 0p, ∀t ≥ 0.

(B.7)

The coupling across {y2, j(t)}Jj=1 dictates that y2(0) should be
chosen in compliance with (B.7), so that the system (B.3)
is equivalent to D-LMS for all t ≥ 0. Let y2(0) = Lcy′2(0),
where y′2(0) is any vector in RJ p. Then, y2(0) satisfies the
conservation law (B.7) as (recall that 1J = nullspace(L))

J
∑

j=1

y2, j(0) =
(

1T
J ⊗ Ip

)

y2(0)

=
(

1T
J ⊗ Ip

)

c
(

L⊗ Ip
)

y
′
2(0)

= c
((

1T
J L
)

⊗ Ip
)

y
′
2(0)

= 0p.

(B.8)

In conclusion, for arbitrary y′(0) ∈ R2J p the recursion (B.3)
should be initialized as y(0) = bdiag(IJ p, Lc)y′(0), and the
proof of Lemma 12 is completed.

The second step of the proof involves establishing the
equivalence between the dynamical systems in (B.3) and (20)
for all t ≥ 0, when the inner state is arbitrarily initialized
as z(0) = y′(0). We will argue by induction. For t = 0, it
follows from (21) that z(1) = Φ(1,μ)y′(0) + [εT(1) 0T]T −
[1T

J ⊗(s0(1)−s0(0))T 0T]T . Upon substituting z(1) into (20),
we find

y(1) = bdiag
(

IJ p, Lc

)

Φ
(

1,μ
)

y′(0)

+

⎡

⎣

ε(1)

0

⎤

⎦−
⎡

⎣

1J ⊗ (s0(1)− s0(0))

0

⎤

⎦

+

⎡

⎣

μIJ p

0

⎤

⎦η(0) +

⎡

⎣

μ
(

3Pα − Pβ

)

Pβ − Pα

⎤

⎦η(0).

(B.9)

Note that: (i) bdiag(IJ p, Lc)Φ(t,μ) = Υ(t,μ)bdiag(IJ p, Lc) for
all t ≥ 1; (ii) y(0) = bdiag(IJ p, Lc)y′(0) for the system in
Lemma 12; and (iii) ηα(t) = Pαη(t), while ηβ(t) = Pβη(t).
Thus, the rhs of (B.9) is equal to the rhs of (B.3) for t = 0.

Suppose next that (20) and (21) hold true for y(t) and
z(t). The same will be shown for y(t + 1) and z(t + 1). To
this end, replace y(t) with the rhs of (20) evaluated at time
instant t, into (B.3) to obtain

y(t + 1)

= Υ
(

t + 1,μ
)

bdiag
(

IJ p, Lc

)

z(t)

+ Υ
(

t + 1,μ
)

⎡

⎣

μIJ p

0

⎤

⎦η(t − 1)

+ Υ
(

t + 1,μ
)

⎡

⎣

μ
(

3Pα − Pβ

)

Pβ − Pα

⎤

⎦η(t − 1)

+

⎡

⎣

ε(t + 1)

0

⎤

⎦−
⎡

⎣

1J ⊗ (s0(t + 1)− s0(t))

0

⎤

⎦

+

⎡

⎣

μIJ p

0

⎤

⎦η(t) +

⎡

⎣

μ3IJ p

−IJ p

⎤

⎦ηα(t)−
⎡

⎣

μIJ p

−IJ p

⎤

⎦ηβ(t)

= bdiag
(

IJ p, Lc

)

×
⎛

⎝Φ
(

t + 1,μ
)

z(t) +

⎡

⎣

ε(t + 1)

0

⎤

⎦

−
⎡

⎣

1J ⊗ (s0(t + 1)− s0(t))

0

⎤

⎦

+ Φ
(

t + 1,μ
)

⎡

⎣

μIJ p

0

⎤

⎦η(t − 1)

+Φ
(

t + 1,μ
)

⎡

⎣

μ
(

3Pα − Pβ

)

C

⎤

⎦η(t − 1)

⎞

⎠

+

⎡

⎣

μIJ p

0

⎤

⎦η(t) +

⎡

⎣

μ
(

3Pα − Pβ

)

Pβ − Pα

⎤

⎦η(t).

(B.10)

In obtaining the last equality in (B.10), we used: (i)
bdiag(IJ p, Lc)Φ(t,μ) = Υ(t,μ)bdiag(IJ p, Lc); (ii) the relation-
ship between ηα(t),ηβ(t) and η(t); and (iii) the existence of
a matrix C such that LcC = Pβ − Pα. This made possible to
extract the common factor bdiag(IJ p, Lc) and deduce from
(B.10) that y(t+ 1) is given by (20), while z(t+ 1) is provided
by (21).

In order to complete the proof, we must show the
existence of matrix C. To this end, via a simple evaluation
one can check that nullspace(Lc) ⊆ nullspace(PT

β − PT
α ), and

since Lc is symmetric, we have nullspace(Lc) ⊥ range(Lc).
As nullspace(PT

β − PT
α ) ⊥ range(Pβ − Pα), it follows that

range(Pβ − Pα) ⊆ range(Lc), which further implies that we
can find C such that LcC = Pβ − Pα.
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C. Structure of Rημ and Rημ

From (31) we have

Rημ =
⎡

⎣

μIJ p

0J p×J p

⎤

⎦Rη

⎡

⎣

μIJ p

0J p×J p

⎤

⎦

T

,

Rημ =
⎡

⎣

μ
(

3Pα − Pβ

)

C

⎤

⎦Rη

⎡

⎣

μ(3Pα − Pβ)

C

⎤

⎦

T
(C.1)

so that it suffices to focus on the structure of Rη and Rη. From
the definition in (18) and recalling that communication
noise vectors are assumed uncorrelated in space, it follows
that

Rη = bdiag

⎛

⎝

∑

j′∈N1\{1}
Rη1, j′ , . . . ,

∑

j′∈NJ\{J}
RηJ , j′

⎞

⎠. (C.2)

In the same way it follows from (19) that Rη is a block

diagonal matrix with a total of
∑J

j=1 |N j| diagonal blocks of
size p × p, namely

Rη = bdiag
(

{

Rη j′ ,1

}

j′∈N1
, . . . ,

{

Rη j′ ,J

}

j′∈NJ

)

. (C.3)

Note also that the blocks Rη j, j
= 0p×p for all j ∈ J.

D. Proof of Lemma 9

We separately treat each of the three summands in
M( ˜Ω(μ), Rz̃(t)) (cf. (33)) and finally add the results. The
algebraic property vec[RST] = (TT ⊗ R) vec[S], allows
writing the first term as ( ˜Ω(μ) ⊗ ˜Ω(μ)) vec[Rz̃(t)]. The
second term can be rewritten as 4μ2bdiag(Λ, 02J p×2J p)[(I3J ⊗
1p×p) ◦ Rz̃(t)]bdiag(Λ, 02J p×2J p), which is vectorized upon
using the property for vec[RST] followed by vec[R ◦ S] =
diag(vec[R]) vec[S], to yield

4μ2
(

bdiag
(

Λ, 02J p×2J p

)

⊗ bdiag
(

Λ, 02J p×2J p

))

× diag
(

vec
[

I3J ⊗ 1p×p
])

vec[Rz̃(t)].
(D.1)

The third term is a diagonal matrix, which can be decom-
posed as (up to a constant factor 4μ2)

bdiag
(

tr
(

Λ1[Rz̃(t)]11,1

)

Λ1, . . . , tr
(

ΛJ[Rz̃(t)]11,J

)

ΛJ , 02J p×2J p

)

=
J
∑

j=1

tr
(

Λ j[Rz̃(t)]11, j

)[

diag
(

b3J , j

)

⊗Λ j

]

=
J
∑

j=1

tr
([

diag
(

b3J , j

)

⊗Λ j

]

Rz̃(t)
)[

diag
(

b3J , j

)

⊗Λ j

]

=
J
∑

j=1

(

vec
[

diag
(

b3J , j

)

⊗Λ j

]T
vec[Rz̃(t)]

)

×
[

diag
(

b3J , j

)

⊗Λ j

]

,

(D.2)

where the last equality follows from the identity
tr(RTS) = vec[R]T vec[S]. Upon scaling and vectorizing
(D.2), while letting q j := vec[diag(b3J , j) ⊗ Λ j], one obtains

4μ2
∑J

j=1 q jqT
j vec[Rz̃(t)]. The result follows readily after

summing the three vectorized terms and taking vec[Rz̃(t)] as
common factor.
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