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Analyses of electroencephalographic signals and subsequent diagnoses can only be done effectively on long term recordings
that preserve the signals’ morphologies. Currently, electroencephalographic signals are obtained at Nyquist rate or higher, thus
introducing redundancies. Existing compression methods remove these redundancies, thereby achieving compression. We propose
an alternative compression scheme based on a sampling theory developed for signals with a finite rate of innovation (FRI) which
compresses electroencephalographic signals during acquisition. We model the signals as FRI signals and then sample them at their
rate of innovation. The signals are thus effectively represented by a small set of Fourier coefficients corresponding to the signals’
rate of innovation. Using the FRI theory, original signals can be reconstructed using this set of coefficients. Seventy-two hours
of electroencephalographic recording are tested and results based on metrices used in compression literature and morphological
similarities of electroencephalographic signals are presented. The proposed method achieves results comparable to that of wavelet
compression methods, achieving low reconstruction errors while preserving the morphologiies of the signals. More importantly,
it introduces a new framework to acquire electroencephalographic signals at their rate of innovation, thus entailing a less costly
low-rate sampling device that does not waste precious computational resources.

1. Introduction

The electroencephalogram (EEG) is a recording of the brain’s
neural activities. Since its discovery by Berger [1], many
research activities have focussed on how to automatically
extract useful information about the brain’s conditions based
on the distinct characteristics of these electrical signals. Valu-
able information about the human brain conveyed by the
EEG is used in various studies like the nervous system, sleep
disorders, epilepsy, and dementia [2]. These applications
require acquisition, storage, and automatic processing of
EEG during an extended period of time. For example, 24-
hour monitoring of a multiple-channel EEG is needed for
epilepsy patients. Traditionally, the EEG has been bandlim-
ited to the frequency range between 0.1 and 100 Hz; thus a
minimum Nyquist sampling rate of 200 Hz is needed. At the
quantization level of 16 bit/sample, a 10-channel EEG for a
24-hour period would amount to 346 megabytes. Hence, to
efficiently store and transmit a huge amount of data, effective

compression techniques are desired. While lossy techniques
yield higher compression, because of reliability considera-
tions, lossy data compression techniques are not used as the
morphology of the signals which are not always well retained.
Excellent surveys of the performance of lossless and lossy
EEG compression techniques can be found in [3] to [4].
Antoniol and Tonella presented and discussed several classi-
cal lossless EEG signal compression methods such as Huff-
man coding, predictive compression, and transform com-
pression [3]. In [5], Memon et al. discussed lossless compres-
sion techniques ranging from simple dictionary searches to
sophisticated context modeling. A long-term EEG compres-
sion method using features obtained from the signals’ power
spectral density was proposed in [6] while multi-channel
EEG signals were compressed by exploiting the intercorrela-
tion among the EEG channels through the Karhunen-Loeve
transform in [7]. Nielsen et al. proposed a signal-dependent
wavelet compression scheme that adapted optimal wavelets
to biomedical signals for compression [8]. A near-lossless
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compression method described in [9] compressed EEG
signals using neural network predictors followed by nonuni-
form quantization. More recently, a new compression
method based on the construction process of the classified
signature and envelop vector sets of the EEG signals [4].

The techniques presented above operated on EEG signals
obtained at or above Nyquist rate. This acquisition process
leads to a collection of huge amounts of irrelevant data,
only to be discarded during the compression stage of
the signals. Furthermore, transients, which are common
in EEG signals, are not bandlimited. Hence, Shannon’s
sampling theory cannot be applied to sampling EEG signals.
Over the last few years, advancements in signal processing
and data acquisition introduced a new sampling theory
known as compressive sampling or compressed sensing [10].
Aviyente proposed a compressed sensing framework for
EEG compression by exploiting the sparsity of EEG signals
in a Gabor frame [11]. This method, however, does not
operate on the analog EEG signals directly. Compressive
sampling, on the other hand, asserts that its acquisition
system directly translates analog signals into compressed
digital form so that one can recover super-resolved signals
from a few measurements [10]. Similarly, we propose to
approach the problem of compressing EEG signals at source.
In order to address the nonbandlimitedness of the EEG
signals, our compression method will be based on the theory
of sampling signals with finite rate of innovation (FRI) [12].
This theory has recently been investigated for a compression
technique for electrocardiogram (ECG) signals [13] and
neonatal EEG seizure signals [14] as well as for EEG seizure
source localisation [15].

Our paper is organised as follows. In Section 2, a descrip-
tion of the EEG data, a review on sampling signals with finite
rate of innovation, and an FRI model of EEG signals are
presented. A scheme for compressively sampling EEG signals
with finite rate of innovation will be described in Section 3.
Results and discussions will be presented in Section 4 and
finally, a conclusion will summarise our findings and provide
directions for our future work.

2. EEGData Description and the FRIModel

2.1. EEG Data Description. A total of 3 sets of normalised
EEG signals comprising 72 hours were used for the study. The
data is further divided into 10 seconds epochs for processing.
All 3 patients experienced similar seizure types at similar
locations on the brain. From this dataset, 30 epochs of 10
seconds duration were selected for establishing a finite rate
of innovation model of EEG signals while the rest of the data
were used to evaluate our compression scheme. The EEG
data were acquired using a Neurofile NT digital video EEG
system with 128 channels, 256 Hz sampling rate, and a 16-bit
analogue-to-digital converter. Notch or bandpass filters have
not been applied. More details of the database can be found
in [16]. In our experiments, these EEG signals are assumed
to be the source signals. For each patient, there will be 360
epochs and the epochs will be referenced as Px yyy where x
represents the patient number and yyy represents the epoch
number.

2.2. Review of Sampling Signals with Finite Rate of Innovation.
Consider classes of parametric signals with a finite number of
degrees of freedom per unit of time, which is defined as the
rate of innovation (e.g., streams of Dirac pulses, nonuniform
splines, and piecewise polynomials). It is shown in [12]
that although these signals are not bandlimited, they can be
sampled uniformly at (or above) the rate of innovation using
an appropriate kernel, and then perfectly reconstructed by
solving systems of linear equations.

2.2.1. Periodic Stream of Dirac Pulses. Consider a stream of K
Dirac pulses periodized with period τ, x(t) = ∑n∈Z cnδ(t −
tn) where tn+K = tn + τ and cn+K = cn, for all n ∈ Z. This
signal has 2K degrees of freedom per period, thus the rate of
innovation is

ρ = 2K
τ
. (1)

By taking a continuous-time periodic sinc sampling kernel
hB(t) = Bsinc(Bt) with bandwidth B greater than or equal to
the rate of innovation ρ given by (1), and sampling y(t) =
(hB ∗ x)(t) at N uniform locations t = nT ; n = 0, . . . ,N −
1, where N ≥ 2M + 1, M = �Bτ/2� and M ≥ K , then the
samples defined by yn = 〈hB(t−nT), x(t)〉, n = 0, 1, . . . ,N−1
sufficiently represent x(t) [12].

2.2.2. Nonuniform Splines. A signal x(t) is a nonuniform
spline of degree R with knots at {tk}K−1

k=0 if and only if its
(R + 1)th derivative is a stream of K weighted Dirac pulses
x(R+1)(t) =∑K−1

k=0 ckδ(t−tk) [17]. Here, the rate of innovation
is ρ = 2K/τ.

Consider a continuous-time periodic nonuniform linear
spline x(t) with period τ, containing K pieces of maximum
degree R = 1. By following the sampling method described
in Section 2.2.1, x(t) is uniquely defined by yn = 〈hB(t −
nT), x(t)〉, n = 0, 1, . . . ,N − 1 [12].

2.2.3. Noisy Case. In this section, we briefly present two types
of noise signals that are added to the FRI signals. The first
type of noise signal considered is the white noise, which
is a zero-mean signal characterised by a flat power spectral
density. The second type of noise signal is the 1/ f noise
whose power spectral density is inversely proportional to its
frequency [18]. Accordingly, we define

Sw
(
f
) = Nw,

Sp
(
f
)∝ 1

f α
,

(2)

where Sw and Sp are the power spectral densities of white and
1/ f noise, respectively and 0 < α < 2.

2.3. Spline-Based FRI Models with Additive Noise. In this
section, an FRI model of EEG signals is validated and
presented. In particular, we model the EEG signals as

x(t) = xs(t) + n(t), (3)

where xs(t) is the nonuniform spline component, and n(t) is
the noise component. We consider the cases of nonuniform
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Figure 1: Comparison of different spline models of EEG. (a) Original EEG signal; (b) Linear spline model, CC = 99.22%, RMSE = 0.0020,
PRD = 13.07%, MAXERR = 0.0012; (c) Quadratic spline model, CC = 96.00%, RMSE = 0.0046, PRD = 29.65%, MAXERR =0.023; (d) Cubic
spline model CC = 99.13%, RMSE = 0.0021, PRD = 13.65%, MAXERR = 0.0011.

linear spline, nonuniform quadratic spline, and lastly the
nonuniform cubic spline (where R = 1, 2, 3, respectively in
Section 2.2.2) with additive white noise and 1/ f noise. We
also compare the models with the original signals based on
the performance metrics described below and conclude with
a suitable FRI model for EEG signals.

2.3.1. PerformanceMetrics. The following evaluation metrics
were employed to determine our method’s performance [4].

The compression ratio (CR) is defined as a ratio between
the number of bits required to represent the original signal
and the compressed signal. First, we define a ratio

C = borig

bcomp
, (4)

where borig and bcomp represent the numbers of bits required
for the original and compressed signals, respectively.

Thus we can define a CR commonly used in the literature
as

CR(%) = C − 1
C

× 100. (5)

A metric that can be used to measure distortion is percent
root difference (PRD). This metric is commonly used
for measuring the distortions in reconstructed biomedical

signals such as Electrocardiographic (ECG) signals and EEG
signals. For signals of length J , PRD can be defined as

PRD(%) =

√
√
√
√
√
√

∑J
i=1

(
xorig(i)− xrecon(i)

)2

∑J
i=1

(
xorig(i)

)2 × 100, (6)

where xorig(i) and xrecon(i) are the sampled values of the
original and reconstructed signals.

Another distortion metric is the root mean square error
(RMSE). In data compression, we are interested in finding an
optimal approximation for minimizing this metric as defined
by the following formula:

RMSE =

√
√
√
√
√

∑J
i=1

(
xorig(i)− xrecon(i)

)2

J
. (7)

Since the similarity between the reconstructed and original
signal is crucial from the clinical point of view, the cross
correlation (CC) is used to evaluate the similarity between
the original signal and its reconstruction.

CC =

(1/J)
∑J

i=1

(
xorig(i)−xorig

)
(xrecon(i)−xrecon)

√

(1/J)
∑J

i=1

(
xorig(i)−xorig

)2√
(1/J)

∑J
i=1 (xrecon(i)−xrecon)2

,

(8)
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Figure 2: Examples of modelling different EEG signals with K-pieces nonuniform linear splines. (a) K = 37 pieces. (b) K = 23 pieces. (c)
K = 53 pieces. (d) K = 45 pieces.

Table 1: Comparison of different approximation models for 30 epochs of EEG signals.

Evaluation metric Linear spline model Quadratic spline model Cubic spline model

Average CC (%) 97.92 90.37 98.11

Average RMSE 0.0024 0.0059 0.0020

Average PRD (%) 15.26 45.21 16.42

Average MAXERR 0.0013 0.027 0.0012

where xorig and xrecon are the mean values of the original and
reconstructed signals, respectively.

In order to understand the local distortions between
the original and the reconstructed signals, two metrics, the
maximum error (MAXERR) and the peak amplitude related
error (PARE) [19], will be computed. The maximum error
metric is defined as

MAXERR = max
(
xorig − xrecon

)
(9)

and it shows how large the error is between every sample of
the original and reconstructed signals. This metric should
ideally be small if both signals are similar. The PARE is
defined as

PARE(i) =
[
xorig(i)− xrecon(i)

]

xorig(i)
. (10)

By plotting PARE, one will be able to understand the
locations and magnitudes of the errors between the original
and reconstructed signals.

2.3.2. Comparison of Models. As depicted in Figure 1, a
comparison between the original EEG signal and its approx-
imations shows that the nonuniform linear spline model
gives the best approximation where a CC of 99.22%, with
an RMSE of 0.0020, a PRD of 13.07%, and a MAXERR of
0.0012 are achieved. An evaluation of 30 sets of EEG signals
in Table 1 shows that the nonuniform linear and cubic spline
models best fitted the EEG signals. Since the results achieved
with a linear spline model are very close to that of a cubic
spline model, the nonuniform linear spline model is chosen
as our EEG model to minimise computation costs.

Figure 2 illustrates the nonuniform linear spline model
for different EEG signals whereby the approximations closely
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Figure 3: (a) The average power spectral density of the residue
signal compared to that of 1/ f noise (b) The estimation of α from
the log-log plot of average power spectral density versus frequency
of the residue signal.
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Figure 4: Our proposed scheme for sampling EEG signals with
finite rate of innovation.

model the original signals with different K pieces of linear
splines. As such, we conclude that with our data, different
EEG signals can be modelled with 2K ∈ [350, 900] for each
10 seconds EEG segment.

The nonuniform linear spline model makes up approxi-
mately 97% of the EEG signal. We observed that the residue
signal (EEG signal-nonuniform linear splines) resembled
a 1/ f noise signal with a power spectral density S( f ) ∝
1/ f α. The range of this noise amplitude was found to be
[−0.003, 0.002] and α was estimated to be around 0.75 by
computing the slope of a fitted line onto the log-log plot
of S( f ) versus f as shown in Figures 3(a) and 3(b) [20].
Thus, our EEG signals are modelled as nonuniform linear

Table 2: The assumed values of 2K, the respective compression
ratio CR and C.

EEG epoch No. of coefficients
2K

Compression ratio
CR (%)

C

P1 001 694 72.85 3.68

P1 002 716 72.03 3.61

P1 003 852 66.71 3.00

P1 004 640 75.00 4.00

P1 005 702 72.61 3.65

P1 006 880 65.63 2.91

P1 007 788 69.18 3.24

P1 008 784 69.34 3.26

P1 009 720 71.88 3.56

P1 010 742 70.98 3.45

P1 001 474 81.48 5.40

P2 002 582 77.27 4.40

P2 003 635 75.20 4.03

P2 004 706 72.42 3.63

P2 005 742 71.02 3.45

P2 006 490 80.86 5.23

P2 007 548 78.55 4.66

P2 008 610 76.17 4.20

P2 009 544 78.71 4.70

P2 010 888 65.31 2.89

P3 001 860 66.41 2.98

P3 002 836 67.34 3.06

P3 003 470 81.64 5.45

P3 004 682 73.36 3.75

P3 005 624 75.59 4.10

P3 006 490 80.86 5.23

P3 007 631 75.35 4.06

P3 008 755 70.51 3.39

P3 009 654 74.45 3.91

P3 010 820 67.97 3.12

splines embedded in additive 1/ f noise. In this way, the EEG
signals have been cast as signals with finite rate of innovation
embedded in noise and this provides a motivation to exploit
the FRI framework for compressive sampling of EEG signals.

3. Compressive Sampling of EEG Signals with
Finite Rate of Innovation

Since the EEG signals are modelled as an FRI signal +1/ f
noise, we will employ methods developed in [12, 21] to
acquire and reconstruct them. It is important that the rate of
innovation of the EEG signals is known and in our case, it has
to be estimated from the source signals. Let us assume that
the number of pieces of linear splines needed to represent
the EEG signals is given as shown in Table 2.

With these assumptions, we represent the EEG signals as
K pieces of nonuniform linear splines embedded in 1/ f noise
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and the corresponding rate of innovation will be ρ = 2K/τ
with τ = 10 seconds.

3.1. Our Method. Figure 4 shows our proposed EEG signal
acquisition process with finite rate of innovation. Since the
value of K is assumed to be known, the samples of the EEG
signal are obtained based on the descriptions in Section 2.2.1.
Corresponding to the representation for the EEG signals, a
reconstruction method is presented in Figure 5.

In order to perform the Cadzow’s noise reduction, a
rectangular (L× (L + 1),L ≥ K) Toeplitz matrix D is created
from the spectral values of the source signal x(t) in the form

D =

⎛

⎜
⎜
⎜
⎜
⎝

X[0] X[−1] . . . X[−L]

X[1] X[0] . . . X[−L + 1]
...

...
...

...
X[L− 1] X[L− 2] . . . X[−1]

⎞

⎟
⎟
⎟
⎟
⎠
. (11)

We then perform a singular vector decomposition of the
matrix D, and enforce rank K on D by choosing only K most
significant singular values. This is iterated until the ratio of
the largest singular value of the Kth + 1 to that of the Kth
is smaller than a preset threshold. Thus the denoised DFT
coefficients can be extracted from D [21].

Since our EEG signals are modelled as nonuniform linear
splines, we perform a differentiation operation twice on the
denoised signals so as to reduce them into a stream of Dirac
pulses. In order to find the locations and weights of the
Dirac pulses, consider a filter A[m] whose z-transform has
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Figure 10: Variation of the evaluation metrics on 343 epochs corresponding to 3430 seconds of continuous EEG from one patient. (a) The
number of coefficient 2K versus epochs. (b) CC versus epochs. (c) RMSE versus epochs. (d) CR versus epochs.

K zeros at uk = e−i(2πtk/τ), that is, A(z) = ∏K−1
k=0 (1 − uk z−1).

Since the CTFS of the differentiated EEG signal x(2)(t) is a
linear combination of K complex exponentials uk, it follows
that A[m] is an annihilating filter and satisfies the following
condition:

A[m]∗ X (2)[m] = 0, (12)

where

X (2)[m] =
(
j2πm
τ

)2

X[m], m ∈ [−K ,K]. (13)

The coefficients of the annihilating filter are found solving
(12) which is equivalent to the following Toeplitz linear
system of equations:

K∑

k=0

A[k] X (2)[m− k] = 0, m = −K , . . . ,K. (14)

Thus the locations {tk}K−1
k=0 of the Dirac pulses are given by

the roots of A(z). Next, the weights {ck}K−1
k=0 of the Dirac

pulses are given by solving the Vandermonde system of
equations given by

X (2)[m] = 1
τ

K−1∑

k=0

cke
− j2πmtk/τ , m = 0, . . . ,K − 1. (15)

Lastly, the stream of Dirac pulses is integrated twice
to obtain the reconstructed EEG signals which correspond
to the nonuniform linear spline approximation of the EEG
signals.

4. Results and Discussions

In this section, we will present our results based on
the performance metrics in Section 2.3.1. Comparisons to
wavelet based compression techniques using discrete wavelet
transform with the Daubechies and Coiflets wavelets [8] will
be included in our discussions. These wavelet transforms are
performed with four detailed levels and one approximation.
Both the wavelet coefficients and the FRI innovation parame-
ters are coded using Huffman coding. We also compared our
results to those found in [11] in terms of normalised mean
square error (NMSE), which is the ratio of mean square error
of the reconstructed signals to the range of amplitudes of the
signals.

We applied our method on the 3 sets of EEG signals and
the results of 30 selected epochs are tabulated in Table 3.

The CC is selected as the primary evaluation metric and
our results are generated with the best CC achievable for
each EEG signal. As shown in Table 3, consistently high CC
ranging from 89.71 to 97.56 is achieved for our dataset. This
implies that there is a great similarity in the morphology
between the original and reconstructed EEG signals. This
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Figure 11: Comparison of reconstruction of an EEG signal acquired by our method. (a) The original signal sampled at 256 Hz. (b) The
EEG signal acquired by our method at 47.5 Hz with 2K = 474. (c) The reconstructed EEG signal at 256 Hz with our method CC = 97.08%,
RMSE = 0.0099, PRD = 22.43%, MAXERR = 0.0016. (d) The reconstructed EEG signal using the traditional sinc interpolation method CC
= 90.11%, RMSE = 0.0147, PRD = 48.30%, MAXERR = 0.428.

result is highly desirable because such diagnostic features are
extremely important and must be preserved. Our method
achieves a CR ranging from 65.31% to 81.48%. This is due to
the morphology of the EEG signals, where some signals need
more linear splines to model them compared to the others.
As K varies, the rate of innovation ρ varies accordingly and
leads to an increased or decreased number of spectral coef-
ficients. Thus CR varies inversely as ρ. Table 3 also tabulates
the distortions arising from our method. We obtained low
RMSE and PRD, implying that our method recovers signals
with some distortion. Furthermore, a MAXERR between
0.0070 and 0.0247 is obtained, suggesting that the distortions
of the reconstructed signals are very small.

A typical plot of PARE and a histogram of the errors are
shown in Figures 6 and 7. Errors between original samples of
the signal and the corresponding reconstructed samples are
amplified and shown in the PARE plot. The values of PARE
are generally less than 5% of the original signal, although
some PARE values are larger than 20% of the original signal.
By comparing Figure 8 to Figure 6, the PRD is relatively
high at 34.35% and the CC value is 98.43%. However, the
differences between the original and reconstructed signals
cannot be distinguished morphologically. Thus PRD alone
cannot measure how well morphologies of the EEG signals
are retained. The histogram of errors showed a concentration
of errors in the range between −0.005 to 0.005, and

some outliers in the larger error bins, thus contributing
to distortions. Although the results are satisfactory, we
observed that the distortions arise from the estimation of
the innovation parameters. Let us make a comparison of the
CC obtained by sampling both the original EEG epochs and
their nonuniform linear spline approximation (i.e., noise-
free signals). If the estimation of the innovation parameters
is accurate, the CC obtained should be the same. As shown in
Figure 9, the CC obtained for the noise-free signal is higher
than the noisy signal, due to wrong estimations of locations
and weights.

In addition, we present results for sampling three 24-
hour recordings. Figure 10 shows how the various metrics
change in a continuous EEG recording of one patient. As
illustrated in Figure 10(a), the number of coefficients 2K
varies between 200 and 1000, thus showing that for the same
patient, the innovation parameters cannot be assumed to
be constant. We also noted that although 2K varies in a
large range, CC is quite consistently lying in the range of
91% to 97% as in Figure 10(b). Furthermore, the distortion
in the EEG is kept very low, as depicted by Figure 10(c).
Compression ratio for this recording ranges from about 50%
to 99%, which varies faithfully with 2K . Table 4 tabulates
the mean CR, CC, PRD, RMSE, MAXERR, and number of
coefficients for each dataset. On the average, we achieved a
CR of around 62.3% with low PRD, RMSE, and MAXERR
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Figure 12: A comparison of the performance of our method with sinc interpolation, wavelet compression using Daubechies and coiflets
wavelets on an EEG epoch. (a) Variation of CC with CR. (b) Variation of PRD with CR. (c) Variation of RMSE with CR. (d) Variation of ρ
with CR.

errors of around 33.63%, 0.0055, and 0.0225, respectively. In
addition, the CC achieved is around 95.08%. Based on the
observations of our experiments, a minimum CC value of
90% and a maximum PRD value of 40% will maintain the
morphologies of the reconstructed signals visually.

Figure 11 presents an example of the strength and
uniqueness of our sampling scheme. The EEG signal’s
original sampling frequency is 256 Hz (Figure 11(a)). Our
system estimated 2K to be 474 and modelled the signal with
474 samples of the original signal (Figure 11(b)), which has
a CR of 81.48%. Effectively, we are sampling the original
signal at 47.5 Hz. We effectively reconstructed the 256 Hz
signal as shown in Figure 11(c) with CC = 97.08%, RMSE
= 0.0099, PRD = 22.43%, MAXERR = 0.0016. As a compar-
ison, we reconstructed the signal in Figure 11(b) with the
traditional sinc interpolation method (Figure 11(d)) with
CC = 90.11%, RMSE = 0.0147, PRD = 48.30%, MAXERR
= 0.428. Clearly, we are able to represent EEG signals with
a low number of samples and reconstruct them with high
fidelity.

Figure 12 shows therelation between CC, RMSE, PRD,
and ρ with CR, respectively. The CR is inversely proportional

to the rate of innovation, as shown in the earlier discussion.
In order to achieve a high CC, CR has to be compromised.
Similarly, as we increase CR, the error involved such as RMSE
and PRD will increase together, though not in a linear form.
A comparison is made with traditional sinc interpolation
and the performance of our method is superior since an
interpolation process is unable to faithfully reconstruct
signals acquired at a low-sampling rate into one of a higher
sampling rate. Next we compared our results with that of
compressing the EEG signals using wavelet compression
methods. As illustrated, our method achieves comparable
results in terms of CC and PRD although the RMSE achieved
by wavelet methods is slightly better. Since RMSE only
indicates how much error is incurred in the reconstruction
without reference to the morphology of the signals, our
results do not indicate that our reconstructed signals differ
largely from the original signals morphologically. Further-
more, our method entails a less costly low-rate sampling
device and does not waste precious computational resources
collecting extra data only to discard them subsequently.

Figure 13 illustrates a comparison between an original
and a reconstructed EEG signal with the 2K = 1184
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Table 3: Performance of our method: CC, RMSE, PRD, and MAXERR.

EEG Cross correlation CC (%) Root mean square error RMSE Percent root difference PRD (%) Maximum error MAXERR

P1 001 94.05 0.0067 39.35 0.0235

P1 002 94.98 0.0082 32.37 0.0247

P1 003 91.87 0.0051 30.43 0.0212

P1 004 95.95 0.0024 34.90 0.0187

P1 005 93.52 0.0122 40.05 0.0204

P1 006 89.71 0.0066 51.37 0.0231

P1 007 92.42 0.0183 49.37 0.0213

P1 008 94.20 0.0091 35.43 0.0220

P1 009 94.20 0.0081 38.54 0.0186

P1 010 97.56 0.0039 23.05 0.0070

P2 001 95.08 0.0099 39.35 0.0102

P2 002 94.05 0.0055 39.78 0.0151

P2 003 93.98 0.0070 31.09 0.0211

P2 004 96.51 0.0069 31.52 0.0098

P2 005 95.36 0.0100 34.85 0.0178

P2 006 95.64 0.0063 30.83 0.0123

P2 007 92.28 0.0007 34.31 0.0210

P2 008 95.07 0.0008 36.31 0.0090

P2 009 97.26 0.0046 27.45 0.0012

P2 010 92.88 0.0096 43.52 0.0244

P3 001 95.25 0.0052 30.19 0.0231

P3 002 92.02 0.0031 32.11 0.0235

P3 003 90.03 0.0011 33.17 0.0209

P3 004 94.08 0.0032 33.27 0.0125

P3 005 93.44 0.0024 32.75 0.0102

P3 006 94.69 0.0011 37.07 0.0196

P3 007 92.07 0.0019 32.70 0.0180

P3 008 91.63 0.0012 28.33 0.0219

P3 009 90.20 0.0039 36.37 0.0243

P3 010 96.27 0.0025 29.95 0.0023

Table 4: Performance of our method on the 3 EEG datasets.

EEG Patient 1 Patient 2 Patient 3 Average

Mean no. of coefficients 941 982 973 965

Mean CR (%) 63.24 61.53 61.98 62.3

Mean CC (%) 94.30 95.32 95.63 95.08

Mean PRD (%) 34.89 32.72 33.29 33.63

Mean RMSE 0.0080 0.0061 0.0025 0.0055

Mean MAXERR 0.0201 0.0302 0.0171 0.0225

coefficients, we reconstructed the signal and achieved CR
= 81.48%, CC = 97.52%, RMSE = 0.0044, PRD = 24.55%,
and MAXERR = 0.002. Furthermore, the NMSE of the
reconstructed signal is in the range of 5×10−9 to 7.2×10−7 as
opposed to 0.01 achieved by the method in [11]. A zoomed-
in view in Figure 14 confirms that the morphology of the
original signal is conserved in the reconstruction.

Lastly we will discuss about the computational costs of
our scheme. With reference to Figure 5, the computational
complexity can be estimated as follows.

(i) Compute the DFT to obtain the Fourier series
coefficients∈ [−K ,K]:O(K log K).

(ii) Denoise: O(K3).

(iii) Differentiate the denoised signal :O(K).

(iv) Solve a Toeplitz system of equation of size K by K to
get A(z) : O(K2).

(v) Find the roots of A(z) by factorization, to get
tk :O(K3).

(vi) Solve a Vandermonde system of equation of size K by
K to get ck : O(K2).

(vii) Integrate the K Dirac pulses-O(J)

Hence effectively, the computational costs involved is
O(K3 + J). For our dataset, the average time required to
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Figure 13: A comparison between (a) an original EEG signal and
(b) the reconstructed EEG signal. 2K = 1184, CR = 81.48%, CC =
97.52%, RMSE = 0.0044, PRD = 24.55%, MAXERR = 0.0022.
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Figure 14: A zoom-in view of the comparison of original and
reconstructed EEGs in Figure 13.

sample and reconstruct a 10-second epoch is 5.009 seconds
on an Intel Core2 Duo 2.50 GHz system with 4 GB RAM.
This computational time can be improved by employing fast
algorithms on dedicated digital signal processors to achieve a
realtime EEG signal acquisition and display.

5. Conclusions

We proposed an approach to compress EEG signals at source
based on the finite rate of innovation sampling theory. Unlike
traditional compression methods which acquire many data
samples and later discard redundant ones, our proposed
method relies on acquiring a small set of data from the
original signal based on the signal’s rate of innovation and
then reconstructing the signal with high resolution. Even
though a small set of data is obtained, our method retains the
morphologies of the EEG signals. It yielded promising results
such as good cross correlation and low distortions at a low
computational cost. In this way, we achieve computational

savings which can be utilised in other more important
signal processing stages. Moderate C ratios are obtained
for some epochs, leading to a moderate compression ratio.
Furthermore, it is observed that K changes depending on
the state of the EEG, thus leading to a variable rate of
innovation. Valuable information such as the occurrences
of EEG abnormalities can be extracted through tracking
the changes in the rate of innovation across the EEG. As
such, the advantage of our compression method lies in the
ability to compress EEG signals and track changes across EEG
states concurrently. Although the accuracy of the estimated
K affects the entire scheme, as discussed in [21], it can be
estimated from the rank of a Toeplitz matrix. However, more
research is needed to determine the correct duration of EEG
signals to yield optimal K values based on certain evaluation
metrics such as CR, CC, PRD, or MAXERR.

We will continue our work to minimise the local errors
caused by outliers and to include adaptive rate of innovation
to cater to the changing states of EEG signals. Finally we will
investigate how EEG signals can be source compressed with
finite rate of innovation in real time.
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