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Determining orthonormal eigenvectors of the DFT matrix, which is closer to the samples of Hermite-Gaussian functions, is crucial
in the definition of the discrete fractional Fourier transform. In this work, we disclose eigenvectors of the DFT matrix inspired by
the ideas behind bilinear transform. The bilinear transform maps the analog space to the discrete sample space. As jω in the
analog s-domain is mapped to the unit circle one-to-one without aliasing in the discrete z-domain, it is appropriate to use it
in the discretization of the eigenfunctions of the Fourier transform. We obtain Hermite-Gaussian-like eigenvectors of the DFT
matrix. For this purpose we propose three different methods and analyze their stability conditions. These methods include better
conditioned commuting matrices and higher order methods. We confirm the results with extensive simulations.

1. Introduction

Discretization of the fractional Fourier transform (FrFT) is
vital in many application areas including signal and image
processing, filtering, sampling, and time-frequency analysis
[1–3]. As FrFT is related to the Wigner distribution [1], it
is a powerful tool for time-frequency analysis, for example,
chirp rate estimation [4].

There have been numerous discrete fractional Fourier
transform (DFrFT) definitions [5–11]. Santhanam and
McClellan [5] define a DFrFT simply as a linear combination
of powers of the DFT matrix. However, this definition is not
satisfactory, since it does do not mimic the properties of the
continuous FrFT.

Candan et al. [6] use the S matrix, which has been
introduced earlier by Dickinson and Steiglitz [12] to find
the eigenvectors of the DFT matrix in order to generate
a DFrFT matrix. The S matrix commutes with the DFT
matrix, which ensures that both of these matrices share
at least one eigenvector set in common. This approach is
based on the second-order Hermite-Gaussian generating
differential equation. Candan et al. [6] simply replace the
derivative operator with the second-order discrete Taylor

approximation to second derivative and the Fourier operator
with the DFT matrix.

Pei et al. [7] define a commuting T matrix inspired by the
work of Grünbaum [13], whose eigenvectors approximate
the samples of continuous Hermite-Gaussian functions
better than the eigenvectors of S. Furthermore, the authors
use linear combinations of S and T matrices as S + kT to
furnish the basis of eigenvectors for the DFrFT matrix.

Candan introduces Sk [8] matrices whose eigenvectors
are higher-order approximations to the Hermite-Gaussian
functions. The idea is to employ higher-order Taylor series
approximations to the derivative operator, which replaces
the second derivative operator in the Hermite-Gaussian
generating differential equation. However, the order of
approximation k is limited by the dimension of the Sk matrix
2k + 1 ≤ N .

Pei et al. [10] recently removed the upper bound of this
approximation and obtained higher—order approximations.
However, it needs high computational cost to generate Pei’s
Sk matrices. More recently, in [14] the authors present the
closed form of Sk matrix as k → ∞ in the limit.

In this work, we find eigenvectors of the DFT matrix in
a completely different way. We define the derivative operator
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as its bilinear discrete equivalent to discretize the Hermite-
Gaussian differential equation. Since the bilinear transform
maps the analog domain to the discrete domain one-to-one,
we find eigenvectors which are close to the samples of the
Hermite-Gaussian functions. We also analyze the stability
issues. Additionally, two more methods are proposed,
which employ better conditioned and higher-order bilinear
matrices.

The paper is organized as follows. Section 2 gives
introductory information on Hermite-Gaussian functions,
basics of how to generate commuting matrices and the
bilinear transform. Section 3 presents the proposed meth-
ods by defining the bilinear transform-based commuting
matrices including the stability analysis. Simulation results
and performance analysis are given in Section 4. The paper
concludes in Section 5.

2. Preliminaries

2.1. Hermite-Gaussian Functions. The Hermite-Gaussian
functions span the space of Hilbert space L2(R) of square
integrable functions, which are well localized in both time
and frequency domains. These functions are defined by a
Hermite polynomial modulated with a Gaussian function

Ψm(t) = 21/4
√

2mm!
Hm

(√
2πt
)
e−πt

2
, (1)

where Hm(t) is the mth-order Hermite polynomial. Hermite-
Gaussian functions are eigenfunctions of the Fourier trans-
form

F {Ψm}(t) = e−jmπ/2Ψm(t), (2)

where F is the Fourier transformation operator and
e−jmπ/2 is the mth-order eigenvalue. An mth-order Hermite-
Gaussian function has m zero-crossings. The Hermite-
Gaussian functions are homogeneous solutions of the dif-
ferential equation, which is also known as the Hermite-
Gaussian generating differential equation

d2 f (t)
dt2

− 4π2t2 f (t) = λ f (t), (3)

with λ = 2m+ 1. The Hermite-Gaussian generating function
can be expressed by its operator equivalent as

{
D2 + FD2F −1} f (t) = λ f (t), (4)

where D2 denotes the second derivative operator.

2.2. Commuting Matrix Generation. Let A and B be N × N
square matrices. If AB = BA, then A and B are commuting
matrices. If A and B commute, they share at least one set of
common eigenvector sets [6].

Candan [8] showed that a DFT commuting matrix K can
be obtained for any arbitrary N ×N matrix L as

K = L + FLF−1 + F2LF−2 + F3LF−3, (5)

where F is the N point DFT matrix which is defined as

(F)n,m =
1√
N

exp
(
−j2π

N
nm
)

, n,m = 0, 1, . . . ,N − 1.

(6)

In [10] it is shown that if L commutes with F2, (5) is
simplified to

K = L + FLF−1. (7)

Theorem 1. One can further extend this idea such that, if L is
circulant and symmetric the above equation is also valid.

Proof. Let C be a circulant and symmetric matrix, then the
eigenvalue decomposition of C is [15, pages 201-202]

C = F−1ΛCF, (8)

where ΛC = diag(
√
NFc) is a diagonal matrix containing

eigenvalues of C. Here, c is the first column of C, and N is
the dimensional of C. As C is symmetric, the above equation
is equivalent to

C = FΛCF−1 (9)

since the symmetry implies that CT = C. Hence we can
conclude that C + FCF−1 = F2CF−2 + F3CF−3 when we
replace (9) in the left hand side and (8) in the right hand
side of this equation. Consequently, the proof of

K = C + FCF−1 (10)

is complete. We can conclude that while generating DFT
commuting matrices, a good choice is to chose real,
symmetric and circulant matrices and replace them with C
in (10).

2.3. Bilinear Transform. Bilinear transform is a useful and
popular tool in signal and system analysis, which is often
used to map the Laplace s-domain to the z-domain. There are
numerous finite difference approximation (FDA) methods
for this mapping. The most popular ones are the forward and
backward difference methods and the bilinear transform.
The forward difference method discretizes the derivative
operator by mapping dx(t)/dt ⇒ (x(n)−x(n−1))/Δt whereas
the backward difference method impose dx(t)/dt ⇒ (x(n +
1)− x(n))/Δt.

The bilinear transform defines the discrete differentiation
of a signal x(n) as

x′(n) + x′(n− 1) = c

Δt
(x(n)− x(n− 1)), (11)

where x′(n) is the discrete derivative of x(n), Δt = 1/
√
N is

the sampling period, N is the length of the signal x(n), and
c is a real scalar. Hence, the second-order discrete derivative
x′′(n) can be defined through the centered form expression

x′′(n− 1) + 2x′′(n) + x′′(n + 1)

=
(
c

Δt

)2

(x(n− 1)− 2x(n) + x(n + 1)).
(12)
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The bilinear transform maps the analog domain to the
discrete domain one-to-one. It maps points in the s-domain
with Re{s} = 0 ( jω axis) to the unit circle in the z-plane
|z| = 1. However, the forward difference method maps the
jω to a circle of radius 0.5 and centered at the point z = 0.5
as shown in Figure 1. Bilinear transform maps every point in
the jω-plane to the z-plane without aliasing.

We express (12) in matrix form as

B1X′′ =
(
c

Δt

)2

E2X, (13)

where X′′ = [x′′(0), x′′(1), . . . , x′′(N − 1)]T , X =
[x(0), x(1), . . . , x(N − 1)]T with

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 · · · 0 1
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0 1 2
. . .

...

...
. . .

. . .
. . .

...

...
. . .

. . . 1

1 0 0 · · · 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

E2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 1

1 −2 1 · · · 0

0 1 −2
. . .

...

...
. . .

. . .
. . .

...

...
. . .

. . . 1

1 0 0 · · · 1 −2

⎤
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. (15)

Hence, we conclude with an equivalent form of discrete
second derivative as

X′′ =
(
c

Δt

)2

B−1
1 E2X, (16)

with the discrete second derivative operator D2 =
(c/Δt)2B−1

1 E2.

3. Obtaining DFT CommutingMatrices

An easy and accurate way of obtaining Hermite-Gaussian-
like eigenvectors of the DFT matrix is to define a better
commuting matrix, which imitates the Hermite-Gaussian
generating differential equation given in (3) as a discrete
substitute. In this section we disclose an elegant way of
obtaining better commuting matrices by taking advantage of
the bilinear transform, which is a good discrete substitute for
the derivative operator.

The algorithm is straightforward; we substitute the
second derivative and the Fourier transform operators in
(3) with the matrix given in (16) and the DFT matrix,
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Figure 1: Image of jω axis in the z-plane for bilinear transform and
the forward difference method. Solid: bilinear transform, dashed:
forward difference method.

respectively. Hence, DFT commuting matrix inspired by the
bilinear transform is given by

B = B−1
1 E2 + FB−1

1 E2F−1. (17)

We omit the coefficient (c/Δt)2, since it has no effect on the
eigenvectors of B.

Theorem 2. B commutes with the DFT matrix.

Proof. As B1 and E2 are both circulant and symmetric, B−1
1 E2

is symmetric and circulant also. We use Theorem 1 given in
Section 2.2, which states that any circulant and symmetric
matrix C can be used to generate a commuting matrix as in
(10). Since B−1

1 E2 is both circulant and symmetric, the proof
is complete.

After generating the commuting matrix B, we find its
eigenvectors. The eigenvectors are Hermite-Gaussian-like
eigenvectors with the number of zero-crossings equal to the
order of Hermite-Gaussian eigenvectors. In Section 4 we give
extensive simulations and results on these Hermite-Gaussian
like eigenvectors.

3.1. Stability. Stability of B can easily be proved when
B1 is not singular. We can show this by the eigenvalue
decomposition of B1

B1 = F−1ΛB1 F, (18)

where ΛB1 is a diagonal matrix containing the eigenvalues
of B1. As B1 is circulant, the eigenvalues are ΛB1 =
diag(

√
NFb1), where b1 is the first column of B1 and N × N
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is the dimension of ΛB1 . As b1 = [2, 1, 0, 0, . . . , 1]T , Fourier
transform of b1 can be easily found and replaced to find the
eigenvalues ΛB1

ΛB1 = diag
(

2 + 2 cos
(

2πn
N

))
, n = 0, 1, 2, . . . ,N − 1.

(19)

ΛB1 is never zero for odd N , since diag(2 + 2 cos(2πn/N)) >
0 for all n. However as N increases ΛB1 becomes poorly
conditioned. Besides, for even N , diag(2+2 cos(2πn/N)) = 0
for n = N/2, which causes instability. We can add a small
ξ > 0 in the diagonal of B1 to overcome instability. Then ΛB1

is changed to

ΛB1 = diag
(

2 + ξ + 2 cos
(

2πn
N

))
, n = 0, 1, 2, . . . ,N − 1

(20)

to preserve stability for even N . Consequently, to ensure
stability we substitute B1 defined in (14) with

B̂1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + ξ 1 0 · · · 0 1
1 2 + ξ 1 · · · 0

0 1 2 + ξ
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 1
1 0 0 · · · 1 2 + ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Adding a small ξ value in the diagonal will not perturb the
eigenvectors of the commuting matrix.

3.2. Better Conditioned Bilinear Methods. Bilinear transform
can be considered as a trapezoidal approach to the derivative.
Hence, we can assure stability by using alternative B1

matrices. We have found out that changing the diagonal
of B1 by a constant k > 2 both ensures the stability and
increases the performance. Therefore we substitute B1 with
B1, where we define B1 as

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 1 0 · · · 0 1
1 k 1 · · · 0

0 1 k
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 1
1 0 0 · · · 1 k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

As k > 2, the commuting matrix is better conditioned. The
optimum value of k is found to be approximately 4.3, which
is given in Section 4.

3.3. Higher-order Bilinear Differentiation Matrix Substitutes.
So far, we have used the bilinear—transform—inspired
matrices to find a better discrete substitute for the sec-
ond derivative. To find better definitions of differentiation
matrices we suggest that a Taylor series-like approach to B1

Table 1: Optimum ai coefficients generated for B14.

ai Optimum Value
a1 1.00
a2 0.247634068038315
a3 −0.103839534211561
a4 −0.141176982675410
a5 0.005956945393076
a6 −0.008133047918379
a7 −0.020103743248487
a8 −0.001866823892062
a9 −0.000336065416294
a10 −0.002383849560258
a11 −0.000725049220057
a12 −0.000698349278537
a13 −0.003339855815284
a14 −0.001759635742928

(1) Compute one of B̂1, B1, or Bn matrices.
(2) Replace the computed matrix in (17) as a substitute for

B1 and compute the DFT-commuting matrix B.
(3) Find the eigenvectors of B, which are Hermite-

Gaussian-like orthonormal vectors.

Algorithm 1: Summary of the proposed algorithms.

will grant us higher-order bilinear differentiation matrices.
Therefore, we define higher-order bilinear differentiation
matrices as

Bn = a1B1 + a2
(

B1
)2

+ · · · + an
(

B1
)n

, (23)

where we name Bn as nth-order bilinear approximation to
the second derivative, and ai are real scalars. The value of k =
4.3 is chosen for Bn, as it is an optimum value with respect to
minimum total error norm which is discussed in Section 4.
We have not come up with an analytical expression of ai’s
yet, however, genetic and/or pattern search algorithms may
be used to optimize the coefficients.

We have used the genetic [16] and the pattern search
[17] algorithms and determined optimum ai coefficients,
i = 1, 2, . . . , 14, which are given in Table 1. These coefficients
are inserted in (23) to obtain B14. We have generated the
commuting matrix B by substituting B1 with B14 in (17).
When B14 is employed, eigenvectors of B are found to be
very close to the samples of Hermite-Gaussian functions as
the performance is discussed in detail in the very Section 4.

So far, three different methods are proposed, which are
summarized in Algorithm 1. The first method computes
B̂1, in which a small ξ is added in the diagonal of B1

to achieve stability. In the second method we alter the
diagonal of B1, with a value k > 2. Changing the diagonal
both improves the performance and ensures stability. In
the last proposed method we find higher-order matrices,
using the B1 and its weighted powers with k = 4.3
for a better definition of the commuting matrix. After-
wards, we replace the computed B̂1, B1, or Bn with B1

in (17). The obtained matrix B is the DFT-commuting



EURASIP Journal on Advances in Signal Processing 5

5

10

15

20

25

30

35

40

45

50

55

2 3 4 5 6 7 8 9 10

(k)

To
ta

ln
or

m
of

er
ro

r

N = 64

N = 56

N = 48

N = 40

N = 32

(a)

10−2

10−1

100

0 5 10 15 20 25 30

Number of zero crossing

lo
g 10

(n
or

m
of

er
ro

r)

B̂1, k = 2 + ξ
B1, k = 3

B1, k = 4
B1, k = 4.3

(b)

Figure 2: (a) The total norm of error versus k in B1 for N = 32,
40, 48, 56, and k = 4.3. The total norm of error is minimum when
k ≈ 4.3. (b) Error norms between the discrete Hermite-Gaussian
like eigenvectors and the samples of the Hermite-Gaussian
functions when B1 for k = 3, 4, and k = 4.3 and B̂1 with N = 32.

matrix whose eigenvectors are the Hermite-Gaussian-like
orthonormal vectors.

4. Simulations and Results

We have proposed three different techniques for finding
Hermite-Gaussian-like eigenvectors of the DFT. In the first
method we employ B̂1 defined in (21). As a second method
we use B1 as defined in (22) for different values of k. Finally,
we employ Bn given in (23). We replace each matrices in
(17) as a substitute to B1 to generate commuting matrices B.
Afterwards, we find eigenvectors of these commuting matri-
ces and find the norm of error between samples of corre-
sponding Hermite-Gaussian functions and the eigenvectors.

First we compare total norms of errors between the
Hermite-Gaussian functions and the samples of Hermite-
Gaussian-like eigenvectors to determine optimum k for B1.
We define the total norm of error as sum of norms of error for
each eigenvector. Figure 2(a) shows the total norm of error
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Figure 3: Error norms between the discrete Hermite-Gaussian like
eigenvectors and the samples of the Hermite-Gaussian functions of
B1 method when k = 4.3 are compared with various other methods
for (a) N = 32 and (b) N = 64.

versus k for different values of N , and the best value for k is
approximately 4.3.

Comparison of errors between B1 for k = 3, 4, and 4.3
and B̂1 with the dimensional N = 32 is given in Figure 2(b).
The error norm is measured as the norm of error between
the samples of Hermite-Gaussian functions and Hermite-
Gaussian like eigenvectors of B using these matrices. As it
is clear from the figures, the best overall performance is
obtained in the B1 method when k = 4.3.

Figure 3(a) plots the norms of errors for different
methods defined in [8]. We compare the error norms of
S2, S6, and S16 in between, which are of O(h2), O(h6), and
O(h16) Taylor approximations, respectively, as shown in [8],
with the B1 method, k = 4.3 for N = 32. Figure 3(b) plots
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Figure 4: Comparison of error norms between the discrete
Hermite-Gaussian like eigenvectors and the samples of the
Hermite-Gaussian functions of B14 and S32, S100, and S400 methods
for N = 32.

the same comparison for N = 64. These plots show that
our proposed algorithm is slightly worse than some other
methods for small orders, but much better for higher-orders
of eigenvectors. As it is clear from the figures, our method
outperforms the other methods in total.

We compare the proposed higher-order B14 method
with the other higher-order methods, S32, S100, and S400

that employ higher-order Taylor approximations to the
second derivative as shown in [10]. Figure 4 presents the
performance of the proposed method together with the other
methods. Despite the fact that our method uses only the
14th order approximation, it is definitely better than these
methods, even better than S400.

5. Conclusions

As the eigenvectors that are closer to the samples of
continuous Hermite-Gaussian functions are important for
a better definition of DFrFT, we employ bilinear transform-
based methods to define better commuting matrices. We
have proposed three different methods and analyzed their
stability issues. A stable method is proposed by inserting
a small ξ in the diagonal of the bilinear matrix. Better—
conditioned bilinear differentiation matrices that have
better performance are also obtained. Besides, a method of
generating higher-order bilinear differentiating matrices is
also suggested.

Simulation results show that the proposed methods
posess better eigenvectors when compared to the other
methods recently suggested.

Future works on this subject may include finding a
closed form expression for the coefficients generating the
higher-order bilinear matrices, Bn. Furthermore, Bn matrices

may be used in linear combinations with other commuting
matrices, such as S2k.
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