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This study considers an airborne multichannel phase array radar consisting of an analog phase shifter on each channel, where
the sum channel (output) is digitised using a single A/D converter. Generally for such a configuration, the array weights are
predetermined for each transmit/receive direction and are nonadaptive to the clutter. In order to achieve any adaptivity to the
environment, the convention is to split the array into at least two subgroups and implement two analogs to digital converters. A
single A/D-based software solution (numerically stable, robust) is proposed to achieve the full sidelobe adaptation to clutter. The
proposed algorithm avoids these engineering complications involved in implementing multiple A/Ds for radar applications while
maintaining the same desired performance. As a large number of airborne radar platforms already exist worldwide, the possible
applications of this proposed fully adaptive upgrade as a software solution can be huge.

1. Introduction

The objective of an adaptive array is to combine the
elemental outputs, appropriately weighted so as to generate
an output that is interference free. To achieve this we need
to have observations from a sufficient number of channels of
the array that we can use to calculate the adapted weights
[1–3]. If a “traditional” analog beamformer is employed,
then it is not usually possible to observe the individual
channels. If multiple beamforming manifolds are used, it
is possible to compute an adaptation in beamspace, but in
most cases only a small number of beams are produced
severely restricting the number of interfering sources that
can be accommodated. In practice this is further complicated
because “real” arrays, especially with near-field scatterers, do
not have uniform elements.

There are a number of engineering advantages to
employing an analog beamformer, particularly related to
the number of digitisers employed and the consequential
simplification in all those processes associated with digi-
tisers (maintaining alignment, power consumption/cooling,
and data management), but if low sidelobe performance
is required, this is offset by the increased difficulty in

calibration of the array, especially for active arrays, where
effective impedance of path depends upon the frequency,
power on/off, and phase status of adjacent elements. Current
capabilities are such as to favour the use of analog beam-
forming to produce a small number of beams, typically a
single sum, also known as a “sigma” beam, and additionally
a number of difference beams, also known as “delta” beams,
and then either (a) sacrifice low sidelobe performance; (b)
require complex calibration; or (c) attempt to mitigate the
sidelobes with limited adaptive processing, such as “sigma-
delta” processing [4] or other forms of reduced-dimension
adaptive processing.

This study considers a phased array wherein we can
adjust the amplitude and phase of each element, but
where we can only observe the output of a single “sum”
channel, and introduces an algorithm on this channel to
adaptively null any residual sidelobe clutter. The method
described in this paper transmits 2×Np pulses in each beam
direction. Firstly coherent Np burst of pulses are received
using an initial set of antenna weights. Then, after allowing
for a switching delay, a second burst of Np pulses are
received using a set of weights that are linearly independent,
whilst satisfying certain requirements. The new algorithm
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developed in this paper uses the properties of the data stream
to adaptively null the ground clutter with Np degrees of
freedom. The procedure we have developed is tested using
both simulated data and data from the MCARM system
[5], suitably processed to represent a single “sum” beam,
including the delay caused by the switching of the antenna
weights. The results obtained are then compared with the
fully adaptive solution available via mutlichannel data with
the same number of degrees of freedom.

This paper is organised as follows. In Section 2, we
formulate the standard multichannel problem and consider
multichannel observation-based signal processing gains (full
STAP, beamspace STAP, etc.) to provide a baseline for
comparison. Section 3 formulates the proposed software
solution using a single observation channel and derives the
signal processing gain. Section 4 examines the theoretical
performances and compares the algorithms using Monte
Carlo simulation. Finally Section 5 uses MCARM data to
validate the results.

2. Formulation

2.1. General Formulation. Assume that the airborne platform
travels in the positive y-direction at speed VA (Figure 1),
x is the array broadside direction, φ is the azimuth angle
measured from the array broadside, and θ is the elevation
angle where θ > 0 corresponds to z > 0. Suppose that we have
a planer array of N elements, which transmits and receives
a burst of Np coherent pulses. The measured N × 1 signal
vector x(m)(r) due to the mth coherent pulse and rth range
ring, which is also referred to as the fast time scale, can be
expressed as

x(m)(r) =
Ns∑

k=1
αk,rsN

(
φk, θr

)
exp
(
j2π fk,r(m− 1)Tp

)

+ δ(r − rt)αt exp
(
j2π ftTp(m− 1)

)

× sN
(
φt, θrt

)
+ em,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2,

(1)

where sN (φ, θ) is the N × 1 array steering vector, αk,r is the
received complex clutter amplitude due to the kth scatterer
also referred to as clutter discrete on the rth range ring,
(φk, θr , fk,r) is azimuth, elevation and Doppler frequency,
respectively, of the kth scatterer on the rth range ring, fk,r =
2VA sinφk cos θr/λ is the Doppler return due to a scatterer,
λ is the wavelength of the carrier, Ns is the total number
of scatterers on any range ring, Tp is the pulse repetition
interval (PRI), rt is the range ring index corresponding to
the target range cell, αt is the received signal amplitude due
to the target, ft is the Doppler frequency of the target, φt
is the target azimuth, θrt is the target elevation, δ(r) is the
Kronecker delta function, and N1, N2 are the range indices
corresponding to the nearest range ring on the ground
and the furthermost ring on the ground, respectively. The

random component of the received signal vector has the
following structure:

em,r = (em,r
1 , em,r

2 , . . . , em,r
N

)T
, (2)

where em,r
i (i = 1, 2, . . .) represents a series of independent

and identical Gaussian random variables and the superscript
T denotes the vector transpose. In addition to that, we
assume that

E
{∣∣em,r

i

∣∣2
}
= σ2n , i = 1, 2, . . . N , (3)

where σ2n is the noise variance and E{·} denotes the
expectation operator. The usual assumptions such as patch-
to-patch statistical independence (zero-mean Gaussian) are
made on the clutter as well as target. The data cube defined
in (1) is of the size N × Np × (N2 − N1 + 1) that is generally
known as a CPI data cube. The total clutter power on the
ground before applying the transmit or receive tapering is

p(r) =
Ns∑

k=1

∣∣αk,r
∣∣2, (4)

per range ring. It should be noted that traditionally the
received data stream when observed via a single receiver after
analog beamforming is represented by

wHx(m)(r) =
Ns∑

k=1
αk,rwHsN

(
φk, θr

)
u
(
fk,r
)m−1 + δ(r − rt)

× αtwHsN
(
φt, θrt

)
u
(
ft
)m−1 +wHem,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2,
(5)

where u( f ) = exp( j2π f Tp) and w represents the received
weights vectors which are chosen to satisfy wHsN (φt, θrt ) =
1. The simplest beamforming choice is the uniform weights
given by w = (1/N)s N (φt, θrt ), and here we have ignored
transmit pattern effect. The above data stream is then passed
through a Fast Fourier Transform (FFT) processor to obtain
the output for each Doppler bin of interest. In the presence
of clutter the performance is reduced severely.

2.2. Adaptive Solutions (STAP). In order to achieve full
adaptivity to the clutter, generally the radar system has to
undergo a multiple-A/D (hardware) upgrade where a num-
ber of sampled data streams are made available. However, for
practical implementation, typically one would apply some
of the degrees of freedom nonadaptively via Pre Doppler
STAP, Post Doppler STAP, or Beamspace STAP, in order to
simplify the computations and inversion of the covariance
matrix. This will not lower the performance significantly
of the system providing the number of adaptive degrees of
freedom sufficient to null the number of interference signals
present in the system due to clutter-related arrivals, and the
results are well documented in the literature[1, 2].

In order to compare systems we will develop the neces-
sary formulas for at least one multiple-A/D-based reduced
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Figure 1: Airborne array with axis system.

STAP solution referred to as Beamspace STAP, where the
number of adaptive channels is reduced to a manageable
size, and then apply STAP on the reduced system using
all available coherent pulses, giving us sufficient adaptive
degrees of freedom. Suppose that NB is the number of
digitised channels we would like the system to be reduced
to; then we apply NR × 1 (NR = (N − NB + 1)) weights

vectors w
( j)
t ( j = 1, 2, . . . ,NB), to subarrays consisting of

elements 1,2,. . ., NR, as the first subarray ( j = 1), the
elements 2, 3, 4, . . ., (NR + 1), as the second subarray ( j =
2), and so forth, and finally the elements (N − NR + 1) to
N as the last subarray ( j = NB). One obvious choice is

w
( j)
t = (1/NR)s

( j)
NR
(φt, θrt ) representing uniform array weights

suitable for the jth subarray, where s
( j)
NR
(φt, θrt ) denotes

the NR × 1 steering vector to represent the jth subarray
which consists of the entries taken from sN (φ, θ) starting
from jth to (NR − 1 + j)th positions. This reduces the
original N × 1 data vector in (1) to the NB × 1 data vector

x̃(m)(r) = (x̃(m)
1 (r), x̃(m)

2 (r), . . . , x̃(m)
NB

(r))
T
, requiring only NB

digital receivers, where

x̃(m)
j (r) =

Ns∑

k=1
αk,r
[
w

( j)H
t s

( j)
NR

(
φk, θr

)]
exp
(
j2π fk,r(m− 1)Tp

)

+ δ(r − rt)αt exp
(
j2π ftTp(m− 1)

)

×
[
w

( j)H
t s

( j)
NR

(
φt, θrt

)]
+ ŵ

( j)H

t em,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2,

j = 1, 2, . . . ,NB,
(6)

where wH
t s

( j)
NR
(φt, θrt ) = 1, j = 1, 2, . . . ,NB, and ŵ

( j)H
t is the

jth row of

WH
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

w(1)
t

H
0 0 · · · 0

0 w(2)
t

H
0 · · · 0

...
...

...
...

...

0 0 · · · 0 w(NB)
t

H

⎞
⎟⎟⎟⎟⎟⎟⎠

NB×N

. (7)

The digitised NB × 1 data stream can be expressed as

x̃(m)(r) =
Ns∑

k=1
αk,rt s̃NB

(
φk, θr

)
exp
(
j2π fk,r(m− 1)Tp

)

+ δ(r − rt)αt exp
(
j2π ftTp(m− 1)

)

× s̃NB

(
φt, θrt

)
+WH

t e
m,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2,

(8)

where s̃NB (φk, θr) = WH
t sN (φk, θr) is the equivalent (NB ×

1) spatial steering manifold for the new data vector. After
stacking allNp pulse returns to form a new reducedNBNp×1
space-time snapshot, we have

Ỹ(r) =
(
x̃(1)(r)T , x̃(2)(r)T , x̃(3)(r)T , . . . , x̃(Np)(r)T

)T

= δ(r − rt)αtv1
(
φt, θrt , ft

)

+
Ns∑

k=1
αk,rv1

(
φk, θr , fk,r

)
+
(
INp ⊗WH

t

)
ẽ,

(9)

where v1(φ, θ, f ) = ts( f ) ⊗ s̃NB (φ, θ) is the space-time
steering vector (manifold) [1–3], ts( f ) = (1,u( f ),u( f )2,
. . . ,uNp−1( f ))T , and ẽ = ((e1,r)T , (e2,r)T , . . . , (eNp ,r)T)T .
This data stream allows us to applyNBNp degrees of freedom
adaptively to form the STAP output. When sample matrix
inversion-based solution is used, the output signal to clutter
plus noise ratio is given by [1]

SCN
(
φt, θrt , ft

) = |αt|2v1
(
φt, θrt , ft

)H R̃−1I v1
(
φt, θrt , ft

)
,
(10)

where the covariance matrix is defined as [1, 6]

R̃I = E
{
ỸỸH

}
= E

{∣∣αk,r
∣∣2
}
v1
(
φk, θr , fk,r

)
v1
(
φk, θr , fk,r

)H

+ σ2n
(
INp ⊗WH

t

)(
INp ⊗WH

t

)H
.

(11)

This is estimated by the formula

R̃I ≈
r=N2∑

r=N1

Ỹ(r)Ỹ(r)H

NT
, (12)
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where NT = (N2 −N1 + 1) is the number of range cells used
for averaging. It should be noted thatNB = N is equivalent to
full STAP solution requiring an A/D for each channel, which
allows us to use NNp adaptive degrees of freedom.

3. Multi-Transmit Receive STAP (MTR-STAP)

3.1. Proposed Software Solution (MTR-STAP). We now con-
sider a system where only one digitised sum channel is
available. Assume that the radar transmits and receives a
burst ofNp coherent pulses with a certain set of array receiver
weights and a second burst is transmitted and received with
a different set of receiver weights. Both transmissions are
aimed in the same direction; hence clutter return is related
to the same patch on the ground, and transmission weights
are not relevant as long as the desired direction is sufficiently
illuminated (Figure 2). The N × 1 receiver weights vectors
wA and wB are different and to be determined later. The
aim is to look at the changes we need to accommodate in
order to represent two consecutive data streams, where the
transmission of the second burst begins after t0 (seconds)
time delay. This delay time is the switching time allowed
to change the received array weights (phase shifters). The
second coherent burst is TpNp seconds long. The total pulse
length for two bursts is 2TpNp + t0. As seen later, t0 is
selected to be a multiple of Tp. This way we can maintain the
transmission as a single train of 2Np + 1 pulses for t 0 = Tp.
In this case the receiver simply changes the phase weights
during the switching period and resumes colleting data for
the second stream. Noting that r represents the digitised
version of the time axis, let us represent the return signal
due to any of the clutter patches for the first data stream for
the N-element array as αsN (φ, θ) exp[ j2π( fc + fd)t], where
α is a complex constant to describe the reflective properties
of the target or the ground patch, (φ, θ) represents the
angle of arrival pair, fc is the radar carrier frequency, and
fd is the Doppler component of this ground patch. After
down converting to baseband (i.e., ×e− j2π fct), we have the
received N × 1 signal as x1(t), where

x1(t) = αsN
(
φ, θ

)
exp
[
j2π fdt

]
. (13)

After applying the analog beamformer, the data stream
will be digitised with two time scales generally known as the
slow time scale (pulse to pulse) and the fast time scale (range
index). This is represented by writing t = ts+ rΔ+(m−1)Tp,
where r = 1, 2, 3, . . . ,N2, N2 is the total possible number of
range gates for each value of m, m = 1, 2, . . . ,Np represent
the slow time scale (mth pulse), Δ is the time resolution of
the digitizer, and ts is an unknown reference time point or
the starting point. On the other hand, the data points of the
second stream is measured by t = ts + (t0 + NpTp) + rΔ +
(m−1)Tp where r = 1, 2, 3, . . . ,N2, m = 1, 2, . . . ,Np, and ts+
(t0 +NpTp) is replaced as the starting point with (t0 +NpTp)
being the total delay. This is the time it took to complete the
first burst plus the switching time. Applying the time scales to
(13), we have the patch contributionN×1 data vector which

is the received signal for themth pulse rth range gate, before
combining to form a single stream as

x(m)
1 (r) = αsN

(
φ, θ

)
exp
[
j2π fd

(
ts + rΔ + (m− 1)Tp

)]

= [α exp( j2π fd(ts + rΔ)
)]
sN
(
φ, θ

)

× exp
[
j2π fd(m− 1)Tp

]

= αk,rsN
(
φk, θr

)
exp
[
j2π fk,r(m− 1)Tp

]
,

(14)

where we have made the comparison with the patch return in
(1) by analogy αk,r = α exp( j2π fd(ts+rΔ)), (φ, θ) = (φk, θr),
and fd = fk,r for any such patch denoted by indices k, r, and
the contribution due to the same patch but for the second
data stream is given by

x(m)
2 (r) = αsN

(
φ, θ

)

× exp
[
j2π fd

(
ts + t0 +NpTp + rΔ + (m− 1)Tp

)]

= αk,r exp
[
j2π fk,r

(
t0 +NpTp

)]
sN
(
φk, θr

)

× exp
[
j2π fk,r(m− 1)Tp

]

= αk,r ŝN
(
φk, θr , f , t0

)
exp
[
j2π fk,r(m− 1)Tp

]
,

(15)

where ŝN (φ, θ, f , t0) = sN (φ, θ)ρ(t0, f ), with ρ(t0, f ) =
exp[ j2π f (t0 + NpTp)]. The vector ŝ(φ, θ, f , t0) can be
considered as the secondary receivers spatial component of
the steering vector of size N × 1 which is synchronised to
the same coherent clock as the first transmission. This is
equivalent to the original spatial steering vector, but, it is a
function of the angle of arrival, the Doppler frequency of
interest, the switching delay, and the pulse repetition interval,
related to the target or clutter patch of interest.

Before proceeding any further, one has to notice that,
apart from the familiar ambiguities of the usual spatial
steering manifold defined in (1), we have a new ambiguity
that is present in the secondary steering manifold due to the
switching delay t0 given by the following formula:

ŝN
(
φ, θ, f , t0

) = ŝN

(
φ, θ, f , t0 ± n

f

)
, n = 1, 2, 3, . . . .

(16)

Just as we avoid the spatial ambiguity by restricting our
array spacing to half-wavelength, we can avoid this ambiguity
by restricting the switching delay t0 to less than one PRI
(= Tp), because, in order to avoid Doppler ambiguities, we
already have the restriction of possible Doppler frequencies
to (−1/(2Tp), +1/(2Tp)). In any case, if one ever needs
to resolve this ambiguity, the next possible value of the
switching time is t0±T0 (T0 > 2Tp), for someT0. A procedure
is developed later to estimate the switching time delay t0 very
accurately subject to the above ambiguity.



EURASIP Journal on Advances in Signal Processing 5

3.2. Properties of the Two Data Streams. Suppose that the first
data stream uses the complex phase shifter weights (N × 1
vector) wA(φt, θr), with the property, wH

A sN (φt, θr) = 1 and
the auxiliary (2nd receiver) data stream uses theN×1 weights
vector wB(φt, θr), with the property: wH

B sN (φt, θr) = 1 where
(φt, θr) is the Tx/Rx direction (Figure 2). Here the target
direction or look direction is φt, but the presence of the
range cell of interest (its elevation) is maintained throughout
the analysis as by θr , since all range cells are interrogated
generally and r = rt contains a target for illustration when
needed. From (1), for the first data stream we have

y(m)
1 (r) = wH

A x
(m)(r)

=
Ns∑

k=1
αk,r
[
wH
A sN

(
φk, θr

)]
exp
(
j2π fk,r(m− 1)Tp

)

+ δ(r − rt)αt exp
(
j2π ftTp(m− 1)

)
+wH

A e
m,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2,
(17)

and for the second (received) data stream we have

y(m)
2 (r) =

Ns∑

k=1
αk,r
[
wH
B sN

(
φk, θr

)
ρ
(
t0, fk,r

)]

× exp
(
j2π fk,r(m− 1)Tp

)

+ δ(r − rt)αt exp
(
j2π ftTp(m− 1)

)

× [ρ(t0, ft
)]

+wH
B e

m,r ,

m = 1, 2, . . . ,Np, r = N1, . . . ,N2.

(18)

It should be noted that the first nonadaptive stage of this
spatial filtering may eliminate some of the clutter points
depending on the choice of wA, wB since the patterns
wH
A s(φ, θ) and wH

B s(φ, θ)) generally contain a considerable
number of nulls in the (φ, θ) domain. The spatially stacked
2×1 data vector corresponding to themth pulse is expressed
as
(
y(m)
1 (r)

y(m)
2 (r)

)
=

Ns∑

k=1
αk,r
[
wH
A sN

(
φk, θr

)]
(

1
F
(
φk, θk

)
ρ
(
t0, fk,r

)
)

× exp
(
j2π fk,r(m− 1)Tp

)
+ δ(r − rt)

× αt

(
1

ρ
(
t0, ft

)
)
exp
(
j2π ftTp(m− 1)

)

+wH
n e

m,r , m = 1, 2, ...,Np,

r = N1, ...,N2,
(19)

where F(φ, θ) = wH
B sN (φ, θ)/w

H
A sN (φ, θ) is the receive

patterns ratio with the property F(φt, θr) = 1, wH
n =(

wH
A O1×N

O1×N wH
B

)
is a combined weights matrix of size 2×2N , em,r

represents a 2N × 1 independent random entries, and O1×N
is the 1×N matrix of zero entries.

3.3. Space-Time Stacking. In this case the (2Np) × 1 space-
time data snapshot is defined by stacking the data stream in
(19) for all pulses as follows:

Y1(r) =
(
y(1)1 (r), y(1)2 (r), y(2)1 (r),

y(2)2 (r), . . . , y
(Np)
1 (r), y

(Np)
2 (r)

)T

=
Ns∑

k=1
α̂k,rts

(
fk,r
)⊗

(
1

F
(
φk, θr

)
ρ
(
t0, fk,r

)
)
+ δ(r − rt)

× αtts
(
ft
)⊗

(
1

ρ
(
t0, ft

)
)
+
(
INp ⊗wH

n

)
ê,

r = N1, . . . ,N2,
(20)

where α̂k,r = αk,rwH
A sN (φk, θr) is the tapered clutter ampli-

tude at the receiver level due to primary receiver and ê refers
to the 2NNp × 1 random component corresponding to all
the pulses and channels. We may now define the space time
steering manifold for dual Tx/Rx case as

v̂
(
φ, θ, f , t0

) = ts
(
f
)⊗

(
1

F
(
φ, θ

)
ρ
(
t0, f

)
)
. (21)

3.4. Choice of Receiver Patterns. It can be shown that,
if wA and wB are not carefully selected, several clutter
arrivals may share the same spatial steering vector. In other
words, S(φ, θ, f ) = (1,F(φ, θ)ρ(t0, f ))

T has the property
S(φt, θrt , ft) = S(φk, θrt , fk,rt ) for multiple k values, for most
of the choices of the wA and wB. This means that the look-
direction constraint is satisfied by a number of sidelobe
arrivals as well. The search Doppler bin is associated with
the spatial steering vector S(φt, θrt , ft) = (1, ρ(t0, ft))

T , where
ft = (n − 1)/(NpTp) (n = 1, 2, . . . ,Np) is the natural choice
of Doppler bin values in the look direction. Suppose that the
pattern ratio has the property |F(φ, θ)| = 1 for all angles;
this allows us to represent F(φ, θ) in the following form:
F(φ, θ) = e j2πψ(φ,θ), where ψ(φ, θ) is the phase. If any of the
clutter discretes has the same 2 × 1 spatial steering vector as
the current search Doppler bin related spatial steering vector,

then we have (1, ρ(t0, ft))
T = (1, ρ(t0, fk,rt )e

j2πψ(φ,θrt ))
T
for

some value of k, the solution for which is given by solving
e j2π ft(t0+NpTp) = e j2π fk,rt (t0+NpTp) · e j2πψ(φk ,θrt ). This leads to the
equation 2π ft(t0+NpTp) = 2π fk,rt (t0+NpTp)+2πψ(φk, θrt )±
2πm0, where m0 is any arbitrary integer value. This is
equivalent to solving fk,rt = ft − ψk,rtΔ1 ± m0Δ1, where
Δ1 = 1/(t0 + NpTp) ≈ 1/(NpTp) is the Doppler resolution
and ψk,rt = ψ(φk, θrt ). But in order to be a valid clutter
discrete, we have the requirement fk,rt = f0 sinφk cos θrt with
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Figure 2: N-Channel receiver configuration with two pulse bursts.

f0 = 2VA/λ. As a result we have

sinφk = ft
f0 cos θrt

−
(

Δ1

f0 cos θrt

)
ψk,rt ±

(
Δ1

f0 cos θrt

)
m0,

(22)

and |ψk,rt | = |ψ(φk, θrt )| ≤ 1. The solution will provide
multiple results for k making it impossible to satisfy the
desired qualities to beamform. As an example, for equispaced
linear array with half wavelength spacing, for the first data
stream, we choose

wA

=
(
1, z
(
φt, θrt

)
, z
(
φt, θrt

)2, z
(
φ t , θrt

)3, . . . , z
(
φt, θrt

)N−2, 0
)T

(N − 1)
,

(23)

where the last element is switched off, and

wB =
(
0, 1, z

(
φt, θrt

)
, z
(
φt, θrt

)2, . . . , z
(
φt, θrt

)N−2)T

(N − 1)
,

(24)

for the second data stream with the first element switched
off. Now we have wH

B sN (φ, θ) = z(φ, θ)wH
A sN (φ, θ),

where z(φ, θ) = exp( jπ sinφ cos θ). We have the pattern
ratio F(φ, θ) = z(φ, θ), and substituting ψ(φk, θrt ) =
(sinφk cos θrt )/2 leads to the following result:

sinφk =
(

ft
f0 + Δ1/2

± m0Δ

f0 + Δ1/2

)
1

cos θrt
. (25)

This will provide us a number of clutter discretes in
general that satisfy the undesired properties mentioned
above making it impossible to beamform in a spatial sense.
The solution to resolve this situation is not to have a unit
value for the absolute value of the pattern ratio for all angles
except for the look-direction. A choice of a function |F(φ, θ)|

with the property F(φt, θrt ) = 1 and then smooth varying
|F(φ, θ)| across all other angles with property that no other
angle provides the same output value for |F(φ, θ)| as for the
look direction that is generally |F(φ, θ)| < 1, with F(φt, θrt ) =
1, is an excellent choice as seen later. Since |F(φ, θ)| = 1
occurs only for the look direction, this will make 2× 1 spatial
vectors, (1, ρ(t0, ft)F(φt, θrt ))

T and (1, ρ(t0, fk,rt )F(φk, θrt ))
T ,

linearly independent ( ft /= fk,rt , φt /=φk) for any k regardless
of the phase component of the term ρ(t0, fk,rt )F(φk, θrt ).
Furthermore, the search Doppler bin is associated with
(1, ρ(t0, ft))

T and if the phase component is ignored in
the second entry of this vector we have (1, 1)T , and this
cannot be linearly dependent with any of the clutter discretes
since all of them can be made to associate with the form
(1, |F|)T with |F| < 1 except for the look-direction clutter
that is, traditionally known as mainlobe clutter discrete
which cannot be avoided in general in beamforming. The
above property in 2 × 1 spatial manifold gives us sufficient
conditions to carry out space-time beamforming. In order
to further support that this argument, for a general MTR
case, let us suppose we do three transmissions in the same
direction, using 3 different receiver beam patterns wA,wB,
and wC pointed at the same look-direction, where each pulse
train is Np pulses long, and apply a common switching
delay. Then we would have the 3 × 1 spatial component
(1,F(φ, θ)ρ( f , t0),F1(φ, θ)ρ( f , t0)

2)T . In this case we will be
enforcing the second pattern ratio to satisfy

F1
(
φ, θ

) = wH
C sN

(
φ, θ

)

wH
A sN

(
φ, θ

) = F
(
φ, θ

)2
. (26)

This will lead to the spatial component (1,F(φ, θ)ρ( f , t0),
F(φ, θ)2ρ( f , t0)

2)T which follows a Vandermonde structure.
When a “sinc” pattern is chosen for the first ratio F(φ, θ)
(|F(φ, θ)| < 1), with F(φt, θrt ) = 1, we are not able
to express the look-direction-related spatial steering vector
(i.e., (1, 1, 1)T), as a sum of any two other spatial steering
vectors which correspond to any two sidelobe-related clutter
arrivals. Now, in space-time domain, we will satisfy the
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requirement that the look-direction and Doppler-related
2Np × 1 steering vector v̂(φt, θrt , ft) cannot be expressed as
a linear combination of the clutter-related df (= 2Np − 1)
steering vectors. The expected upper limit df would be the
degrees of freedom. Themost basic example of a pattern ratio
is to choose what is known as “sinc” pattern. In general we
can consider the case where we choose the Mth(< N) order
sinc function given by

F
(
φ, θ

) =
(
1
M

)(
1 + zz∗t +

(
zz∗t

)2 +
(
zz∗t

)3, . . . ,
(
zz∗t

)M−1),

(27)

as the pattern ratio, where zt = z(φt, θrt ) =
exp( jπ sinφt cos θrt ) for a linear array with half wavelength
spacing and ∗ denotes the complex conjugate. In order to
achieve this result, we may choose the first receiver weights
by

wA =
(
1, zt, zt2, z t

3, . . . , ztNA−1, 0, . . . , 0
)T

NA
, (28)

where NA = N − M + 1. We can now estimate the desired
weights for the second receiver by resolving the inverse
problem

wH
B sN

(
φ, θ

) = F
(
φ, θ

) ·wH
A sN

(
φ, θ

) =
(

1
MNA

)

×
(
1 +

(
zz∗t

)
+
(
zz∗t

)2 + · · · + (zz∗t
)M−1)

×
(
1 +

(
zz∗t

)
+
(
zz∗t

)2 + · · · + (zz∗t
)NA−1)

=
(
c0 + c1z + c2z

2 + · · · , cNzN−1
)
,

(29)

where cp (p = 0, 1, 2, . . . ,N) are (weights) easily obtainable
by equating the coefficients of the above product which is of
orderN polynomial in z. These are the weights for the second
receiver. Large value of M for the pattern ratio forces us to
switch off too many elements at the first receiver.

4. Theoretical Performance Prediction

4.1. Comparison of Performances. For MTR-STAP, the inter-
ference only covariance matrix is expressed as a function of
switching time using (20) by

RI(t0) =
NS∑

k=1

∣∣α̂k,rt
∣∣2v̂
(
φk, θrt , fk,rt , t0

)
v̂
(
φk, θrt , fk,rt , t0

)H

+ σ2n
(
INp ⊗wH

n

)(
INp ⊗wH

n

)H
.

(30)

The optimal array weights are given by

ŵ = R−1I (t0)v̂
(
φt, θrt , ft, t0

)
[
v̂
(
φt, θrt , ft, t0

)HR−1I (t0)v̂
(
φt, θrt , ft, t0

)] (31)

The output signal to clutter plus noise ratio is given by

SCNo
(
φt, θrt , ft, t0

) = |αt|2v̂
(
φt, θrt , ft, t0

)H

× R−1I (t0)v̂
(
φt, θrt , ft, t0

)
.

(32)

In order to predict the performance of the MTR-
STAP algorithm with the nonadaptive single A/D-based-
FFT solution, as well as potential multichannel upgrades,
we would like to establish a theoretical space-time clutter
covariance matrix for each case using the parameters similar
to MCARM system. Consider a 22-channel half wavelength
equispaced airborne array with PRF = 1984Hz, λ = .24 cm,
v = 100m/sec, N = 22, and Np = 64 The estimation
of the clutter covariance matrix was carried out using
two methods. The continuous model described in [7] and
another straightforward discrete method is to first determine
a value forNs(≈ Np) as the desired clutter degree of freedom.
The discrete method considers a series of angles of arrivals to
represent each Doppler bin of interest by using the equation
(the ridge) fk,rt = f0 sinφk cos θrt = (k − 1)/NsTp. This
equation provides us with a series of clutter angles for
φk = sin−1((k − 1)/( f0NsTp cos θrt )) generally close to the
figure Ns. This procedure creates nonuniform patches on the
ground, and hence a series of power levels are associated
with each patch, say σ2k (k = 1, 2, . . . ,Ns) which follow
values proportionate to the patch size (φk − φk+1)rt. Finally
the covariance matrix is estimated by summing σ2k v̂kv̂

H
k

terms, where v̂k represents the appropriate manifold. In both
approaches, we compute the rank of the covariance matrix to
confirm the degrees of freedom.

Figure 3(a) illustrates the example of the two patterns
selected for receiving with a predetermined pattern ratio of
order M = 4 suitable for array broadside look. Figure 3(b)
illustrates the case (M = 12) where the scan angle is −40
degrees. The MTR system uses 22-channel (= N), 64 pulse
(= Np) system for each transmission. For comparison we
consider the ideal scenario (Full STAP) where 64-pulses
are transmitted and received via 22 digitised channels and
full adaptive degrees of freedom (22 × 64) are applied to
the processor by creating a 1408 × 1408 covariance matrix
inversion. In practice this is not possible due to the lack
of training data, so for greater realism we use reduced
STAP with 128 adaptive degrees of freedom (i.e., NB =
2;Np = 64) for comparison of performances. The most
important performance measure is described in (32). This
curve, assuming a target of unit power, for the reduced
STAP is represented by the symbol •− in Figure 4, and this
is possibly the best curve achievable via any multiple A/D
system. The results for the MTR are shown in the plots
of Figure 4 for M = 4 with the symbol −− and in the
same plot with the symbol ◦ for the case with M = 12
which corresponds to rapidly changing |F(φ, θ)|. In our
examples total clutter-to-noise power ratio is 72 dB, and we
have ignored the transmit tapering in order to increase the
received clutter power levels to test the algorithms under
severe clutter. These results simulate switching time t0 = T .
The performance of the conventional solution is denoted in
Figure 4 as ∗-, which is the nonadaptive FFT-based solution
currently available for single A/D phase array radar with the
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Figure 3: The two receiver patterns (azimuth only) and the associated pattern ratios. −wH
A s(φ, θ) pattern for the first transmission, - -

wH
B s(φ, θ) pattern for the second transmission,and • − F(φ, θ)) for the pattern ratio.
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Figure 4: Performance comparison of processing options. - - Dual
Tx/Rx single receiver system with 64 pulses in each Tx/Rx (t0 = T ;
M = 4). ◦− dual Tx/Rx single receiver system with 64 pulses in
each Tx/Rx (t0 = T , M = 12). •−Reduced STAP with 64 pulses,
128 adaptive degrees of freedom (NB = 2). −Ideal curve (standard
STAP with 1408 degrees of freedom) with 64 pulses and 22 receiver
channels. ∗− FFT solution (available via single A/D).

same parameters. This FFT solution performs equally well
only in 2 or 3 Doppler bins which are clutter free, that is, the
far end of the spectrum. An important observation is that
reduced STAP with 64 pulses and MTR with 64 pulses per
transmission invert a matrix of size 128 × 128, but MTR can
only handle no more than 64-degrees of freedom, beyond
which it begins to fail. For clutter free Doppler bins, we can
theoretically prove that MTR-STAP maintains a processing
gain of NNp.

4.2. Sensitivity to Switching Time Errors. A large number of
simulations have confirmed that the filter performance is
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Figure 5: Sensitivity to switching time error (t0 = Tp/2).
•−Reduced STAP with 128 adaptive degrees of freedom (Np =
64;NB = 2). −−MTR-STAP single receiver system with 64 pulses
(M = 12) using t̃0 = 0, 0.2Tp, 0.8Tp (incorrect values), −t̃0 = 0.5Tp

(true value).

almost invariant to the selected value of t0 for 0 < t0 < Tp.
Next step is to estimate how accurately one has to know
the value of t0 to construct the arrays MTR steering vector.
While representing v̂ = v̂(φt, θrt , ft, t0) as the correct dual
space-time steering manifold, we may now represent ṽ =
v̂(φt, θrt , ft, t̃0) as the incorrect manifold, where t̃0 represents
the incorrectly chosen value of the switching time. Now
the usual procedure is to find w, for a given t̃0 which is a
guessed value for the switching time, which optimises the
objective function P = wHRI(t0)w subject to the constraint
wH v̂(φt, θrt , ft, t̃0) = 1 (written as wH ṽ = 1). It should be
noted that the covariance matrix contains the correct value
of the switching time (i.e., t̃0 = t0). The optimal solution (w)
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for any guess value of t̃0 is given by

w = R−1I (t0)ṽ[
ṽHR−1I (t0)ṽ

] . (33)

This leads to the output signal-to-interference ratio given by

SCÑ0

(
φt, θt, ft, t0, t̃0

)
=
∣∣ṽHR−1I (t0)v̂

∣∣2

ṽHR−1I (t0)ṽ
. (34)

The Figure 5 shows the plots of the filter for various
incorrect values of t̃0 by the symbol −− a, where t̃0 =
(0, 0.2Tp, 0.5Tp, 0.8Tp). The plot for the actual value is set
at t0 = T/2 shown with the symbol — (M = 12,−400 scan).
When the correct value is assumed in setting up the steering
manifold, we achieve the best performance where the curve
is horizontal, and achieve the value 10 log10(NNp) =
10 log10(22 × 64) ≈ 34.5 for the detection in noise which
corresponds to several Doppler bins at the two ends. For
the bin with severe clutter or look-direction clutter, the
performance is downgraded severely; that is, the depth of the
clutter notch at the mainlobe clutter Doppler value is very
deep.

4.3. Optimisation with respect to Switching Time. As we have
seen, the knowledge of switching time is important in clutter-
free Doppler bins, and in other areas it does not degrade the
performance considerably except at the mainlobe. However,
it would be possible to optimise the desired output at the
beamformer with respect to the space-time weights vector as
well as switching time. The final expression for the signal-to-
interference ratio in (34) contains the term

d
(
t̃0
)
= ṽHR−1I ṽ = v̂

(
φt, θrt , ft, t̃0

)H
R−1I (t0)v̂

(
φt, θrt , ft, t̃0

)
,

(35)

below the line which we would like to optimise with respect
to t̃0, in order to further improve the final processing gain.
This leads to the following result:

t̃0 = 1
j2π sinφt cos θrt

× loge

⎛
⎝ −

(
ts
(
ft
)⊗ vb

)HR−1I
(
ts
(
ft
)⊗ va

)
∣∣∣
(
ts
(
ft
)⊗ vb

)HR−1I
(
ts
(
ft
)⊗ va

)∣∣∣

⎞
⎠,

(36)

where

va =
(
wH
A sN

(
φt, θrt

)
, 0
)T

,

vb =
(
0,wH

B sN
(
φt, θrt

)
exp
(
j2π ftNpTp

))T
,

(37)

and || refers to the absolute value of a complex number (see
the appendix for the proof). Simulation study has shown
that the formula in (36) always produces a 99.9% accurate
estimate of the switching time for all look directions which
excludes broadside. This result is tested using MCARM data.

5. Analysis of MCARMData

5.1. Selection of Pattern Ratios. The US Air Force Research
Laboratory, Rome Research Site collected a large amount of
multichannel airborne radar measurement (MCARM) data
[5]. The size of the MCARM array’s calibrated matrix si, j
(i = 1, 2, . . . , 22, j = 1, 2, . . . , 129) is 22 × 129, where
129 is the number of possible beamforming angles available
in azimuth. Other important MCARM parameters are as
follows: transmit frequency = 1240MHz, the number of
coherent pulses = 128, pulse repetition frequency = 1984Hz
(Tp = 5.0403×10−4 sec.), and number of cells = 680 (0.8 μsec
pulses).

In order to generate data to suit the MTR scenario we
combine the first 63 pulses with array weights vector wA,
and the pulse numbers 65,. . ., 123 are combined with the
weights vector wB. The 64th pulse is ignored allowing a
switching time. This will simulate a delay (t0) equal to one
PRI. We use M = 6 to determine the weight vectors wA and
wB as follows. As an example for the broadside look ( j =
65) wA(i) = (1/ca)si,65, i = 1, 2, . . . , 17, and wA(i) = 0, i =
18, 19, . . . , 22, where ca is the normalisation constant given
by ca = (s1,65, s2,65, . . . , s17,65)

H(s1,65, s2,65, . . . , s17,65). This will
make the last 5 elements inactive at the first receiver. Now
we have to determine the pattern ratio, before estimating the
second receiver weights. We define this by wF(i) = 0, i =
1, 2, . . . , 16 and wF(i) = (1/c f )si,65, i = 17, 18, 19, . . . , 22,
where

c f =
(
s17,65, s18,65, . . . , s22,65

)H(s17,65, s18,65, . . . , s22,65
)
.
(38)

In fact this gives us the pattern related to the last 6 elements
of the array which would generally follow a uniform pattern
to be the pattern ratio. Finally, we create the pattern wB

buy convolving the two patterns to obtain wB which is a
set of 22 complex numbers corresponding to the polynomial
product. Finally wB has to be normalised using the constant
cb = (s1,65, s2,65, . . . , s22,65)

H(s1,65, s2,65, . . . , s22,65). This way
we use all elements for the second receiver which receives
pulse numbers from 65 to 123. This gives remarkable results
as seen in Figure 6(a) for the angle index 65 (broadside) and
in Figure 6(b) for the angle index 106.

As an example, the angle Doppler map of the dataset
numbers rd50153 and rd50575 is shown in Figures 7(a) and
7(b), respectively. These plots are algorithm independent,
and we simply apply the Fourier Transform on mutichannel
data for all 129 beams to Doppler domain. However, onemay
use the new algorithm to produce the same plot with less
resolution (3 dB) when multichannel data is not available.
One important point to notice regarding all the MCARM
datasets is the fact that the clutter center has shifted from
the zero Doppler value. In other words, the Doppler value
corresponding to the array broadside (with index = 65),
we have nonzero Doppler value as clearly seen in Figures
7(a) and 7(b). Generally, this will not degrade the STAP
performance. What this means for MCARM data sets is that
we have the clutter ridge given by the format f = fs +
f0 sin(φ), where fs is the clutter center shift. As long as we
impose the above formula for the clutter ridge in optimising
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Figure 6: The two receiver patterns and the pattern ratiosM = 6 (−wH
A s(φ), - -w

H
B s(φ),and • − F(φ)).

(35), we can estimate the switching time as well as the clutter
shift without having any knowledge of f0 the value of which
is in fact = 827.8619Hz, and this knowledge is not needed to
estimate fs as seen below.

5.2. Switching Time Estimation. Let us assume that the
switching time is unknown and we would like to estimate its
value using the data set constructed for the MTR scenario.
We can apply the result in (35) to estimate t0 by using the
formula f = fs + f0 sin(φ). For the angle index 65 (broadside
look, sin(φ) = 0), we have f = fs which is an unknown
quantity. Therefore, it is only possible to estimate the value
of t̃0, for any guessed value of fs and then evaluate the
value of the objective function d(t̃0) in (35) which would
optimise the processing gain. For some value of fs, we may
find that the objective function is absolutely optimum or
the processing gain maximum, at which point we have the
best pair of ( fs, t̃0). Such a plot is illustrated in Figure 8 for
several data sets. The data sets rd15015x (x = 2, 3, 4, 5) all
have very similar curves. The data set rd150575 has a very
different clutter center (−108Hz), whereas only two data
sets (rd150150 and rd150151) have almost zero as the clutter
centre to within 1Hz accuracy. For the data set rd50151 we
encountered a singularity due to the fact that the clutter
center is zero. In this case one should steer the beam to the
next position (angle index = 66), which is 0.9 degrees off the
array broadside. The estimated missing pulse length (Tp) is
reasonably well estimated as illustrated in Table 1.

5.3. Signal Processing Gain. In order to compare (Figures
9(a) and 9(b)) with the multichannel (22 A/D solution), we
use the reduced STAP using the channels 1, 2,. . ., 21 to form
one channel (using uniform weights) and then channels 2,
3,. . ., 22 to form the second stream of data. The two data
streams are combined to form the covariance matrix of size
128 × 128 using the first 64 pulses only (pulses 65 to 128
are discarded). This would make it the same size covariance

Table 1: Clutter center estimate for several MCARM data sets and
the corresponding optimal switching time estimates.

Data set
number

fs (estimated
clutter center

(Hz))

t̃0/Tp

(estimated
switching

time
(seconds))

Rd50150 0 0.8350

Rd50151 0 0.9890

Rd50152 310 0.9337

Rd50153 341 1.0735

Rd50154 325 0.9627

Rd50155 372 1.1052

Rd50575 −108 0.8404

matrix (128 × 128) which we used in MTR demonstrations.
This would apply 128 adaptive degrees of freedom, which
seems to be twice the MTR solution is capable of. Applying
any more adaptive degrees of freedom tomultiple A/D-based
solution will not give us a fair comparison.

6. Concluding Remarks

The most important observation is that the MTR inverts a
matrix of size 2Np × 2Np, but it does not mean it’s adaptive
degrees of freedom is 2Np. The simulation has confirmed
that it is limited to Np. At this stage this can only be verified
using extensive simulation. Another observation based on
simulation data as well as MCARM data is that the order
of pattern ratio is best to be around half the total number
of sensors in the array. In our theoretical simulation, even
though we use 128 × 128 matrix inversions for both MTR
and beamspace solutions, we always validated this using
covariance matrix of rank ≈60 via both continuous and
discrete clutter models. As soon as the rank of the covariance



EURASIP Journal on Advances in Signal Processing 11

1000

800

600

400

200

0

−200
−400
−600
−800

−1000

D
op

pl
er

(H
z)

−100 −50 0 50 100

Angle (deg)

60

70

80

90

−100
−110
−120
−130

(a) Dataset no. rd50153

1000

800

600

400

200

0

−200
−400
−600
−800

−1000

D
op

pl
er

(H
z)

−100 −50 0 50 100

Angle (deg)

60

70

80

90

−100
−110
−120
−130

40

50

(b) Dataset no. rd50575

Figure 7: Angle Doppler Map of the MCARM dataset no. rd50575 (range cell number 200 is chosen).
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matrix increases beyond 64, the MTR with 128 × 128 matrix
solution begins to fail, and one has to increase the length
of the pulse train accordingly. This also explains why MTR
processing gain is marginally inferior when it comes to
MCARM data. The reduced STAP solution is able to apply
128 adaptive degrees of freedom, while the MTR is able
to apply up to 64, with the same size matrix inversion.
It is also important to notice the nonzero clutter centers
where the clutter notch occurs in Figures 9(a) and 9(b). The
solution presented in this study is muchmore robust than the
multichannel multiple A/D solution when no jammers are
encountered. This procedure can avoid all the complications
involved in synchronising a number of A/D converters to
achieve good results. This is not really a new STAP algorithm;
rather, it provides a way to apply many standard STAP
algorithms by constructing multichannel data out of a single
A/D converter.

Furthermore, it also makes it much easier to calibrate the
array with only a single A/D. The simulation study has shown
that the optimal configuration would be to makeM equal to
around half the number of sensors in the array. The major
drawback in the software approach is that we need twice as
many pulses to maintain the same performance or else a 3 dB
loss occurs in the Doppler resolution. It is also possible to
extend the algorithm to null sidelobe jammers as well. This
analysis is beyond the scope of this paper.

Appendix

It should be noted that wH
A sN (φt, θrt ) = 1, wH

B sN (φt, θrt ) = 1
are physical requirements and not relevant to the analysis to
follow. Even though we have ignored the numerator in (34),
we can achieve the desired result (i.e., t̃0 ≈ t0) very accurately
by only optimising the denominator term. Further evidence
is given later to prove this result. In order to further optimise
(i.e., to minimise)

d
(
t̃0
)
= ṽHR−1I ṽ = v̂

(
φt, θrt , ft, t̃0

)H
R−1I v̂

(
φt, θrt , ft, t̃0

)

(A.1)

with respect to t̃0, we define ρ(t̃0, ft) = β exp( j2π ftNpTp)),
where β = γ exp( j2π ft t̃0) is a new parameter that contains
t̃0 and the parameter γ (amplitude of β) which is introduced
in order to formulate the optimisation problem to suit the
Lagrange multiplier method, where we will be forcing the
requirement that γ = 1 (or equivalently ββ∗ = 1) at
the optimisation. We may now write the MTR space-time
steering vector with guessed switching time as

v̂
(
φt, θrt , ft, t̃0

)

=
(
ts
(
ft
)⊗

[
wH
A sN

(
φt, θrt

)
,β exp

(
j2π ftNpTp

)

×wH
B sN

(
φt, θrt

)]T)
,

(A.2)
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Figure 9: Processing gain across all Doppler bins when scanned to array broadside (angle index = 65). •−MTR solution, — Reduced STAP.

and express d(t̃0) ( a function of β and β∗) as follows:

d
(
β,β∗

) = (ts
(
ft
)⊗ va + βts

(
ft
)⊗ vb

)HR−1I

× (ts
(
ft
)⊗ va + βts

(
ft
)⊗ vb

)

= (ts
(
ft
)⊗ va

)HR−1I ts
(
ft
)⊗ va

+ β
(
ts
(
ft
)⊗ va

)HR−1I ts
(
ft
)⊗ vb

+ β∗
(
ts
(
ft
)⊗ vb

)HR−1I ts
(
ft
)⊗ va

+ ββ∗
(
ts
(
ft
)⊗ vb

)HR−1I ts
(
ft
)⊗ vb.

(A.3)

Now we would like to optimise d(β,β∗) subject to the
constraint ββ∗ = 1. Using the Lagrange Multiplier method,
we need to optimise the objective function ψ(β,β∗) =
d(β,β∗) + η(ββ∗ − 1) by solving ∂ψ/∂β∗ = 0, where η is an
unknown parameter (or alternatively ∂ψ/∂β = 0). As a result
we have β = −A/(η + C), where

A = (ts
(
ft
)⊗ vb

)HR−1I
(
ts
(
ft
)⊗ va

)
,

C = (ts
(
ft
)⊗ vb

)HR−1I
(
ts
(
ft
)⊗ vb

)
.

(A.4)

The unknown parameter (real) is estimated by enforcing
ββ∗ = 1. That is, |A|2 = |C + η|2 = |C|2 + η2 + η(C +C∗) or
η2 + η(C + C∗) + |C|2 − |A|2 = 0.

The solution is given by

η = − (C + C∗)
2

±
√

(C + C∗)2

4
−
(
|C|2 − |A|2

)
. (A.5)

Furthermore, we have CH = C(= C∗), and noting that
covariance matrix is positive definite (i.e., C ≥ 0), replacing
(C + C∗)/2 = C, and taking the positive sign for a physically
realisable result (i.e., η ≥ 0), we can conclude that η + C =√
|A|2 = |A| and hence the desired result in (36). The above

optimisation was carried out for a given value of ft usually
expressed by ft = (n − 1)/NpT , n = 1, 2, . . . ,Np. Rather
than estimating t̃0 for every Doppler bin, for the best results,
one may choose the value corresponding to the bin given by
ft = f0 sinφt cos θrt which is a point on the clutter ridge. As a
result, for the secondary optimisation we may consider the
Doppler bin which contains the most clutter by assigning
the value ft = f0 sinφt cos θrt . Now along the clutter ridge,
the look direction or in other words, the processing gain
related to mainlobe clutter power at the output needs to
be maximised with respect to t̃0. However, in case of the
broadside look where φt = 0, ft = 0, such optimisation is
not relevant and cannot be implemented since v̂(φt, θrt , ft, t̃0)
is independent of switching time. Further evidence can be
justified as follows.

Since we are restricting our optimisation to the look
direction’s mainlobe clutter-related Doppler bin only where
the clutter power is severe at the receiver, the processing gain
which needs to bemaximised can be expressed as (from (34))

SCÑ
(
φt, θrt , f0 sinφt cos θrt , t0, t̃0

)
=
∣∣∣ṽH R̂−1I (t0)v̂c

∣∣∣
2

ṽH R̂−1I (t0)ṽ
,

(A.6)

where v̂c = v̂(φt, θrt , f0 sinφt cos θrt , t0).
The objective here is to prove that the denominator of the

above expression is minimised for t̃0 = t0, and at the same
time the numerator is maximized; hence, the processing gain
achieves a possible overall maximum value.
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Let us represent the 2Np × 2Np space-time covariance
matrix by the dominant clutter discrete (mainlobe clutter)
and write

RI(t0) =
(
σ2c v̂cv̂

H
c + σ2nI2Np

)
, (A.7)

where σc represents the power level. Now we may use the
following well-known matrix inversion lemma.

Lemma 1. Suppose that the square matrix Q is added to an
additional dyad term uuH , where u is a column vector; then
the inversion of the new matrix is given by (See in p1348 [8])

(
Q + uuH

)−1 = Q−1 − Q−1uuHQ−1

1 + uHQ−1u
. (A.8)

Substituting Q = σ2nI2Np and u = σcv̂c, the inversion of the
covariance matrix in (A.7) is given by

R−1I (t0) = 1
σ2n

(
I2Np −

σ2c v̂cv̂
H
c

σ2n + 2Npσ2c

)
, (A.9)

and we have

d̃(t0) = ṽH R̂I(t0)
−1ṽ = 1

σ2n

(
2Np − σ2c

∣∣ṽH v̂c
∣∣2

σ2n + 2Npσ2c

)
, (A.10)

where ṽ = v̂(φt, θrt , f0 sinφt cos θrt , t̃0) contains the incorrect
switching time. Now by expressing v̂c and ṽ as

v̂c = ts
(
ft
)⊗ [va + β0vb

]
,

ṽ = ts
(
ft
)⊗ [va + βvb

]
,

(A.11)

where β0 = exp ( j2π ftt0), β = exp ( j2π ft t̃0), and ft =
f0 sinφt cos θrt .

va =
(
wH
A sN

(
φt, θrt

)
, 0
)T = (1, 0)T ,

vb =
(
0,wH

B sN
(
φt, θrt

)
exp
(
j2π ftNpT

))T

=
(
0, exp

(
j2π ftNpT

))T
.

(A.12)

The value of A, as defined above in (A.4), is given by

A=(ts
(
ft
)⊗ vb

)HR−1I
(
ts
(
ft
)⊗ va

)

= 1
σ2n

(
ts
(
ft
)⊗ vb

)H

×
(
I2Np−

σ2c
[
ts
(
ft
)⊗(va+β0vb

)][
ts
(
ft
)⊗(va + β0vb

)]H

σ2n + 2Npσ2c

)

× (ts
(
ft
)⊗ va

)
.

(A.13)

Now expanding the above expression and noting that
(ts( ft)⊗vb)H(ts( ft)⊗va)=0 and (ts( ft)⊗ va)

H(ts( ft)⊗vb)=0,

(ts( ft)⊗ vb)
H(ts( ft) ⊗ vb) = Np and (ts( ft) ⊗ va)

H(ts( ft) ⊗
va) = Np, we have the result

A = −σ2c β0N2
p

σ2n
(
σ2n + 2Npσ2c

) . (A.14)

This will lead us to the value A/|A| = β0, and hence we have
t̃0 = t0 as the estimate.

Now the numerator in (A.6) can be expressed as (noting
that v̂Hc v̂c = 2Np)

∣∣∣ṽH R̂−1I v̂c
∣∣∣
2 =

∣∣∣∣∣
1
σ2n

ṽH
(
I2Np −

σ2c v̂cv̂
H
c

σ2n + 2Npσ2c

)
v̂c

∣∣∣∣∣

2

= 1
σ4n

∣∣∣ṽH v̂c
∣∣∣
2
∣∣∣∣∣

(
1− σ2c v̂

H
c v̂c

σ2n + 2Npσ2c

)∣∣∣∣∣

2

=
∣∣ṽH v̂c

∣∣2
(
σ2n + 2Npσ2c

)2 .

(A.15)

Substituting (A.11) in the above expression using the
properties of those vectors used in the previous case (i.e.,
(ts( ft)⊗ vb)

H(ts( ft)⊗ va) = 0, etc.), we arrive at

∣∣∣ṽH R̂−1I v̂c
∣∣∣
2 =

N2
p

∣∣∣1 + exp
(
j2π ft

(
t̃0 − t0

))∣∣∣
2

(
σ2n + 2Npσ2c

)2 , (A.16)

which produces its maximum value at t̃0 = t0.
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