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An azimuth steerable first-order superdirectional microphone response can be constructed by a linear combination of three
eigenbeams: a monopole and two orthogonal dipoles. Although the response of a (rotation symmetric) first-order response can
only exhibit a single null, we will look at a slice through this beampattern lying in the azimuthal plane. In this way, we can define
maximally two nulls in the azimuthal plane which are symmetric with respect to the main-lobe axis. By placing these two nulls on
maximally two directional sources to be rejected and compensating for the drop in level for the desired direction, we can effectively
reject these directional sources without attenuating the desired source. We present an adaptive null-steering scheme for adjusting
the beampattern so as to obtain this suppression of the two directional interferers automatically. Closed-form expressions for this
optimal null-steering are derived, enabling the computation of the azimuthal angles of the interferers. It is shown that the proposed
technique has a good directivity index when the angular difference between the desired source and each directional interferer is at
least 90 degrees.

1. Introduction

In applications such as hands-free communication and voice
control systems, the microphone signal does not only contain
the desired sound-source (e.g., a speech signal) but can also
contain undesired directional interferers and background
noise (e.g., diffuse-noise). To reduce the amount of noise
and minimize the influence of interferers, we can use a
microphone array and apply beamforming techniques to
steer the main-lobe of a beam towards the desired source-
signal, for example, a speech signal. In this paper, we focus
on arrays where the wavelength of the sound is much large
than the size of the array. These arrays are therefore called
“Small Microphone Arrays.” When using omnidirectional
(monopole) microphones in a small microphone array
configuration, additive beamformers like delay-and-sum are
not able to obtain a sufficient directivity as the beamwidth
deteriorates for larger wavelengths [1, 2]. A common method
to obtain improved directivity is to apply superdirective
beamforming techniques. In this paper, we will focus on
first-order superdirective beamforming. (The term “first-
order” is used to indicate that the directivity-pattern of the

superdirectional response is constructed by means of a linear
combination of a pressure and velocity (first-order spatial
derivative of the pressure field) response.)

A first method to obtain this first-order superdirectivity
is by using microphone-arrays with omnidirectional
microphone elements and to apply beamforming-techniques
with asymmetrical filter-coefficients [3]. Basically, this
asymmetrical filtering corresponds to subtraction of signals,
like in delay-and-subtract techniques [4, 5] or by taking
spatial derivatives of the sound pressure field [6, 7]. As
subtraction leads to smaller signals for low frequencies, a
first-order integrator needs to be applied to equalize the
frequency-response, resulting in an increased sensitivity
(20 dB/decade) for sensor-noise and increased sensitivity
for mismatches in microphones characteristics [8, 9] for the
lower-frequency-range.

A second method to obtain first-order superdirectivity is
by using microphone-arrays with first-order unidirectional
microphone elements. As the separate uni-directional micro-
phone elements already have a first-order superdirective
response, consisting out of a sum of a pressure and a
velocity response, the beamformer can simply be constructed

mailto:renederkx@online.nl


2 EURASIP Journal on Advances in Signal Processing

M2

θ

M1

M0 x

y

z

M2

φ

M1

M0

x

y

(0, 0)

Figure 1: Circular array geometry with three cardioid microphones.

by a linear combination of the uni-directional microphone
signals. In such an approach, there is no need to apply a first-
order integrator (as was the case for omni-directional micro-
phone elements), and we avoid a 20 dB/decade increased
sensitivity for sensor-noise [7]. Nevertheless, uni-directional
microphones may have a low-frequency roll-off, which
can be compensated for by means of proper equalization
techniques. Throughout this paper, we will assume that the
uni-directional microphones have a flat frequency response.

We focus on the construction of first-order superdirec-
tional beampatterns where the nulls of the beampattern are
steered to the directional interferers, while having a unity
response in the direction of the desired sound-source. In
Section 2, we construct a monopole and two orthogonal
dipole responses (known as “eigen-beams” [10, 11]) out
of a circular array of three first-order cardioid microphone
elements M0, M1, and M2 (with a heart-shaped directional
pattern), as shown in Figure 1. Here θ and φ are the standard
spherical coordinate angles: elevation and azimuth.

Based on these eigenbeams, we are able to construct
arbitrary first-order responses that can be steered with
the main-lobe in any azimuthal direction (see Section 2).
Although the (rotation symmetric) first-order response can
only exhibit a single null, we will look at a slice through
the beampattern lying in the azimuthal plane. In this
way, we can define maximally two nulls in the azimuthal
plane which are symmetric with respect to the main-lobe
axis. By placing these two nulls on the two directional
sources to be rejected and compensating for the drop in
level for the desired direction, we can effectively reject the
directional sources without attenuating the desired source.
In Section 3 expressions are derived for this beampattern
synthesis.

To develop an adaptive null-steering algorithm, we first
show in Section 4 how the superdirective beampattern can
be synthesized via the Generalized Sidelobe Canceller (GSC)
[12]. This GSC enables us to optimize a cost-function in
an unconstrained manner with a gradient descent search-
method that is described in Section 5. Furthermore, the GSC
enables tracking of the angles of the separate directional
interferers, which is validated by means of simulations and

experiments in Section 6. Finally, in Section 7, conclusions
are given.

2. Construction of Eigenbeams

We know from [7, 9] that by using a circular array of at least
three (omni- or uni-directional microphone) sensors in a
planar geometry and applying signal processing techniques,
it is possible to construct a first-order superdirectional
response. This superdirectional response can be steered
with its main-lobe to any desired azimuthal angle and
can be adjusted to have any first-order directivity pattern.
As mentioned in the introduction, we will use three uni-
directional cardioid microphones (with a heart-shaped
directional pattern) in a circular configuration, where the
main-lobes of the three cardioid responses are pointed
outwards, as shown in Figure 1.

The responses of the three cardioid microphones M0, M1,
and M2 are given by, respectively, E0

c (r, θ,φ), E1
c (r, θ,φ), and

E2
c (r, θ,φ), having their main-lobes at, respectively, φ = 0,

2π/3, and 4π/3 radians. Assuming that we have no sensor-
noise, the nth cardioid microphone response, with n =
0, 1, 2, for a harmonic plane-wave with frequency f is ideally
given by [11]

En
c

(
r, θ,φ

) = Ane
jψn . (1)

The magnitude-response An and phase-response ψn of the
nth cardioid microphone are given by, respectively:

An = 1
2

+
1
2

cos
(
φ − 2nπ

3

)
sin θ, (2)

ψn =
2π f

c
sin θ

(
xn cosφ + yn sinφ

)
. (3)

Here c is the speed of sound and xn and yn are the x and y
coordinates of the nth microphone (as shown in Figure 1),
given by

xn = r cos
(
φ − 2nπ

3

)
,

yn = r sin
(
φ − 2nπ

3

)
,

(4)
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Figure 2: Eigenbeams (monopole and two orthogonal dipoles).

with r being the radius of the circle on which the micro-
phones are located.

We can simplify (3) as

ψn =
2π f

c
r sin θ cos

(
2nπ

3

)
. (5)

From the three cardioid microphone responses, we
can construct the circular harmonics [7], also known as
“eigenbeams” [10, 11]), by using the 3-point Discrete Fourier
Transform (DFT) with the three microphones as inputs. This
DFT produces three phase-modes Pi(r, θ,φ) [7] with i =
1, 2, 3:

P0
(
r, θ,φ

) = 1
3

2∑

n=0

En
c

(
r, θ,φ

)
,

P1
(
r, θ,φ

) = [
P2
(
r, θ,φ

)]∗

= 1
3

2∑

n=0

En
c

(
r, θ,φ

)
e− j 2πn/3,

(6)

with j = √−1 and ∗ being the complex-conjugate operator.
Via the phase-modes, we can construct the monopole as

Em
(
r, θ,φ

) = 2P0
(
r, θ,φ

)
, (7)

and the orthogonal dipoles as

E0
d

(
r, θ,φ

) = 2
[
P1
(
r, θ,φ

)
+ P2

(
r, θ,φ

)]
,

Eπ/2
d

(
r, θ,φ

) = 2 j
[
P1
(
r, θ,φ

)− P2
(
r, θ,φ

)]
.

(8)

In matrix notation
⎡

⎢
⎢
⎢
⎣

Em

E0
d

Eπ/2
d

⎤

⎥
⎥
⎥
⎦
= 2

3

⎡

⎢
⎢
⎢
⎣

1 1 1

2 −1 −1

0
√

3 −√3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

E0
c

E1
c

E2
c

⎤

⎥
⎥
⎥
⎦
. (9)

For frequencies with wavelengths larger than the size of
the array (for wavelengths smaller than the size of the array,

spatial aliasing effects will occur) , that is, r � c/ f , the
phase-component ψn, given by (5) can be neglected and the
responses of the eigenbeams for these frequencies are equal
to

Em =, 1

E0
d

(
θ,φ

) = cosφ sin θ,

Eπ/2
d

(
θ,φ

) = cos
(
φ − π

2

)
sin θ.

(10)

The directivity patterns of these eigenbeams are shown in
Figure 2.

The zeroth-order eigenbeam Em represents the monopole
response, while the first-order eigenbeams E0

d(θ,φ) and
Eπ/2
d (θ,φ) represent the orthogonal dipole responses.

The dipole can be steered to any angle ϕs by means of a
weighted combination of the orthogonal dipole pair:

E
ϕs

d

(
θ,φ

) = cosϕsE
0
d

(
θ,φ

)
+ sinϕsE

π/2
d

(
θ,φ

)
, (11)

with 0 ≤ ϕs ≤ 2π being the steering angle.
Finally, the steered and scaled superdirectional micro-

phone response can be constructed via

E
(
θ,φ

) = S
[
αEm + (1− α)E

ϕs

d

(
θ,φ

)]

= S
[
α + (1− α) cos

(
φ − ϕs

)
sin θ

]
,

(12)

with α ≤ 1 being the parameter for controlling the
directional pattern of the first-order response and S being an
arbitrary scaling factor. Both parameters α and S may also
have negative values.

Alternatively, we can write the construction of the
response in matrix-vector notation:

E
(
θ,φ

) = SFT
α RϕsX, (13)

with the pattern-synthesis vector:

Fα =

⎡

⎢
⎢
⎢
⎣

α

(1− α)

0

⎤

⎥
⎥
⎥
⎦

, (14)
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the rotation-matrix Rϕs :

Rϕs =

⎡

⎢
⎢
⎢
⎣

1 0 0

0 cosϕs sinϕs

0 − sinϕs cosϕs

⎤

⎥
⎥
⎥
⎦

, (15)

and the input-vector:

X =

⎡

⎢
⎢
⎢
⎣

Em

E0
d

(
θ,φ

)

Eπ/2
d

(
θ,φ

)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

1

cosφ sin θ

sinφ sin θ

⎤

⎥
⎥
⎥
⎦
. (16)

In the remainder of this paper, we will assume that we
have unity response of the superdirectional microphone for
a desired source coming from an arbitrary azimuthal angle
φ = ϕs and for an elevation angle θ = π/2 and we want to
suppress two interferers by steering two nulls towards two
azimuthal angles φ = ϕn1 and φ = ϕn2 , also for an elevation
angle θ = π/2. Hence, we assume θ = π/2 in the remainder
of this paper.

3. Optimal Null-Steering for Two Directional
Interferers via Direct Pattern Synthesis

3.1. Pattern Synthesis. The first-order response of (12), with
the main-lobe of the response steered to ϕs, has two nulls for
α ≤ 1/2, given by (see [13])

ϕn1 ,ϕn2 = ϕs ± arccos
( −α

1− α

)
. (17)

If we want to steer two nulls to arbitrary angles ϕn1 and
ϕn2 , not lying symmetrical with respect to ϕs, it can be seen
that we cannot steer the main-lobe of the first-order response
to ϕs. Therefore, we steer the main-lobe to ϕ̃s and use a scale-
factor S̃ under the constraint that a unity response is obtained
at angle ϕs. In matrix notation,

E
(
θ,φ

) = S̃FT
α̃ Rϕ̃sX, (18)

with the rotation-matrix and the pattern-synthesis matrix
being as in (15) and (14), respectively, with α̃, ϕ̃s instead of
α,ϕs.

From (12), we see that a unity desired response at angle
ϕs is obtained when we choose the scale-factor S̃ as

S̃ = 1
α̃ + (1− α̃) cos

(
ϕs − ϕ̃s

) , (19)

with α̃ being the parameter for controlling the directional
pattern of the first-order response (similar to the parameter
α), ϕs the angle for the desired sound, and ϕ̃s the angle for
the steering (which, in general, is different from ϕs).

Next, we want to place the nulls at ϕn1 and ϕn2 . Hence, we
solve the following system of two equations:

S̃
[
α̃ + (1− α̃) cos

(
ϕn1 − ϕ̃s

)] = 0,

S̃
[
α̃ + (1− α̃) cos

(
ϕn2 − ϕ̃s

)] = 0.
(20)

Solving the two unknowns α̃ and ϕ̃s gives

ϕ̃s = 2 arctanX , (21)

α̃ = sin
(
Δϕn

)
X

cosϕn1 − cosϕn2 + X
[
sinϕn1 − sinϕn2 + sin

(
Δϕn

)] ,

(22)

with

X =
sinϕn1 − sinϕn2 ±

√
2− 2 cos

(
Δϕn

)

cosϕn1 − cosϕn2

, (23)

Δϕn = ϕn1 − ϕn2 . (24)

It is noted that (23) can have two solutions, leading to
different solutions for ϕ̃s, α̃, and S̃. However, the resulting
beampatterns are identical.

As can be seen we get a vanishing denominator in (22)
for ϕn1 = ϕs and/or ϕn2 = ϕs. Similarly, this is the case when
Δϕn = ϕn1 − ϕn2 goes to zero. For this latter case, we can
compute the limit of ϕ̃s and α̃:

lim
Δϕn→ 0

ϕ̃s = 2 arctan

[
sinϕni

cosϕni − 1

]

= ϕni + π, (25)

with i = 1, 2 and

lim
Δϕn→ 0

α̃ = 1
2

, (26)

where Δϕn = ϕn1 − ϕn2 .
For the case Δϕn = 0, we actually steer a single null

towards the two directional interferers ϕn1 and ϕn2 . Equations
(25) and (26) describe the limit-case solution for which there
are an infinite number of solutions that satisfy the system of
equations, given by (21).

3.2. Analysis of Directivity Index. Although the optimization
in this paper is focused on the suppression of two directional
interferers, it is also important to analyze the noise-reduction
performance for isotropic noise circumstances. We will only
analyze the spherical isotropic noise case, for which we
compute the spherical directivity factor QS given by [4, 5]

QS =
4πE2

(
π/2,ϕs

)

∫ 2π
φ=0

∫ π
θ=0E2

(
θ,φ

)
sin θdθ dφ

. (27)

If we combine (27) with (18), we get

QS
(
ϕ1,ϕ2

) = 6
(
1− cosϕ1

)(
1− cosϕ2

)

5 + 3 cos
(
ϕ1 − ϕ2

) , (28)

with

ϕ1 = ϕn1 − ϕs, (29)

ϕ2 = ϕn2 − ϕs. (30)

In Figure 3, the contour-plot of the directivity factor QS

is shown with ϕ1 and ϕ2 on the x- and y-axes, respectively.
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Figure 3: Contour-plot of the directivity factor QS(ϕ1,ϕ2).

As can be seen in (28), the directivity factor goes to
zero if one of the angles ϕn1 or ϕn2 gets close to ϕs. Clearly,
a directivity factor which is smaller than unity is not very
useful in practice. Hence, the pattern synthesis technique is
only useful when the angles ϕn1 and ϕn2 are located in one
half-plane and the desired source is located around the center
of the opposite half-plane.

It can be found in the appendix that for

ϕ1 = arccos
(
−1

3

)
,

ϕ2 = 2π − arccos
(
−1

3

)
,

(31)

a maximum directivity factor QS = 4 is obtained. This cor-
responds with 6 dB directivity index, defined as 10 log10QS,
where the directivity pattern resembles a hypercardioid.
Furthermore for (ϕ1,ϕ2) = (π,π) rad. a directivity factor
QS = 3 is obtained, corresponding with 4.8 dB directivity
index, where the directivity pattern yields a cardioid. As can
be seen from Figure 3, we can define a usable region, where
the directivity-factor is QS > 3/4 for π/2 ≤ ϕ1, ϕ2 ≤ 3π/2.

4. Optimal Null-Steering for Two Directional
Interferers via GSC

4.1. Generalized Sidelobe Canceller (GSC) Structure. To
develop an adaptive algorithm for steering two nulls towards
the two directional interferers based on the pattern-synthesis
technique in Section 3, it would be required to use a
constrained optimization technique where we want to main-
tain a unity response towards the angle ϕs. For adaptive
algorithms, it is generally easier to adapt in an unconstrained
manner. Therefore, we first present an alternative scheme
for the null-steering, similar to the direct pattern-synthesis
technique as discussed in Section 3, but based on the well-
known Generalized Sidelobe Canceller (GSC) [12]. In the

Em

E0
d

Eπ/2d

Rϕs Fα

B

Ep

Er1

Er2

w1

w2

− −+
E

Figure 4: Generalized Sidelobe Canceller scheme.

GSC scheme, first a prefiltering with a fixed value of ϕs and
α is performed, to construct a primary signal with a unity
response to angle ϕs and two noise references. As the two
noise references do not include the source coming from angle
ϕs, two noise-canceller weights w1 and w2 can be optimized
in an unconstrained manner. The GSC scheme is shown in
Figure 4.

We start by constructing the primary-response as

Ep
(
θ,φ

) = FT
α RϕsX, (32)

with FT
α , Rϕs , and X being as defined in the introduction and

using a scale-factor S = 1.
Furthermore, we can create two noise-references via

⎡

⎣
Er1

(
θ,φ

)

Er2

(
θ,φ

)

⎤

⎦ = BTRϕsX (33)

with a blocking-matrix B [14] given by

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

0

−1
2

0

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (34)

It is noted that the noise-references Er1 and Er2 are,
respectively, a cardioid and a dipole response, with a null
steered towards the angle of the desired source at azimuth
φ = ϕs and elevation θ = π/2.

The primary- and the noise-responses can be used in the
generalized sidelobe canceller structure, to obtain an output
as

E
(
θ,φ

) = Ep
(
θ,φ

)−w1Er1

(
θ,φ

)−w2Er2

(
θ,φ

)
. (35)

It is important to note that for any value of ϕs, α, w1, and
w2, a unity-response at the output of the GSC is maintained
for angle φ = ϕs and θ = π/2.

In the next sections we give some details in computing w1

and w2 for the suppression of two directional interferers, as
discussed in the previous section.

4.2. Optimal GSC Null-Steering for Two Directional Inter-
ferers. Using the GSC structure of Figure 4 having a unity
response at angle φ = ϕs, we can compute the weights w1
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and w2 to steer two nulls towards azimuthal angles ϕn1 and
ϕn2 , by solving

Ep

(
π

2
,ϕi

)
−w1Er1

(
π

2
,ϕi

)
−w2Er2

(
π

2
,ϕi

)
= 0 (36)

for i = 1, 2.
This results in the following relations:

w1 = 2α +
2 sin

(
ϕ1 − ϕ2

)

sinϕ1 − sin
(
ϕ1 − ϕ2

)− sinϕ2
, (37)

w2 =
cosϕ1 − cosϕ2

sinϕ1 − sin
(
ϕ1 − ϕ2

)− sinϕ2
, (38)

where ϕ1 and ϕ2 are defined as given by (29) and (30),
respectively.

To eliminate the dependency of α in (37), we will use

w̃1 = w1 − 2α. (39)

The denominators in (37) and (38) vanish when ϕn1 = ϕs

and/or ϕn2 = ϕs. Also when Δϕn = ϕn1 −ϕn2 goes to zero, the
denominator vanishes. In this case, we can compute the limit
of w̃1 and w2:

lim
Δϕn→ 0

w̃1 = −2, (40)

lim
Δϕn→ 0

w2 = sinϕi (41)

with i = 1, 2.
For the case Δϕn = 0, we actually steer a single null

towards the two directional interferers ϕn1 and ϕn2 . Equations
(40) and (41) describe the limit-case solution for which there
are an infinite number of solutions (w̃1,w2) that satisfy (36).

From the values of w̃1 and w2, we can derive the
two angles of the directional interferers ϑ1 and ϑ2, where
(ϑ1, ϑ2) = (ϕ1,ϕ2) or (ϑ1, ϑ2) = (ϕ2,ϕ1). The two angles
are obtained via a computation involving the arctan-function
with additional sign checking to resolve all four quadrants in
the azimuthal plane and can be computed as

ϑ1, ϑ2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
(
N

D

)
for : D ≥ 0,

arctan
(
N

D

)
+ π for : D < 0, N ≥ 0,

arctan
(
N

D

)
− π for : D < 0, N < 0,

(42)

with

N = −2(w̃1w2 ∓ X1)
X2

,

D = w̃3
1 + 4w̃2

1 + 4w̃1 ± 4w2X1

X2(w̃1 + 2)
,

(43)

with

X1 =
√

(w̃1 + 2)2(1 + w̃1 + w2
2

)
,

X2 = 4 + 4w̃1 + w̃2
1 + 4w2

2 .
(44)

2

2

1
1

1

2.5
2.51.

5

2

1

1

1

1

3.5

3.5

2.51.5

0.5 0.5

0.
5

0.5
0.5

1.5

1.5

3

3

3

1.5

0.5

−2 −1 0 1 2

w̃1

−2

−1

0

1

2

w
2

Figure 5: Contour-plot of the directivity factor QS(w̃1,w2).

Note that with this computation, it is not necessarily true
that ϑ1 = ϕ1 and ϑ2 = ϕ2, that is, we can have a permutation
ambiguity. Furthermore, we compute the resolved angles of
the directional interferers as

ϑni = ϑi − ϕs, (45)

where (ϑn1 , ϑn2 ) = (ϕn1 ,ϕn2 ) or (ϑn1 , ϑn2 ) = (ϕn2 ,ϕn1 ).

4.3. Analysis of Directivity Index. Just as for the direct
pattern synthesis in the previous section, we can analyze the
directivity factor for spherical isotropic noise. We can insert
the values of w1 and w2 into (27) and (35) and get

QS(w̃1,w2) = 3
w̃1 + w̃2

1 + w2
2 + 1

. (46)

In Figure 5, we show the contour-plot of the directivity
factor with w̃1 and w2 on the x- and y-axes, respectively.

From Figure 5 and (46), it can be seen that the contours
are concentric circles with the center at coordinate (w̃1,w2) =
(−1/2, 0) where the maximum directivity factor of 4 is
obtained.

5. Adaptive Algorithm

5.1. Cost-Function for Directional Interferers. Next, we
develop an adaptation scheme to adapt two weights in the
GSC structure as discussed in the previous Section 4. We aim
at obtaining the solution, where a unity response is obtained
at angle ϕs and two nulls are placed at angles ϕn1 and ϕn2 .

We start with

y[k] = p[k]− (ŵ1[k] + 2α)r1[k]− ŵ2[k]r2[k], (47)

with k being the discrete-time index, y[k] the output signal,
ŵ1[k] and ŵ2[k] the adaptive weights, r1[k] and r2[k] the
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noise reference signals, and p[k] the primary signal. The
inclusion of the term 2α in (47) is a consequence of the fact
that ŵ1[k] is an estimate of w̃1 (see (39) in which 2α is not
included).

In the ideal case that we want to obtain a unity response
for a source-signal s[k] originating from angle ϕs and have
an undesired source-signal n1[k] originating from angle ϕn1

together with an undesired source-signal n2[k] originating
from angle ϕn2 , we have

p[k] = s[k] +
∑

i=1,2

[
α + (1− α) cosϕi

]
ni[k],

r1[k] =
∑

i=1,2

(
1
2
− 1

2
cosϕi

)
ni[k],

r2[k] =
∑

i=1,2

sinϕini[k].

(48)

The cost-function J(ŵ1, ŵ2) is defined as a function of ŵ1

and ŵ2 and is given by

J(ŵ1, ŵ2) = E
{
y2[k]

}
, (49)

with E{·} being the expectation operator.
Using that E{n1[k]n2[k]} = 0 and E{ni[k]s[k]} = 0 for

i = 1, 2, we can write

J(ŵ1, ŵ2) = E
{[

p[k]− (ŵ1[k] + 2α)r1[k]− ŵ2[k]r2[k]
]2
}

= σ2
s [k] +

∑

i=1,2

σ2
ni[k]

×
[

1
4
ŵ1[k]2 + ŵ2[k]2

+ cos2ϕi

(
1
4
ŵ1[k]2 + ŵ1[k]− ŵ2[k]2 + 1

)

+ cosϕi

(
−1

2
ŵ1[k]2−ŵ1[k]

)
+sinϕiŵ1[k]ŵ2[k]

+ cosϕi sinϕi(−2ŵ2[k]− ŵ1[k]ŵ2[k])
]

= σ2
s [k] +

∑

i=1,2

[
ŵ1[k]− (2 + ŵ1[k]) cosϕi

+2ŵ2[k] sinϕi
]2 σ

2
ni[k]

4
,

(50)

with

σ2
s [k] = E

{
s2[k]

}
,

σ2
ni[k] = E

{
n2
i [k]

}
.

(51)

We can see that the cost-function is a quadratic-function
[15] that can be written in matrix-notation (for convenience,
we leave out the index k):

J(ŵ1, ŵ2) = σ2
s +

∥
∥
∥Apŵ − vp

∥
∥
∥

2

= σ2
s + wTAT

pApw − 2wTAT
p vp + vTp vp,

(52)

with

Ap =

⎡

⎢
⎢
⎣

σn1

2

(
1− cosϕ1

)
σn1 sinϕ1

σn2

2

(
1− cosϕ2

)
σn2 sinϕ2

⎤

⎥
⎥
⎦,

ŵ =
⎡

⎣
ŵ1

ŵ2

⎤

⎦,

vp =
⎡

⎣
σn1 cosϕ1

σn2 cosϕ2

⎤

⎦.

(53)

The singularity of AT
pAp can be analyzed by computing

the determinant of Ap and setting this determinant to zero:

σn1σn2

2

[
sinϕ2

(
1− cosϕ1

)− sinϕ1
(
1− cosϕ2

)] = 0. (54)

Equation (54) is satisfied when σn1 and/or σn2 are equal to
zero, ϕ1 and/or ϕ2 are equal to zero, or when

sinϕ1

1− cosϕ1
= sinϕ2

1− cosϕ2
≡ cot

(
ϕ1

2

)
= cot

(
ϕ2

2

)
. (55)

Equation (55) is satisfied only when ϕ1 = ϕ2. This agrees
with the result that was obtained in Section 3.1, where Δϕ =
0.

In all other cases (so when ϕ1 /=ϕ2, σn1 > 0 and σn2 > 0),
the matrix Ap is nonsingular and the matrix AT

pAp is positive
definite. Hence, the cost-function is a convex function with
a global minimum that can be found by solving the least-
squares problem:

ŵopt =
(

AT
pAp

)−1
AT

p vp

= A−1
p vp

= 1
A

⎡

⎣
2 sin

(
ϕ1 − ϕ2

)

cosϕ1 − cosϕ2

⎤

⎦,

(56)

with

A = sinϕ1 − sin
(
ϕ1 − ϕ2

)− sinϕ2, (57)

similar to the solutions as given in (37) and (38).
As an example, we show the contour-plot of the cost-

function 10 log10 J(ŵ1, ŵ2) in Figure 6, for the case where
ϕs = π/2, ϕn1 = 0, ϕn2 = π rad., σ2

ni = 1 for i = 1, 2, and
σ2
s = 0.

As can be seen, the global minimum is obtained for ŵ1 =
0 and ŵ2 = 0, resulting in a dipole beampattern. When we
change σ2

n1 /= σ2
n2

, the shape of the cost-function will be more
and more stretched, but the global optimum will be obtained
for the same values of ŵ1 and ŵ2. In the extreme case when
σ2
n2
= 0 and σ2

n1
> 0, we obtain the cost-function as shown

in Figure 7. (It is interesting to note that this cost-function is
exactly the same as for the case whereϕs = π/2, ϕn1 = ϕn2 = 0
radians with σ2

ni = 1 for i = 1, 2 and σ2
s = 0.) Although

still ŵ1 = 0 and ŵ2 = 0 is an optimal solution, it can be
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Figure 6: Contour-plot of the cost-function 10 log10 J(ŵ1, ŵ2) for
the case where ϕs = π/2, ϕn1 = 0, and ϕn2 = π radians.

seen that there is no strict global minimum. For example,
also ŵ1 = −2 and ŵ2 = 1 is an optimal solution (yielding a
cardioid beampattern).

For the situation where there is only a single interferer
or the situation where there are two interferers coming from
(nearly) the same angle, the resulting beampattern will have
a null to this angle, while the other (second) null will be
placed randomly (i.e., the second null is not uniquely defined
and the adaptation of this second null is poor). However in
situations where we have additive diffuse-noise present, we
obtain an extra degree of freedom, for example, optimization
of the directivity index. This is however outside the scope of
this paper.

5.2. Cost-Function for Isotropic Noise. It is also useful to
analyze the cost-function in the presence of isotropic (i.e.,
diffuse) noise. We know from [16] that spherical and
cylindrical isotropic noise can be modelled by adding
uncorrelated additive white-noise signals d1, d2, and d3 to the
three eigenbeams Em, E0

d, and Eπ/2
d with variances σ2

d , σ2
dγ, and

σ2
dγ, respectively, or alternatively with a covariance matrix Kd

given by

Kd = σ2
d

⎡

⎢
⎢
⎢
⎣

1 0 0

0 γ 0

0 0 γ

⎤

⎥
⎥
⎥
⎦
. (58)

(for diffuse noise situations, the individual elements are
correlated. However, due the construction of eigenbeams,
the diffuse noise will be decorrelated. Hence, it is allowed
to add uncorrelated additive white-noise signals to these
eigenbeams to simulate diffuse-noise situations,) We choose
γ = 1/3 for spherically isotropic noise and γ = 1/2 for
cylindrically isotropic noise.

5

−5

−5

−10

−10

−15

−15
−5

−5

−10

−10

−15

−15
−5

−5

−10

−10

−15

−15
−5

−5

−10

−10

−15

−15

0

0

0

0

0

0

0

0
5

10

10

10

10

5

5

5

5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

ŵ1
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Figure 7: Contour-plot of the cost-function 10 log10 J(ŵ1, ŵ2) for
the case where ϕs = π/2 and ϕn1 = ϕn2 = 0 radians.

Assuming that there are no directional interferers,
we obtain the following primary signal p[k] and noise-
references r1[k] and r2[k] in the generalized sidelobe can-
celler scheme:

p[k] = s[k] + αd1[k] + (1− α)d2[k]
√
γ,

r1[k] = 1
2
d1[k]− 1

2
d2[k]

√
γ,

r2[k] = d3[k]
√
γ.

(59)

As di[k] with i = 1, 2, 3 and s[k] are mutually uncorre-
lated, we can write the cost-function as

J(ŵ1, ŵ2) = σ2
s [k] + σ2

d

[(
1
2
ŵ1

)2

+ γ
(

1 +
1
2
ŵ1

)2

+ γŵ2
2

]

.

(60)

Just as for the cost-function with two directional interfer-
ers, we can write the cost-function for isotropic noise also as
a quadratic function in matrix notation:

Jd(ŵ1, ŵ2) = σ2
s +

[
∥∥Ad ŵ − vd

∥∥2 +
γ

1 + γ

]

, (61)

with

Ad =
⎡

⎣
σd
2

√
1 + γ 0

0 σd
√
γ

⎤

⎦,

vd =

⎡

⎢
⎣

−σdγ√
1 + γ

0

⎤

⎥
⎦.

(62)
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It can be easily seen that Ad is positive definite and hence
we have a convex cost-function with a global minimum.
Via (56) we can easily compute this minimum of the cost-
function, which is obtained by solving the least-squares
problem:

ŵopt =
(

AT
d Ad

)−1
AT
d vd

= A−1
p vp

=

⎡

⎢
⎣
− 2γ

1 + γ
0

⎤

⎥
⎦.

(63)

5.3. Cost-Function for Directional Interferers and Isotropic
Noise. In case we have directional interferers as well as
isotropic noise and assume that all these noise-components
are mutually uncorrelated, we can construct the cost-
function based on addition of the two cost-functions:

Jp,d(ŵ1, ŵ2) = Jp(ŵ1, ŵ2) + Jd(ŵ1, ŵ2)

= σ2
s +

∥∥
∥Apŵ − vp

∥∥
∥

2
+
∥
∥Adŵ − vd

∥
∥2 +

σ2
dγ

1 + γ

= σ2
s +

∥
∥∥Ap,dŵ − vp,d

∥
∥∥

2
+

σ2
dγ

1 + γ
,

(64)

with:

Ap,d =
⎡

⎣
Ap

Ad

⎤

⎦,

vp,d =
⎡

⎣
vp

vd

⎤

⎦.

(65)

Since Jp(ŵ1, ŵ2) and Jd(ŵ1, ŵ2) were found to be convex,
the sum Jp,d(ŵ1, ŵ2) is also convex. The optimal weights ŵopt
can be obtained by computing

ŵopt =
(

AT
p,dAp,d

)−1
AT

p,dvp,d, (66)

which can be solved numerically via standard SVD tech-
niques [15].

5.4. Gradient Search Algorithm. As we know that the cost-
function is a convex function with a global minimum, we
can find this optimal solution by means of a steepest descent
update equation for ŵi with i = 1, 2 by stepping in the
direction opposite to the surface J(ŵ1, ŵ2) with respect to ŵi,
similar to [5]

ŵi[k + 1] = ŵi[k]− μ∇ŵi J(ŵ1, ŵ2), (67)

with a gradient given by

∇ŵi J(ŵ1, ŵ2) = ∂J(ŵ1[k], ŵ2[k])
∂ŵi[k]

= ∂E
{
y2[k]

}

∂ŵi[k]
, (68)

and where μ is the update step-size. As in practice, the
ensemble average E{y2[k]} is not available, we have to use an
instantaneous estimate of the gradient ∇̂ŵi J(ŵ1, ŵ2), which is
computed as

∇̂ŵi J(ŵ1, ŵ2) = dy2[k]
dŵi

= −2
{
p[k]− (ŵ1 + 2α)r1[k]− ŵ2r2[k]

}
ri[k]

= −2y[k]ri[k].
(69)

Hence, we can write the update equation as

ŵi[k + 1] = ŵi[k] + 2μy[k]ri[k]. (70)

Just as proposed in [5], we can apply a power-
normalization such that the convergence speed is indepen-
dent of the power:

ŵi[k + 1] = ŵi[k] +
2μy[k]ri[k]

P̂ri[k] + ε
, (71)

with ε being a small value to prevent zero division and where
the power-estimate P̂ri[k] of the i′th reference signal ri[k] can
be computed by a recursive averaging:

P̂ri[k + 1] = βP̂ri[k] +
(
1− β

)
r2
i [k], (72)

with β being a smoothing parameter (lower, but close to 1).
The gradient search only needs to be performed in case

one or both of the directional interferers are present. In
case the desired speech is present during the adaptation,
the gradient search will not behave robustly in practice.
This nonrobust behaviour is caused by leakage of speech
in the noise references r1 and r2 due to either variations
of the desired speaker location, microphone mismatches
or reverberation (multipath) effects. To avoid adaptation
during desired speech, we will apply a step-size control factor
in the adaptation-rule, given by

Ψ[k] = P̂r1 [k] + P̂r2 [k]

P̂r1 [k] + P̂r2 [k] + P̂p[k] + ε
, (73)

where P̂r1 [k] + P̂r2 [k] is an estimate of the noise power and
P̂p[k] is an estimate of the primary signal p[k] that contains

mainly desired speech. The power estimate P̂p[k] is, just

as for the reference-signal powers P̂r1 and P̂r2 , obtained via
recursive averaging:

P̂p[k + 1] = βP̂p[k] +
(
1− β

)
p2[k]. (74)

We can see that the value of Ψ[k] will be small when the
desired speech is dominating, while Ψ[k] will be much larger
(but lower than 1) when either the directional interferers or
spherically isotropic noise is dominating. As it is beneficial
to have a low amount of noise components in the power
estimate P̂p[k], we found that α = 0.25 is a good choice.
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Initialize ŵ1[0] = 0, ŵ2[0] = 0, P̂r1 [0] = r2
1 [0], P̂r2 [0] = r2

2 [0] and P̂p[0] = p2[0]
for k = 0,∞: do

Ψ[k] = P̂r1 [k] + P̂r2 [k]

P̂r1 [k] + P̂r2 [k] + P̂p[k] + ε

y[k] = p[k]− (ŵ1[k] + 2α)r1[k]− ŵ2[k]r2[k]
for i = 1, 2: do

ŵi[k + 1] = ŵi[k] +
2μy[k]ri[k]

P̂ri[k] + ε
Ψ[k]

X1 = (−1)i
√

(ŵ1[k]2 + 2)2(1 + ŵ1[k] + ŵ2[k]2)

X2 = 4 + 4ŵ1[k] + ŵ1[k]2 + 4ŵ2[k]2

N = −2(ŵ1[k]ŵ2[k] + X1)
X2

D = ŵ1[k]3 + 4ŵ1[k]2 + 4ŵ1[k]− 4ŵ2[k]X1

X2(ŵ1[k] + 2)

ϑ̂ni = arctan
(
N

D

)
− ϕs

if D < 0 then
ϑ̂ni = ϑ̂ni − π sgn(N)

end if
P̂ri [k + 1] = βP̂ri [k] + (1− β)r2

i [k]
P̂p[k + 1] = βP̂p[k] + (1− β)p2[k]

end for
end for

Algorithm 1: Optimal null-steering for two directional interferers.

The algorithm now looks as shown in Algorithm 1.
As can be seen in the algorithm, the two weights ŵ1[k]

and ŵ2[k] are adapted based on a gradient-search method.
Based on these two weights, a computation with arctan-
function is performed to obtain the angles of the directional

interferers ϑ̂ni with i = 1, 2.

6. Validation

6.1. Directivity Pattern for Directional Interferers. First, we
show the beampatterns for a number of situations where two
nulls are placed. In Table 1, we show the computed values for
the direct pattern synthesis for 4 different situations, where
nulls are placed at different angles. Furthermore, we assume
that there is no isotropic noise present.

As was explained in Section 3.1, we can obtain two
different sets of solutions for ϕ̃s, α̃, and S̃. In Table 1, we show
the set of solutions where α̃ is positive.

Similarly, in Table 2, we show the computed values for w̃1

and w2 in the GSC structure as explained in Section 4 for the
same situations as for the direct pattern synthesis.

The polar-plots resulting from the computed values in
Tables 1 and 2 are shown in Figure 8. It is noted that the two
examples of Section 5.1 where we analyzed the cost-function
are depicted in Figures 8(b) and 8(d).

Table 1: Computed values of ϕ̃s, α̃, and S̃ for placing two nulls at
ϕn1 and ϕn2 and having a unity response at ϕs.

ϕn1 ϕn2 ϕs ϕ̃s α̃ S̃ QS
(deg) (deg) (deg) (deg)

45 180 90 292.5 0.277 1.141 0.61

0 180 90 90 0 1.0 3.0

0 225 90 112.5 0.277 1.058 3.56

0 0 90 0 0.5 2 0.75

Table 2: Computed values of w̃1 and w2 for placing two nulls at ϕn1

and ϕn2 and having a unity response at ϕs.

ϕn1 ϕn2 ϕs w̃1 w2 QS
(deg) (deg) (deg)

45 180 90
√

2 −1
2

√
2 0.61

0 180 90 0 0 3.0

0 225 90
−2

2 +
√

2
−1

2 +
√

2
3.56

0 0 90 −2 −1 0.75
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Figure 8: Azimuthal polar-plots for the placement of two nulls with nulls placed at (a) 45 and 180 degrees, (b) 0 and 180 degrees, (c) 0 and
225 degrees and (d) 0, and 0 degrees (two identical nulls).
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Figure 9: Simulation of the null-steering algorithm with two
directional interferers only where σ2

n1
= σ2

n2
= 1.

From the plots in Figure 8, it can be seen that if one of
the two null-angles is close to the desired source angle (e.g.,
in Figure 8(a)), the directivity index becomes worse. Because
of this poor directivity index, the null-steering method as
is proposed in this paper will only be useful when either
azimuthal angle of the two directional interferers is not very
close to the azimuthal angle of the desired source. When we
limit the main-beam to be steered maximally 90 degrees away
from the desired direction, that is, |ϕ̃s − ϕs| < π/2, we avoid
a poor directivity index. For example, in Figure 8(d) such a
situation is shown where the main-beam is steered 90 degrees
away from the desired direction. In case the two directional
interferers will change quickly from 0 to 180 degrees, the
adaptive algorithm will automatically adapt and removes
these two directional interferers at 180 degrees. As only two
weights are used in the adaptive algorithm, the convergence
to the optimal weights will be very fast.

6.2. Gradient Search Algorithm. Next, we validate the track-
ing behaviour of the gradient update algorithm, as proposed
in Section 5.4. We perform a simulation, where we have a
desired source at 90 degrees and where we linearly increase
the angle of a first undesired directional interferer (ranging
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Figure 10: Simulation of the null-steering algorithm with two directional interferers where σ2
n1
= σ2

n2
= 1 and with a desired source where

σ2
s = 1/16 with ϕs = 90 degrees (a) and ϕs = 60 degrees (b).
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Figure 11: Simulation of the null-steering algorithm with two directional interferers where σ2
n1
= σ2

n2
= 1 and with (spherically isotropic)

spherical isotropic noise (γ = 1/3), where σ2
d = 1/16 (a) and σ2

d = 1/4 (b).

from 135 to 45 degrees) and we linearly decrease the angle
of a second undesired directional interferer (ranging from 30
degrees to−90 degrees) in a time-span of 10000 samples. For
the simulation, we used α = 0.25, μ = 0.02, and β = 0.95.

First, we simulate the situation, where only two direc-

tional interferers are present. The two directional interferers

are uncorrelated white random-noise signals with variance

σ2
ni = 1. The results are shown in Figure 9. It can be seen

that ϑ̂n1 and ϑ̂n2 do not cross (in contrast to the angles of the

directional interferers ϕn1 and ϕn2 ). The first null placed at ϑ̂n1

adapts very well, while the second null, placed at ϑ̂n2 , is poorly
adapted. The reason for this was explained in Section 5.1.

Similarly, we simulate the situation with the same two
directional interferers but now together with a desired
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Figure 12: Microphone array with 3 outward facing cardioid
microphones.
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Figure 13: Practical setup of the microphone array.

source-signal s[k]. The desired source is modelled as a white-
noise signal, with a variance σ2

s = 1/16. The result is shown in
Figure 10(a). We see that due to the adaptation-noise (caused
by s[k]), there is more variance in the estimates of the angles

ϑ̂n1 and ϑ̂n2 . In contrast to the situation with two directional

interferers only, we see that there is a region where ϑ̂n1 = ϑ̂n2 .
To show how the adaptation behaviour looks in presence

of variation in the desired source location, we do a similar
simulation as above, but now with ϕs set to 60 degrees, while
the desired source is coming from 90 degrees. This means
that there will be leakage of the desired source signal into the
noise reference signals r1[k] and r2[k]. The results are shown
in Figure 10(b). Here, it can be seen that the adaptation
shows a small offset if one of the directional source angles
comes close to the desired source angle. For example, at the
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Figure 14: Results of the real-life experiment (waveform).
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Figure 15: Results of the real-life experiment (angle estimates).

end of the simulation where k = 10000, this can be clearly

seen for ϑ̂n1 .
Finally, we simulate the situation of the same directional

interferers, but now in a spherical isotropic noise situation.
As was explained in Section 5.2, isotropic noise can be
modelled by adding uncorrelated additive white-noise to the
three eigenbeams Em, E0

d, and Eπ/2
d with variances σ2

d , σ2
dγ,

and σ2
dγ, respectively. Here γ = 1/3 for spherically isotropic

noise and γ = 1/2 for cylindrically isotropic noise. In our
simulation, we use γ = 1/3. The results are shown in Figures
11(a) and 11(b) with variances σ2

d = 1/16 and σ2
d = 1/4,

respectively. When the variance of the diffuse noise gets
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Figure 16: Polar-plot results of the real-life experiment.

larger compared to the directional interferers, the adaptation
will be influenced by the diffuse noise that is present. The
larger the diffuse noise, the more the final beampattern
will resemble the hypercardioid. If diffuse noise would be
dominant over the directional interferers, the estimates ϕn1

and ϕn2 will be equal to 90−109 degrees, and 90+109 degrees,
respectively, (or −0.33 and −2.81 radians, resp.).

6.3. Real-Life Experiments. To validate the null-steering
algorithm in real-life, we used a microphone array with
3 outward facing cardioid electret microphones, as shown
in Figure 12. As directional cardioid microphones have
openings on both sides, the microphones are placed in
rubber holders, enabling sound to enter both sides of the
directional microphones.

The type of microphone elements used for this array
is the Primo EM164 cardioid microphones [17]. These
elements are placed uniformly on a circle with a radius
of 1 cm. This radius is sufficient for the construction of
eigenbeams up to a frequency of 4 KHz.

For the experiment, we placed the array on a table in
a moderately reverberant room (conferencing-room) with
a T60 of approximately 200 milliseconds. As shown in the
setup in Figure 13, all directional sources are placed at a
distance of 1 meter from the array (at discrete azimuthal
angles: φ = 0, π/2, π, and 3π/2 radians), while diffuse noise

was generated via four loudspeakers, placed close to the walls
and each facing diffusers hanging on the walls. The level of
the diffuse noise is 12 dB lower compared to the directional
(interfering) sources. The experiment is done in a time-span
of 17.5 seconds, where we switch the directional sources as
shown in Table 3.

We use mutually uncorrelated white random-noise
sequences for the directional sources N1, N2, and N3 played
by loudspeakers and use speech for the desired sound-source
S.

For the algorithm, we use discrete-time signals with a
sample-rate of 8 KHz. Furthermore, we used α = 0.25, μ =
0.001, and β = 0.95.

Figure 14(a) shows the waveform obtained from micro-
phone #0 (M0), which is a cardioid pointed with its main-
lobe to 0 radians. This waveform is compared with the result-
ing waveform of the null-steering algorithm, and is shown
in Figure 14(b). As the proposed null-steering algorithm is
able to steer nulls toward the directional interferers, the direct
part of the interferers is removed effectively (this can be seen
by the lower noise-level in Figure 14(b) in the time-frame
from 0–10.5 seconds). In the segment from 10.5–14 seconds
(where there is only a single directional interferer at φ = π
radians), it can be seen that the null-steering algorithm is
able to reject this interferer just as good as the single cardioid
microphone.
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Table 3: Switching of sound-sources during the real-life experiment.

Source angle φ (rad) 0–3.5 (s) 3.5–7 (s) 7–10.5 (s) 10.5–14 (s) 14 s–17.5 (s)

N1 π/2 active — active — —

N2 π active active — active —

N3 3π/2 — active active — —

S 0 active active active active active

In Figure 15, the resulting angle-estimates from the null-
steering algorithm are shown. Here, it can be seen that the
angle-estimation for the first three segments of 3.5 seconds
is done accurately. For the fourth segment, there is only
a single point interferer. In this segment, only a single
angle-estimation is stable, while the other angle-estimation
is highly influenced by the diffuse noise. Finally, in the
fifth segment, only diffuse noise is present and the final
beampattern will optimize the directivity-index, leading to a
more hypercardioid beampattern steered with its main-lobe
to 0 degrees (as explained in Section 6.2).

Finally, in Figure 16, the resulting polar-patterns from
the null-steering algorithm are shown for some discrete
time-stamps. Again, it becomes clear that the null-steering
algorithm is able to steer the nulls toward the angles where
the interferers are coming from.

7. Conclusions

We analyzed the construction of a first-order superdirec-
tional response in order to obtain a unity response for a
desired azimuthal angle and to obtain a placement of two
nulls to undesired azimuthal angles to suppress two direc-
tional interferers. We derived a gradient search algorithm to
adapt two weights in a generalized sidelobe canceller scheme.
Furthermore, we analyzed the cost-function of this gradient
search algorithm, which was found to be convex. Hence
a global minimum is obtained in all cases. From the two
weights in the algorithm and using a four-quadrant inverse-
tangent operation, it is possible to obtain estimates of the
azimuthal angles where the two directional interferers are
coming from. Simulations and real-life experiments show a
good performance in moderate reverberant situations.

Appendix

Proofs

Maximum Directivity Factor QS. We prove that for

QS
(
ϕ1,ϕ2

) = 6
(
1− cosϕ1

)(
1− cosϕ2

)

5 + 3 cos
(
ϕ1 − ϕ2

) , (A.1)

with ϕ1,ϕ2 ∈ [0, 2π], a maximum QS = 4 is obtained for
ϕ1 = arccos (−1/3) and ϕ2 = 2π − arccos (−1/3).

Proof. First, we compute the numerator of the partial
derivative ∂QS/∂ϕ1 and set this derivative to zero:

6
(
1− cosϕ1

)
sinϕ1

[
5 + 3 cos

(
ϕ1 − ϕ2

)]

+ 6
(
1− cosϕ1

)(
1− cosϕ2

)
3 sin

(
ϕ1 − ϕ2

) = 0.
(A.2)

The common factor 6(1 − cosϕ1) can be removed, resulting
in

sinϕ1
(
5 + 3 cos

(
ϕ1 − ϕ2

))
+ 3

(
1− cosϕ1

)
sin

(
ϕ1 − ϕ2

) = 0.
(A.3)

Similarly, setting the partial derivative ∂QS/∂ϕ2 equal to
zero, we get

sinϕ2
(
5 + 3 cos

(
ϕ2 − ϕ1

))
+ 3

(
1− cosϕ2

)
sin

(
ϕ2 − ϕ1

) = 0.
(A.4)

Combining (A.3) and (A.4) gives

sinϕ1

1− cosϕ1
= −3 sin

(
ϕ1 − ϕ2

)

5 + 3 cos
(
ϕ1 − ϕ2

)

= 3 sin
(
ϕ2 − ϕ1

)

5 + 3 cos
(
ϕ2 − ϕ1

) = − sinϕ2

1− cosϕ2
,

(A.5)

or alternatively

2 sin
(
ϕ1/2

)
cos

(
ϕ1/2

)

2 sin2(ϕ1/2
) = cot

(
ϕ1

2

)
= −cot

(
ϕ2

2

)
, (A.6)

with ϕ1,ϕ2 ∈ [0,π].
From (A.6), we can see that ϕ1/2+ϕ2/2 = π (or ϕ1 +ϕ2 =

2π) and can derive

cosϕ2 = cos
(
2π − ϕ1

) = cosϕ1, (A.7)

sinϕ2 = sin
(
2π − ϕ1

) = − sinϕ1. (A.8)

Using (A.7) and (A.8) in (A.1) gives

QS =
6
(
1− cosϕ1

)2

5 + 3
(
2 cosϕ1 − 1

) = 6
(
1− cosϕ1

)2

2 + 6 cos2ϕ1
= 6(1− x)2

2 + 6x2
,

(A.9)

with x = cosϕ1 ∈ [−1, 1].
We can compute the optimal value for x by differentia-

tion of (A.9) and setting the result to zero:

− 12(1− x)
(
2 + 6x2)− 6(1− x)212x = 0

≡ −2− 6x2 − 6x + 6x2 = 0.
(A.10)

Solving (A.10) gives x = cosϕ1 = −1/3 and conse-
quently, ϕ1 = arccos (−1/3) and ϕ2 = 2π−arccos (−1/3). Via
(A.9), we can see that for these values, we have QS = 4.
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