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People counting is an important problem in video surveillance applications. This problem has been faced either by trying to detect
people in the scene and then counting them or by establishing a mapping between some scene feature and the number of people
(avoiding the complex detection problem). This paper presents a novel method, following this second approach, that is based on
the use of SURF features and of an ε-SVR regressor provide an estimate of this count. The algorithm takes specifically into account
problems due to partial occlusions and to perspective. In the experimental evaluation, the proposed method has been compared
with the algorithm by Albiol et al., winner of the PETS 2009 contest on people counting, using the same PETS 2009 database.
The provided results confirm that the proposed method yields an improved accuracy, while retaining the robustness of Albiol’s
algorithm.

1. Introduction

The estimation of the number of people present in an area
can be an extremely useful information both for security/
safety reasons (for instance, an anomalous change in the
number of persons could be the cause or the effect of a
dangerous event) and for economic purposes (for instance,
optimizing the schedule of a public transportation system
on the basis of the number of passengers). Hence, several
works in the fields of video analysis and intelligent video
surveillance have addressed this task.

The problem of people counting has been faced using
two different approaches. In the direct approach (also called
detection based), people in the scene are first individually
detected, using some form of segmentation and object
detection, and then counted. In the indirect approach (also
called map based or measurement based), instead, counting is
performed using the measurement of some feature that does
not require the separate detection of each person in the scene.
The indirect approach is considered to be more robust, since
the correct segmentation of people in the scene is by itself

a complex problem that cannot be solved reliably, especially
in crowded conditions.

Recent examples of the direct approach are [1–3]. In [1],
the shape of a standing person is modeled as a rectangle
of fixed width and height (normalized on the basis of
perspective mapping). The system first detects foreground
regions using background subtractions and then tries to
match people models with the observed edges of foreground
regions, using a global optimization technique based on the
Expectation-Maximization algorithm. While the method is
able to deal with partially occluded persons, the assumption
that the foreground region contour contains enough edges
that can be ascribed to each person limits the applicability
of the method to cases where the density of the crowd
is low. In [2], the tracking of feature points is performed
first, and then the points are grouped into objects according
to their motion characteristics. Namely, feature points are
extracted using methods from the literature and are tracked
using a combination of optical flow and searching in a 2D
window around the previous feature position. Then, the
feature points are clustered using a Bayesian framework,
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under the assumption that pairs of points belonging to a
same person have a small variance in their mutual distance
(quasi-rigid motion). While the method seems to perform
well, even with high crowd densities, when the motion is
mainly parallel to the image plane, it has problems with
motion directed towards the camera or away from it. Also,
the method can have problems in low density conditions,
where the motion of arms and legs is clearly visible, because
of its rigid motion assumption. In [3], a 3D model of
the human body is used. Each person is represented as a
set of ellipsoids corresponding to the head, the body and
the legs. The model is matched to the detected foreground
regions using a Markov Chain Monte Carlo (MCMC)
approach, that performs a global optimization of the a
posteriori probability across multiple frames (in order to
exploit temporal coherence). While the method provides
good performance with low to medium crowd densities, it
could have problems in very crowded scenes. Furthermore, it
is very computationally intensive, being impractical for real-
time applications.

For the indirect approach, recent methods have pro-
posed, among the others, the use of measurements such
as the amount of moving pixels [4], blob size [5], fractal
dimension [6], or other texture features [7].

A recent method following the indirect approach has
been proposed by Albiol et al. in [8]. This method has been
submitted to the PETS 2009 contest on people counting,
and has obtained the best performance among the contest
participants. In Albiol’s paper, the authors propose the use
of corner points as features. Namely, corner points are
found using a variant of the popular Harris corner detector
[9]. Then, background corner points are separated from
foreground corner points using an estimate of the motion
vector based on block matching between adjacent frames:
points whose motion speed is under a threshold are not
considered for further analysis. Finally, the number of people
is estimated from the number of moving corner points
assuming a direct proportionality relation, with a constant
factor determined using a frame of the video sequence.
Actually, the count so obtained is smoothed by averaging
along a few adjacent frames to remove fluctuations due to
noise.

Although the assumptions underlying Albiol’s paper may
appear rather simplistic, the method has proven to be quite
more robust than more sophisticated competitors. However,
the accuracy it can attain is limited by the fact that it does not
take into account problems like the instability of the Harris
corner detector, the presence of occlusions, or the need of a
perspective correction.

In this paper we propose a method that, while retaining
the overall simplicity and the robustness of Albiol’s approach,
tries to provide a more accurate estimation of the count by
considering also these factors.

2. Rationale of the ProposedMethod

The approach we propose in this paper is conceptually
similar to the one proposed by Albiol et al. [8] but

introduces several changes to overcome some limitations of
that method.

The first problem that is addressed is the stability of
detected corner points. The points found by the Harris
corner detector are strongly dependent on the perceived
scale of the considered object: the same object, even in the
same pose, will have different detected corners if its image is
acquired from different distances. This can cause problems
in the following conditions:

(i) the observed scene contains groups of people whose
distance from the camera is very different: in this
case it is not possible to use a simple proportionality
to estimate the number of people, since the average
number of corner points per person is different
between close people and far people,

(ii) the observed scene contains people walking on a
direction that has a significant component orthog-
onal to the image plane, that is, they are coming
closer to the camera or getting farther from it: in this
case the number of corner points for these people
is changing even if the number of people remains
constant.

To mitigate this problem we have chosen to adopt the
SURF algorithm proposed by Bay et al. in [10]. SURF is
inspired by the SIFT scale-invariant descriptor [11], but
replaces the Gaussian-based filters of SIFT with filters that
use the Haar wavelets, which are significantly faster to
compute. The interest points found by SURF are much more
independent of scale (and hence of distance from camera)
than the ones provided by Harris detector. They are also
independent of rotation, which is important for the stability
of the points located on the arms and on the legs of the
people in the scene.

A second limitation in Albiol’s method is that it does not
take into account the density of the detected interest points in
the estimation of the number of people. To understand why
this can be a problem, it has to be considered that the amount
of occlusions in the image of a group of people depends on
how close the people are to each other. If people are distant
from each other, occlusion is unlikely and all the interest
points of a person shape are detected; on the other hand, if
people are very close to each other, it is likely that most of
the body of each person is occluded by others, and so only
a subset of the corresponding interest points are detected.
Hence, the average number of points per person can vary
significantly with the people density.

We use the interest point density as a way to estimate
the people density. However, a naive use of this measure
would present a problem: because of perspective distortion,
the same people density would correspond to a different
point density at different distances from the camera. So a
correction of the perspective distortion is needed.

To perform this task, we have first to partition the
detected points into groups corresponding to different
groups of people. This can be treated as a clustering problem,
but the shape of the clusters, their number and their densities
are not known a priori, and so commonly used clustering
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algorithms such as k-means and DBSCAN cannot be applied.
So we have adopted a graph-based clustering algorithm
presented in [12]. The point density of each cluster can
be estimated by dividing the number of points in the
clusters by the area of the bounding box of the cluster; this
approximation works well in practice, but if more precision
was needed, it could be achieved by computing the convex
hull of the cluster and dividing the number of points by its
area.

Once the detected points are divided into clusters, the
distance of each cluster from the camera is derived from
the position of the bottom points of the cluster applying
an Inverse Perspective Mapping (IPM). The IPM is based
on the assumption that the bottom points of the cluster
lie on the ground plane. So it is possible, using an inverse
perspective matrix, to map the image coordinates of the
points to real-world, 3D coordinates in the scene. The inverse
perspective matrix can be derived by calibration, using the
images of several persons located at different distances from
the camera and assuming that they have an average height.
Once the actual distance from the camera is known, the
average density of the points within the cluster is normalized
to the value it would have if the cluster was moved to a
predetermined distance from the camera.

The third limitation that is addressed by our method is
that the relation between the number of detected points and
the number of people can have a form that is more complex
than a simple direct proportionality, especially if we take
into account the point density. So we have chosen to learn
this relation by using a trainable function estimator. More
precisely, we have used a variation of the Support Vector
Machine known as ε-Support Vector Regressor (ε-SVR for
short) as our function estimator. The ε-SVR receives as its
inputs the number of points of a cluster and the (normalized)
density, and is trained (using a set of training frames) to
output the estimated number of people in the cluster. The
ε-SVR is able to learn a nonlinear relation and shows a
good generalization ability, being based on the structural risk
minimization principle.

As with Albiol’s method, the output count is passed
through a low-pass filter to smooth out oscillations due to
image noise.

3. System Architecture

The overall system architecture of the proposed algorithm for
people counting is shown in Figure 1.

As delineated in the previous section, the system operates
according to the three phases reported below:

(1) detection of the interest points associated to people,

(2) clustering of the interest points,

(3) features extraction and regression.

In the following we provide some details about each of the
considered phases.

3.1. Detection of the Interest Points Associated to People. In
order to detect interest points associated to people we make

Video frames

Moving SURF points detection

Moving salient points

SURF points clustering

Clusters of salient points

Features extraction

Feature vectors per cluster

ε- SVR regression

Estimated number of persons per cluster

Figure 1: System architecture.

two basic assumptions: persons within the scene are not
static and there are no other moving elements in the scene.
Thus, if we compute the interest points of the image and
the associated motion information, the above assumptions
guarantee that only the interest points with a non-null
motion vector must be associated to people.

Note that the first assumption holds very often: in fact,
although a person might appear static, some motion, even
very small, is usually associated to her/him. The second
assumption stands in most real world applications where it
is required to count people in the scene; of course in the rare
cases in which the second assumption is not verified (waving
trees, moving vehicles, etc.), the proposed method cannot be
adopted.

As proposed in [8], the interest points associated to
people are extracted in two steps. First, we determine all the
interest points within the frame under analysis. Then, we
prune the points not associated to persons by taking into
account their motion information.

Interest points are determined by using the SURF
algorithm [10] and not the Harris corner detector as in the
paper by Albiol et al. [8]. As widely described in the previous
Section, the motivation behind this choice is that the interest
points extracted using SURF are scale-invariant, thus they are
much more stable than the points found by the Harris corner
detector.

In order to remove the static interest points (that are not
associated to people), for each point detected by the SURF
algorithm we estimate the motion vector with respect to the
previous frame by using a block-matching technique. Then
we distinguish between static and moving interest points on
the basis of the following rule:

p
(
x, y

) =
⎧
⎨

⎩

moving point, if
∣
∣�v
(
x, y

)∣∣ > β,

static point, if
∣
∣�v
(
x, y

)∣∣ ≤ β,
(1)



4 EURASIP Journal on Advances in Signal Processing

Figure 2: The interest points detected by the SURF algorithm,
together with the corresponding motion vectors. The static points
are drawn in red, the moving ones in green.

where p(x, y) is the interest point at the x, y coordinates,
|�v(x, y)| is the magnitude of the motion vector calculated in
x, y with respect to the previous frame, and β is a bias value
(in our experiments we set β = 0.0).

Unfortunately motion vectors are only relatively reliable.
Occlusions, sudden changes in illumination, artifacts intro-
duced by the compression of the video stream, may cause
errors in the estimations of motion vectors. Although we are
not interested to the exact value of the motion vectors, but
only to distinguish between null and non-null vectors, the
low reliability of their estimation has to be taken into proper
account. In Figure 2 it is shown an example of the points
detected using the SURF algorithm and the corresponding
motion vectors. The moving interest points are depicted in
green, while the static ones are in red. It should be noted
that a not negligible percentage (in our experiments about
10%) of the interest points were erroneously classified as
moving points. The presence of these spurious points may
cause an overestimation of the number of the persons in the
scene. However, these outliers are usually randomly spread
throughout the frame. This spatial distribution makes their
removal easier if carried out in the second stage of the system,
where we try to cluster the interest points. It is also worth
noting that the occurrence of the other type of error, that is,
a moving point classified as static, is minimal; thus, this sort
of error does not affect significantly the overall performance
of the system and no specific procedure has been devised to
tackle it.

3.2. Clustering of the Interest Points. In order to compensate
for changes in the number of points due to perspective
and to partial occlusions, the algorithm needs to partition
the detected points into clusters corresponding to separated
groups of persons, so as to be able to compute for each group
its distance from the camera and its density.

The faced clustering problem is characterized by the fact
that we do not have any a priori knowledge about the number
and the shape of the clusters to be found. This depends on

the fact that people can appear in different positions in the
scene and can be aggregated in many different ways. In this
situation more commonly used clustering methods (such as
k-means) could not have been applied because they require
the user to provide either the number of desired clusters or a
threshold on cluster diameter or on intercluster distance. As
observed in [13], the clustering algorithms based on graph
theory are well suited to face clustering problems where no
assumptions can be made about the clusters. In particular,
we adopted the technique presented in [12], since (differently
from other algorithms in the graph-based clustering family)
it requires no parameters to be tuned or adapted to the
particular application.

This algorithm represents the set of points as a graph
in which each point corresponds to a node and each edge
is labeled with the distance between its endpoints. The
minimum spanning tree (MST) of the graph is computed;
this tree will contain some edges that are between nodes in
the same cluster (intracluster edges) and other edges between
nodes of different clusters (intercluster edges). Assuming that
the clusters are well separated, it can be expected that the
intracluster edges are shorter than the intercluster edges.
So the algorithm uses a thresholding to divide the edges in
two sets (the ones below the threshold, say it λ, and the
ones above the threshold λ). The edges in the second set are
deleted, and the remaining connected components are the
clusters output by the algorithm.

The use of a fixed value for the threshold λ would be
problematic, since the threshold would need to be adjusted
depending on the resolution, the distance from the camera
and so on. Instead, we have used a threshold proportional to
the average edge length, computed as

λ = γ · 1
N

N∑

i=1

xi, (2)

where γ is the proportionality factor, N is the number of
edges of the spanning tree, while xi is the weight of the
ith edge of the tree. We have experimentally found that the
choice γ = 2.0 works adequately for all the considered scenes.

In the ideal case, all the intracluster edges are preserved,
while the intercluster edges are removed, leaving a set of
connected trees corresponding to the desired clusters of
interest points. However, it commonly happens that some
edges are misclassified producing two types of clustering
errors.

(1) Inter-Cluster Edges Classified as Intra-Cluster. This type
of misclassification does not allow to split some clusters,
which will result aggregated. However, this situation does not
represent a problem when the joined clusters refer to groups
of people which are at the same distance from the camera.
This typically happens when the clusters are horizontally
aggregated (see the example in Figure 3(a)). In fact, in this
case the perspective distortion does not change significantly
among the joined clusters and the error introduced can
be considered negligible. Conversely, when the erroneously
combined clusters refer to groups of people at different
distances from the camera (typically when clusters are joined



EURASIP Journal on Advances in Signal Processing 5

vertically), this causes errors in the estimation of the number
of people which are inside the groups whose distance from
the camera is erroneously evaluated (see the box with ID = 2
in Figure 4(b) for an example of this problem). It is worth
noting that even if the estimation for clusters formed by
people at different distances may be inaccurate, it is still an
improvement over the use of a global estimate based on all
the detected points in the scene, as in Albiol et al.’s method.
Furthermore, we have experimentally verified that the latter
circumstance occurs rather infrequently, hence its impact on
the overall performance is limited.

(2) Intra-Cluster Edges Classified as Inter-Cluster. This phe-
nomenon causes a cluster to be split into several parts.
Similar considerations can be done also for this type of
error as regard the different incidence and impact on the
overall performance depending on the way the splits occur
(horizontal or vertical). An example of this type of error is
shown in Figure 3(b).

Another important problem that is faced in this stage is
represented by the removal of outliers, that is, those interest
points which are output by the previous stage but are not
associated to people. It is quite easy to distinguish between
the correct moving points and the outliers, on the basis
of some considerations about the local point density. In
fact, while the points associated to people are concentrated
in small areas in the input image (those occupied by the
persons), erroneously detected moving points are randomly
spread throughout the frame. Consequently, after clustering
the outliers tend to form singleton or very small isolated
clusters, which can be simply cut off by adopting a procedure
that deletes those clusters with a number of points below
a fixed threshold. At least in principle, this threshold may
depend on the position and angle of the camera and on
some peculiarities of the environment. However, in our
experiments (which include different scenes and view points)
we set it to eight and noticed that the value of this threshold
can vary in a quite wide range without affecting significantly
the overall performance of the system.

3.3. Feature Extraction and Regression. In this stage of the
algorithm, a feature vector is computed from each cluster
detected in the previous step, and is fed into a regressor. The
output of the regressor is the estimated number of persons in
the group represented by the cluster.

The basic idea of the method in [8] is that the average
number of interest points associated to each person is a
global property of scene. Thus, once the scene has been
defined, it is possible to assume a simple direct proportion-
ality relation between the number of points and the number
of persons.

As noted by the same authors in [8], this model, albeit
extremely simple, performs well in scenes where people are
more or less at the same distance from the camera, and
there are only limited overlaps between persons. When these
assumptions are verified, deviations from the model are
either due to the fact that some interest points are missed
(e.g., because a part of body is very similar to the underlying

background) or due to the limited reliability of motion
vector estimation, that may cause some static points to be
considered as moving.

However, as can be deducted from the good performance
shown by Albiol’s method on the PETS2009 dataset, those
deviations from the model often compensate each other,
and so the method gives a reasonable count, at least on the
average.

Unfortunately, this model does not take into account the
effects of the perspective, which causes that the farther the
person is from the camera, the fewer are the detected interest
points (see Figure 4 for an example of this problem). Hence,
the number of points associated to a person and the distance
of the person from the camera are somehow related, and the
relation is nonlinear.

Moreover, the assumption of a proportionality relation
between the number of persons and the number of points
holds only when people are well separated from each other.
On the other hand, when people are close to each other
some parts of their bodies are occluded and, consequently,
some interest points are not detected. Therefore, there is a
relation (whose exact form is not easy to find analytically)
also between the average number of points per person and
the people density. Unfortunately, we do not know the people
density of each cluster. However we can reasonably assume
that when the density of people increase, the detected points
get closer to each other. So we can consider the density of
the points as related to people density, and we can indirectly
take into account people density by establishing a relation
between the average number of points per person and the
point density.

In conclusion, the relation between the number of
interest points and the number of people appears more
complex than a direct proportionality, as we have to take into
account also the distance of the people from the camera and
the point density. We can formulate this relation as

npeople = f
(
npoints, ρ,d

)
, (3)

where

(i) npeople is the estimated number of people;

(ii) npoints is the number of interest points within the
cluster;

(iii) ρ is the average density of the points in the cluster: the
value is obtained as the ratio between the number of
points into the cluster and the area of the bounding
box. Note that the area of the bounding box is
computed with respect to real world coordinates.
This allows us to normalize the average density of the
points to the value it would have if the cluster were
moved to a predefined distance from the camera;

(iv) d is the distance of the cluster from the camera:
assuming that the bottom points of the bounding
box lie on the ground plane, the calculation is done
by applying an Inverse Perspective Mapping and is
referred to the center of the bottom edge of the
cluster’s bounding box.
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(a) (b)

Figure 3: Clusters of point detected by the second stage of the system. Each cluster is enclosed by a bounding box. The images also contain
examples of clustering errors. (a) In cluster 1 (green interest points) two groups of people have been erroneously aggregated. (b) A group of
people is erroneously split in two clusters, (yellow and cyan points, clusters 3 and 5).

(a) (b)

Figure 4: Effect of perspective distortion on the number of detected interest points: note how the same woman in (a) is far from the camera
(cluster 0, red dots) and only 9 interest points are detected, while in (b) she is closer to the camera (cluster 1, green dots) and 30 interest
points are associated to her.

Since we do not know the analytical form of f , we have
chosen to learn this function from a set of labeled examples
by using an ε-SVR regressor. Once trained, the ε-SVR acts as
a function estimator; for each detected cluster it receives as its
input the above features and outputs the estimated number
of people within the cluster. So the total number of persons
in the frame (or in a predetermined region of interest) is
obtained by summing the number of people calculated for
each cluster.

Finally, in order to smooth out the oscillations in the
number of the counted persons among consecutive frames,
we employ a low-pass filter. Specifically, the final count of the
persons within the scene is calculated as the average value of
the people count on the last k frames of the video.

4. Experimental Results

The performance of the proposed method has been assessed
using the PETS2009 dataset [14]. The dataset is organized
in four sections, but we focused our attention primarily
on the section named S1 that was used to benchmark
algorithms for the “Person Count and Density Estima-
tion” PETS2009 contest. The main characteristics of the
subset of video sequences of the PETS 2009 dataset used
for assessing the performance of the proposed method
are summarized in the Table 1 in terms of their length,
number of people in the scene (minimum, maximum and
average number) and other elements as density of the
crowd, illumination conditions, and so forth. The videos
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Table 1: Relevant characteristics of the four sequences of the PETS 2009 datasets used for assessing the performance of the proposed method.

Video sequence Length
Conditions

Number of people

(number of the view) (frames) Min AVG Max

S1.L1.13-57 (1) 221 medium density crowd, overcast 5 22.61 34

S1.L1.13-59 (1) 241 medium density crowd, overcast 3 15.81 26

S1.L2.14-06 (1) 201 high density crowd, overcast 0 26.28 43

S1.L3.14-17 (1) 91 medium density crowd, bright sunshine and shadows 6 24.34 41

S1.L1.13-57 (2) 221 medium density crowd, overcast 8 34.19 46

S1.L2.14-06 (2) 201 high density crowd, overcast 3 37.10 46

S1.L2.14-31 (2) 131 high density crowd, overcast 10 35.19 43

S1.L3.14-17 (2) 91 medium density crowd, bright sunshine and shadows 38 44.08 45

S3.MF.12-43 (2) 108 very low density crowd, overcast 1 4.99 7

S3.MF.14-37 (2) 109 medium density crowd, bright sunshine and shadows 14 35.72 44

reported in Table 1 refer to two different views obtained
by using two cameras that contemporaneously framed the
same scene from different points (see Figure 5 for example
frames of the two views). For our experimentations, we
used four videos of the view 1, which are also the same
videos that were used in the people counting contest
held in PETS2009. The videos in the second set refer
to the view 2 which is characterized by a wide field
depth that makes the counting problem more difficult to
solve.

For all the sequences we calculated the number of people
in the whole frame.

In order to use the proposed system for people counting,
we had first to train the ε-SVR regressor. The minimum
size of the training set needed to achieve an acceptable
performance, as the statistical learning theory by Vapnik
and Chervonenkis has demonstrated, depends on both
the complexity of the problem and the complexity of the
estimator to be trained. The method by Albiol et al. uses a
very simple estimator, so that a single frame per sequence is
sufficient for the training. Our estimator is more complex,
so it needs more training frames. The training set was
built by manually collecting some samples of people groups
from a subset of the test frames. For each selected box
we calculated the feature vector and the associated ground
truth, that is, the true number of persons that are inside the
box. Samples were carefully selected in order to guarantee
that all the possible combinations in terms of number of
persons in the group, points density and distance from
the camera were adequately represented in the training
set. It is worth pointing out that the required number of
training frames has not to be very large to achieve a good
performance level (in our tests we used about 30–40 training
frames), by taking into account also the fact that a single
frame usually contains several people clusters at different
distances, so it may cover several cases of the function to be
learned.

Testing has been carried out by comparing the actual
number of people in the video sequences and the number
of people calculated by the algorithm. The indices used to

report the performance are the Mean Absolute Error (MAE)
and the Mean Relative Error (MRE) defined as

MAE = 1
N
·

N∑

i=1

|G(i)− T(i)|,

MRE = 1
N
·

N∑

i=1

|G(i)− T(i)|
T(i)

,

(4)

where N is the number of frames of the test sequence and
G(i) and T(i) are the guessed and the true number of persons
in the i-th frame, respectively.

The MAE index is the same performance index used
also to compare the performance of the algorithms that
participated to the PETS2009 contest. This index is very
useful to exactly quantify the error in the estimation of the
number of person which are in the focus of the camera, but
it does not relate this error to number of people; in fact,
the same absolute error can be considered negligible if the
number of persons in the scene is high while it becomes
significant if the number of person is of the same order of
magnitude. For this reason, we introduced also the MRE
index which takes into account the estimation error related
to the true people number.

The performance of the proposed method on the
adopted dataset is reported together with that of Albiol’s
method, for which we have provided our own implemen-
tation. The motivation behind the choice of comparing our
technique with respect to Albiol’s method is twofold. First, it
constitutes the base from which we started for the definition
of our method; thus, the comparison allows us to quantify
the improvement provided by the proposed modifications.
Secondly, Albiol’s method has already been compared to
other algorithms based either on the direct or the indirect
approach, in the PETS 2009 contest on people counting, and
has consistently outperformed them. Since our test dataset
contains also the video sequences used for the PETS 2009
contest on people counting, we can reasonably expect that,
at least on that kind of scene, also our method should show
an improvement over those other algorithms.
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Table 2: Performance of Albiol’s algorithm and of the proposed one. In each cell there are reported the values of the MAE and of the MRE
(in parenthesis) performance indices for both Albiol’s and our people counting method, while in the last column there are reported the
relative improvements.

Video (view) Albiol Our Rel. impr. %

S1.L1.13-57 (1) 2.80 (12.6%) 1.92 (8.7%) 31.4% (31.0%)

S1.L1.13-59 (1) 3.86 (24.9%) 2.24 (17.3%) 42.0% (30.6%)

S1.L2.14-06 (1) 5.14 (26.1%) 4.66 (20.5%) 9.3% (21.4%)

S1.L3.14-17 (1) 2.64 (14.0%) 1.75 (9.2%) 33.6% (34.3%)

S1.L1.13-57 (2) 29.45 (106.0%) 11.76 (30.0%) 60.1% (70.7%)

S1.L2.14-06 (2) 32.24 (122.5%) 18.03 (43.0%) 44.1% (64.9%)

S1.L2.14-31 (2) 34.09 (99.7%) 5.64 (18.8%) 83.4% (81.1%)

S1.L3.14-17 (2) 23.78 (54.8%) 24.67 (55.5%) −3.8% (−1.3%)

S3.MF.12-43 (2) 12.34 (311.9%) 0.63 (18.8%) 94.9% (94.0%)

S3.MF.14-37 (2) 29.98 (98.4%) 7.41 (31.9%) 75.3% (67.6%)

Table 3: Performance obtained by the method of Albiol et al. when the original implementation is used or when the SURF points are
adopted.

Video (view) Albiol original Albiol with SURF Rel. impr. %

S1.L1.13-57 (1) 2.80 (12.6%) 3.31 (17.1%) −18.1% (−35.9%)

S1.L1.13-59 (1) 3.86 (24.9%) 4.03 (25.0%) −4.4% (−0.3%)

S1.L2.14-06 (1) 5.14 (26.1%) 7.74 (32.9%) −50.7% (−26.0%)

S1.L3.14-17 (1) 2.64 (14.0%) 8.56 (27.0%) −224.3% (−93.7%)

S1.L1.13-57 (2) 29.45 (106.0%) 25.21 (95.0%) 14.4% (10.4%)

S1.L2.14-06 (2) 32.24 (122.5%) 27.09 (105.5%) 16.0% (13.8%)

S1.L2.14-31 (2) 34.09 (99.7%) 28.60 (83.0%) 16.1% (16.7%)

S1.L3.14-17 (2) 23.78 (54.8%) 22.09 (50.6%) 7.1% (7.6%)

S3.MF.12-43 (2) 12.34 (311.9%) 10.54 (276.0%) 14.6% (11.5%)

S3.MF.14-37 (2) 29.98 (98.4%) 15.74 (50.4%) 47.5% (48.8%)

It is worth noting that also Albiol’s method requires a
training procedure for determining the optimal value of the
interest points per person ratio. This value was determined
by minimizing the MAE on the same set of frames already
used for training our method.

From the results reported in Table 2 it is evident that
the proposed method always outperforms Albiol’s technique
with respect to both MAE and MRE performance indices.

In order to have a deeper insight into the behavior of the
considered algorithms, Figure 6 shows the estimated number
of people with respect to time for both our algorithm and
Albiol’s over two video sequences.

The different behavior of the considered algorithms can
be explained by considering that Albiol’s method hypoth-
esizes a linear relation between the number of detected
interest points and the number of persons without taking
into account the perspective effects and the people density. As
a result this method provides better results when it is tested
on videos characterized by conditions that are similar to
those present in the training videos. Conversely, the proposed
method is more robust with respect to the above problems.

In particular, the Figure 6(a) refers to the view 1 of the
video sequence S1.L1.13-59: this video is characterized by
a group of persons that gradually enters and crosses the
scene. In this view all the persons move in a direction that

is orthogonal to the optical axis of the camera, so that their
distance from the camera does not change significantly dur-
ing their permanence in the scene. Consequently the main
contribution to the performance improvement provided by
our method can be ascribed to the fact that it takes into
account the problem of the occlusions of the persons by
means of points density. In fact, from the figure it is possible
to note that the higher is the number of people, the higher is
the estimation error of the method of Albiol.

In Figure 6(b), that refers to the view 2 of the sequence
S1.L1.13-57, the persons move in a direction that is almost
parallel to the optical axis of the camera; thus in this case
the correction of the perspective effects plays a fundamental
role in the performance improvements obtained by the
proposed method. In fact, in this case the method of Albiol
et al. tends to overestimate or underestimate the number
of persons when they are close to or far from the camera
while it provides a good estimate only when the persons
are at an average distance from the camera (this is evident
by considering Albiol and the ground truth curves in the
figure). On the contrary the proposed method is able to
keep the estimation error low along almost all the sequence.
The exception is represented by the last part of the sequence
where the method tends to underestimate the number of the
person: however, this can be explained by considering that in
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(a) (b)

(c) (d)

Figure 5: Examples of the frames of the video sequences used for the test: (a) S1.L1.13-57 (view 1), (b) S1.L3.14-17 (view 1), (c) S1.L2.14-31
(view 2), and (d) S3.MF.12-43 (view 2).
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Figure 6: Curves of the number of people estimated by Albiol’s and our algorithms in each frame together with the ground truth on the
video sequence S1.L1.13-59 view 1 (a) and S1.L1.13-57 view 2 (b). On the x-axis it is reported the frame number.
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this part of the video the persons are very far from the camera
and most of their interest points are considered static.

In Table 3 we have reported the performance changes
only due to the replacement of Harris corner detector with
SURF. As it could be expected, SURF gives a consistent
performance improvement on the videos corresponding to
view 2, where the persons appear at different distances from
the camera; in this case the SURF approach provides points
that are less sensitive to the scale at which a person is
perceived. On the other hand, for view 1 (where all the
persons are at about the same distance from the camera)
Harris detector gives the best results, since its greater
simplicity makes it slightly more robust to image noise;
however, the flexibility of the trainable ε-SVR regressor is
able to compensate for this weakness of the SURF detector.

5. Conclusions

In this paper, we have proposed a novel method for counting
moving people in a video surveillance scene. The method
has been compared, both theoretically and experimentally,
with the algorithm by Albiol et al. that was the winner of
the PETS 2009 contest on people counting, highlighting the
effectiveness of its enhancements. The experimentation on
the PETS 2009 database has confirmed that the proposed
method is in several cases more accurate than Albiol’s but
retains a comparable robustness that is considered the great-
est strength of the latter. As a future work, a more extensive
experimentation will be performed, adding other algorithms
to the comparison and enlarging the video database to
provide a better characterization of the advantages of the new
algorithm.
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