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Passive source localization is a crucial issue in underwater acoustics. In this paper, we focus on shallow water environment (0 to
400 m) and broadband Ultra-Low Frequency acoustic sources (1 to 100 Hz). In this configuration and at a long range, the acoustic
propagation can be described by normal mode theory. The propagating signal breaks up into a series of depth-dependent modes.
These modes carry information about the source position. Mode excitation factors and mode phases analysis allow, respectively,
localization in depth and distance. We propose two different approaches to achieve the localization: multidimensional approach
(using a horizontal array of hydrophones) based on frequency-wavenumber transform (F-K method) and monodimensional
approach (using a single hydrophone) based on adapted spectral representation (FT, method). For both approaches, we propose
first complete tools for modal filtering, and then depth and distance estimators. We show that adding mode sign and source
spectrum informations improves considerably the localization performance in depth. The reference acoustic field needed for depth
localization is simulated with the new realistic propagation modelMoctesuma. The feasibility of both approaches, F-K and FT,, are
validated on data simulated in shallow water for different configurations. The performance of localization, in depth and distance,

is very satisfactory.

1. Introduction

Passive source localization in shallow water has attracted
much attention for many years in underwater acoustics.
In this environment and for Ultra-Low Frequency waves
(1 to 100 Hz, denoted further ULF) classical beamforming
techniques are inappropriate because they do not consider
multipath propagation phenomena and ocean acoustic
channel complexity. Indeed, ULF acoustic propagation in
shallow water waveguides is classically based on normal
mode theory [1]. ULF band is very attractive for detec-
tion, localization, and geoacoustical parameter estimation
purposes, because propagating acoustic waves are almost
not affected by absorption and thus can propagate at very
long ranges. In this context, mainly two approaches are
used: Matched-Field Processing (denoted MFP) [2, 3] and
Matched-Mode Processing (denoted MMP) [4-6]. The com-

parative study of both approaches is given in [7]. Matched-
Mode approach can be considered as MFP combined with
modal decomposition. The main difference is that MFP
operates in receiver space and MMP in mode space. Both
methods require a reference acoustic field (replica field) to
be compared, generally by correlation techniques (building
and maximizing an objective function), with the real acoustic
field recorded on receiver(s). Another alternative to perform
source localization is to use time reversal [8] which can
be seen as a broadband coherent MFP. Some experiments
have been performed showing the feasibility of the method
[9]. The main drawback of the method is that a numerical
backpropagation has to be computed which needs a good
knowledge of the environment. As MMP is less sensitive
to environmental mismatches than MFP and Time Reversal
methods, this technique is more interesting for practical
applications, and thus is used in our approach to estimate


mailto:maciej.lopatka@me.com

the source depth. The access to modes not only allows
estimation of mode excitation factors for depth localization,
but also gives the possibility to analyze mode phase to extract
information about the source distance. As a result, in this
paper depth estimation is performed using MMP on the
mode excitation factors and distance estimation is achieved
by mode phase analysis.

Consequently, the main issue to perform underwater
localization for ULF sources in shallow water is to develop
signal processing methods to accomplish modal filtering.
These methods should be based on physics of wave propa-
gation in waveguides, to be adapted to signals propagating in
shallow water environment. In this context, we propose two
complementary techniques to localize broadband impulsive
source in depth and distance. The first method based on
frequency-wavenumber transform and denoted F-K is a
multidimensional approach based on array processing. The
second method based on adapted Fourier transform and
denoted FT, is a monodimensional technique used on a
single hydrophone.

Traditionally, matched-mode localization was applied on
vertical line arrays (VLAs), and mode excitation factors
were extracted by a spatial integration of pressure field. As
proposed in [10, 11], we record the signal (represented in the
space: radial distance r and time ) on a horizontal line array
(HLA), as it is generally more practical in real applications
(towing possibility, faster deployment, and stability). In
this configuration, modes can be filtered in the frequency-
wavenumber plane (f-k), which is a two-dimensional
Fourier transform of radial distance-time section (signal r-t).

For the mono-dimensional approach, modes cannot
be filtered by conventional modal filtering techniques. As
modes have nonstationary properties, the only way to filter
modes is to integrate modal time-frequency characteristics
[12] into modal filtering. The main idea is to deform a
signal in such way that nonlinearities in the time-frequency
plane become linear (according to the frequency domain).
Consequently, the signal becomes stationary and classical
filtering tools can be used to filter modes. Hereby, modal
filtering in mono-dimensional configuration is done in an
adapted frequency domain (Pekeris Fourier transform). The
classical and adapted frequency domains are related by the
unitary equivalence formalism [13].

After a brief presentation of modal propagation theory,
we give a short description of the simulator Moctesuma-2006,
which is used for simulation of acoustic replica fields and
acoustic parameter computation. Then, we present details
about the experimental configuration. Next, we describe
mode filtering methods in the mono- and multidimensional
cases to finally present estimators used for depth and distance
localization. Finally, results of distance and depth localization
for mono and multidimensional method are presented on
simulated data.

2. Modal Propagation and Modes

Acoustic propagation of Ultra-Low Frequency waves in
shallow water waveguide can be modeled by normal mode
theory. Propagating signal at long range is composed of
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dispersive modes. These modes are analyzed for depth
(matched-mode processing) and distance (mode phase pro-
cessing) localization.

To demonstrate very succinctly the idea of localization
using modes, we introduce the simplest model of oceanic
waveguide—the perfect waveguide. Even if this model is a
simplification of real complex waveguides, it reflects the most
important waveguide phenomena: modal decomposition of
the propagated signal.

The perfect waveguide model is made of a homogeneous
layer of water between perfectly reflecting boundaries (a
pressure release surface and a rigid sea bottom). The water
layer is characterized by depth D, velocity Vi, and density
p1. We consider an omnidirectional point source located at
depth z, and at distance 0 radiating a signal s(¢). The acoustic
pressure field P(r,z,t) received at a reception point of
coordinates (r,z), where r and z are, respectively, horizontal
distance and depth, can be expressed by

P(r,z,t) = Lp(r,z,f) e 2mft df, (1)

where t is the time, f is the frequency, and p(r, z, f) satisfies
the general Helmholtz equation.

Using variable separation (in depth and in range) and
boundaries conditions [1], the pressure p at long range
becomes a sum of modes

e—Zink,mr

p(r,z,f) =A- S(f) : nngm(Zs)WV”(Z’) N/ (2)

with A a constant, S(f) the source spectrum, v,, the modal
function of mode m, and k;,, the horizontal spatial frequency
of mode m. The spatial frequency k is defined by k =
f/V1 and it corresponds to the classical wavenumber divided
by 27 In the following, for the sake of simplicity, we
will call k the wavenumber with its horizontal and vertical
components k, and k, (instead of spatial frequency). The
mode wavenumber spectrum is discrete and each mode
is associated with an unique wavenumber. The amplitude
V¥m(zs) is a function of the source depth z;:

Um(zs) = Jg sin(kzmzs) (3)

with kz, = (2m — 1)/4D.

This short theoretical introduction of normal mode the-
ory made on the example of perfect waveguide exposes the
principle used for source depth estimation; mode amplitudes
depend on source depth z; by the factor v, (z;).

Then, let us demonstrate very shortly the principle of
mode phase processing for distance estimation. Modes con-
tain, besides depth information, also distance information
about the source. This information is contained in mode
phase. The phase of mode m at frequency f is defined by

O (f) = +4:(f) +2mft
+ (P(Wm(zs)) + ‘p(Wm(Zr)) + krm(f)r>

(4)
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F1GURE 1: Sound speed profile of the water column for Mediterranean Sea in summer.

where

(1) ¢s(f) is the phase of the source at frequency f;

(ii) 27 fty is a phase factor due to time delay t, of the
recorded signal;

(iii) ¢(wm(zs)) depends on the modal function sign at the
source depth zg; it is 7 if y,,(2,) < 0 and 0 if ¥, (25) =
0;

(iv) ¢(¥m(zr)) depends on the modal function sign at the
receiver depth z,;

(v) kym(f)r is a phase factor at frequency f linked to the
propagation distance r between source and receiver.

As one can notice, modal decomposition is a very
useful theory for acoustic propagation in oceanic waveguide.
Indeed, MMP uses this decomposition to perform localiza-
tion [14].

In this section we demonstrated that by having access
to modes, and more precisely to their excitation factors
and phases, it is possible to localize source in depth and in
distance.

Moctesuma-2006. To perform the depth estimation using
MMP, we need an acoustic model to generate replica fields.
Several classical underwater acoustic propagation models
exist in the literature and are used according to the seabed
depth, the source range, and the frequency band. Models
are based on different theories: ray theory, parabolic equa-
tion modeling, normal mode models, and spectral integral
models [1]. Among the different models we choose the
numerical model Moctesuma-2006—a realistic underwater
acoustic propagation simulator developed by Thales Under-
water Systems [15]. For the sake of simplicity Moctesuma-
2006 will be called further Moctesuma. This model, based
on normal mode theory, simulates an underwater acoustic
propagation for range-dependent environments. It is well
adapted to transient broadband ULF signals for shallow and
deep water environments. Moreover, we choose Moctesuma
as it provides the acoustic parameters of the environment
(wavenumbers) and the full acoustic field (time-series) [16].

The transmitted transient signal is first split into narrow
subbands signals through a set of bandpass filters. Each

subband is associated with a central frequency for which
acoustic modes are fully computed. For each mode in each
subband, propagation consists in delaying the original signal.
The summation is performed in the time domain, so the
signal causality is necessarily satisfied. Moctesuma considers
different acoustic signal phenomena such as penetration,
elasticity, multiple interactions inside multilayered sea bot-
toms and water. The time and space structure of waves
is analyzed beyond simple wavefronts and Doppler effect
(moving source and/or receiver).

A set of parameters is necessary to make a simulation
with Moctesuma. The first parameter group concerns a
description of the environment. As it is a range-dependent
model, parameters are given for each environment sector.
User has to provide following environmental parameters:
sea state, temperature, sound speed profile, seabed type
(or precise seabed structure). The second parameter group
concerns the input signal and the experiment configuration
(coordinates, depths, speeds and caps of the source and the
antenna, antenna’s length, and sensors’ number).

In our analysis, we use Moctesuma to simulate the refer-
ence acoustic field (in the MMP) and to access the acoustic
parameters of the environment such as horizontal wavenum-
bers, group velocities, and mode excitation factors signs.

3. Experimental Configuration

3.1. Environment. The analysis presented in this paper is
done in a simulated shallow water environment located
in the Mediterranean Sea during a summer period. The
environment is range independent with a water depth
of 130m. The sound speed profile of the water column
(Figure 1) is characterized by a strong negative gradient of
approximately 25 m/s. The highest gradient is located in the
first half of the water column. The seabed parameters are
presented in Figure 2. Modal functions no. 1 to 9 of the
studied environment are presented in Figure 3.

3.2. Signal Sources and Reception Configurations. In this
paper we consider two impulsive broadband sources in
the ULF band: the first one ULF-1 lasts several tens of
milliseconds and has a flat spectrum; the second source
ULF-2 lasts several hundreds of milliseconds and is made
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FIGURE 2: Vertical structure of the seabed: P-wave velocity (a), P-wave attenuation (b) and density (c).
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F1GURrk 3: Theoretical modal functions no. 1 to 9 based on Moctesuma’s modelization. The frequency-dependent functions are calculated as

a mean over frequency band 1 to 100 Hz.

of four band signals (“4 hills” spectrum). Both signals are
presented in temporal and spectral domains in Figure 4.

The source ULF-1 is used to validate the methods in a
simple case. For a more complex situation source ULF-2 is
then used in Section 6.3.

Signals radiated by source are recorded on a horizontal
line array (HLA) after acoustic propagation. The HLA is
800 m long and is composed of 240 omnidirectional equi-
spaced hydrophones (separated by 3.347 m). The sampling
frequency is 250 Hz.

The experimental configuration is given on Figure 5.
Three different source depths z; are studied: 40 m, 70 m, and

105 m. The horizontal distance between the source and the
first sensor of HLA is equal to 10km. The HLA is located
on the sea bottom (zyra = D). The HLA can be located
at any depth, but this information has to be known. In our
simulations the source and the HLA are motionless.

3.3. Data. Moctesuma simulator provides a section of the
pressure recorded on the HLA P(r,zura,t) denoted signal
r—t for the sake of simplicity in the following. It is a sampling
of the pressure field in radial distance r and in time ¢. The size
of the data is defined by
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(i) number of hydrophones (traces) N;

(ii) duration and frequency sampling of the recording
(number of samples n;).

The “real data” is obtained by adding a white bi-
dimensional (in time and in space) Gaussian noise to the
simulated data. Several signal-to-noise ratios (SNRs) are
considered.

4. Filtering Methods

In this paper, source localization in depth and distance
is performed either by multi-dimensional or by mono-
dimensional approach. The first one will be called F-K
approach (as the method operates in the frequency-
wavenumber domain f-k) and the second one FT, approach
(as the method is based on adapted Fourier transform).
They both achieve modal filtering which is described in this
section.

For the first approach, in the frequency-wavenumber
plane (f-k) modes are separated and thus can be filtered.
In the second approach, which is theoretically more difficult
as we have a single hydrophone, modes are not easily
separable and thus, cannot be filtered using classical signal

representations such as Fourier transform or time-frequency
representation. As proposed in [12, 17], we use an adapted
frequency representation in which modes are separable and
consequently can be filtered.

4.1. Multi-Dimensional Approach. In the multi-dimensional
case, the radial distance-time section P(r, t) is represented in
the frequency-wavenumber plane f-k. The transformation,
called F-K transform and denoted by P(k;,, f), is linked to
P(r,t) via a two-dimensional Fourier transform (in radial
distance r and in time t). The F-K transform of the signal
P(r,t) is defined by

Prtke ) = |[ | Porne k0 auar| - (s)

To improve dynamics of modal representation and avoid
spatial aliasing in the f-k plane, a Vi velocity correction
on the section P(r,t) is applied before calculating F-K
transform [11] (classical preprocessing technique used in
array processing). This operation consists in applying to
every trace of the section a time shift, so that the direct
wave (traveling with speed Vi, equal to V; in the perfect
waveguide) arrives at every sensor at the same time (giving
an apparent infinite velocity). Let us denote X(k, f) the
F-K representation of the section x(r,t). Then, F-K repre-
sentation of the section after velocity correction y(r,t) =
x(r, (t+ 1)/ Vier) is

Yk f) - X(’”V;f ,f). ©)

The consequence of this processing is a shifting of every
point in the f-k plane in such way that the spatial aliasing
is canceled and the representation space of modes is much
larger (greater dynamics, simpler filtering).



Dispersion curves
Modes: 1-10
Cut at Vipax = 6000 (m/s)

120 ¢

100

80

60

Frequency (Hz)

40

0p e A J
0 . . . . .
—0.03 -0.025 -0.02 -0.015 -0.01 —0.005

kem (m™1)

(a)

EURASIP Journal on Advances in Signal Processing

Dispersion curves
Modes: 1-10
Cut at Vipax = 2000 (m/s)

120 -

100 F

80

Frequency (Hz)
(o}
(=}

40 f
20 }
0 . . . . .
—0.03 -0.025 -0.02 -0015 -0.01 —0.005
kem (m™1)

(b)

FIGURE 6: Moctesuma’s dispersion curves no. 1 to 10 in frequency-wavenumber domain after Vi velocity correction (in plot, the mode
number increases from (b) to (a)). Wavenumbers in (a) correspond to all propagating modes (water and seabed), and these in (b) plot
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FiGure 7: F-K transforms of sections r-t simulated with source ULF-1 at 105 m (a) and source ULF-2 at 70 m (b).

If we consider a white broadband source radiating a
transient signal in a perfect waveguide, the F-K transform
of the pressure signal (see (2)) received on the HLA, at long
range, can be approximated by

Pfk (kﬁ f) ~ B(f) ) Z Wm(zs)ll/m(z)(s(kr - krm) (7)
m=1

with B(f) a frequency dependent constant related to the
source spectrum.

The theoretical modal signal energy is located on the
mode dispersion curves k,(m, f) = kpu(f) (the form of
the mode dispersion curves is given in Figure 6). As one
can notice, for each frequency the wavenumber spectrum is
discrete. The F-K representations of two data sets are given in

Figure 7. The first plot shows a simulation done with signal
ULF-1 (flat spectrum) at depth 105 m. The energy is spread
across all the frequency band. The second plot presents a
simulation with signal ULF-2 (“4 hills” spectrum) at depth
70 m. The F-K representation reflects exactly the spectrum
of the source signal (see Figure 4).

As the HLA is located at a known depth, values of the
factors y,,(z) are known. For HLA located on the sea bottom
|wm(2)| = 1 and expression (7) can be rewritten as

Pfk(kr)f)z |B(f)| - Z|1//m(zs)| 'a(kr_krm)- (8)
m=1

The amplitude of the F-K transform for each curve (dis-
persive mode) depends only on the mode excitation factor
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modulus. We use these curves to estimate the excitation
factor modulus of each mode. For a perfect waveguide model
there is no frequency dependence for modal functions, which
is the case in reality. Therefore, excitation factor of mode
m is estimated as the mean value across the frequency
domain. Moreover, mode excitation factors at the bottom
interface are not exactly equal to 1 and will slightly modify
the estimation of the mode amplitude at the source depth.
This phenomenon does not affect the result as the same
methodology is applied for the replica data.

Mask Construction. Once F-K representation of the signal
is calculated, a mask filtering has to be applied to filter
modes. The mask is a binary image (with the same size as
the F-K transform) and is used to extract a mode by a simple
multiplication in the f-k domain. The mask built for each
mode should “cover” the region occupied by this mode in
the f-k plane.

An initial mask of mode m is created using its wavenum-
bers. These can be computed theoretically by a propagation
model if the environmental parameters are known. In our
case they are given by Moctesuma (see Figure 6). Then, the
mask of mode m is dilated independently in both domains
(frequency and wavenumber) with the dilation parameter
diy = [dy’, dy] according to the following formula:

(ks ) = %;S(k —kew(f £ dy - Af) 2 df" - AK),
f
)

where d;’ and d; denote, respectively, dilation sizes in
wavenumber (4] € {1,. }) and frequency (dy €
i1,...,dy,,}) domains, and Ak and A f denote, respectively,
the samphng period in wavenumber and frequency domains.
The first parameter dj* determines the distances between suc-
cessive masks (depends on mode number m) and the second
parameter dy defines the distance of the mask for mode 1
to the frequency 0 Hz. This definition of dilation parameters
makes the mask width in the frequency dimension adapted
to the frequency (narrower masks at high frequencies for
lower number modes and larger masks at lower frequencies
for higher number modes). The dilation process is restricted
by limitation that the masks for different modes must not
overlap. These masks allow an efficient filtering even for
higher modes which are usually more difficult to filter.

The simulated environment has to be as close as possible
to the real environment to achieve a good filtering of modes.
Moreover, it is necessary to dilate the previous theoretical
mask for two reasons:

(i) the limited HLA length-mode energy spreads around
dispersion curves in the f-k plane;

(ii) the mismatch between real and simulated environ-
ments [11].

A total set of masks for the studied environment is given
in Figure 8. This set contains 14 masks which corresponds to
the total number of propagating modes in this environment.
An example of the mask adapted to mode no. 4 is given in

Masks
Modes: 1-14
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kem (m™1)

0 .
—-0.025 —0.02

FIGURE 8: Set of binary masks in the f-k domain built from
dispersion curves given in Figure 6 by bi-dimensional dilatation
process. The set is complete for the studied environment.
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FIGURE 9: Binary mask used to filter mode no. 4.

Figure 9. The mask of mode no. 4 is built starting from its
dispersion curve (see Figure 6, 4th trace counting from right
to left) and then dilated according to (9).

The energy spectrum of data in Figure 7 (a) is shown in
Figure 10. For each mode the energy is calculated as a mean
of the f-k region where this mode is present (after mask
filtering).

In Figure 11 we present the result of the mode filtering
for modes nos. 1, 4 (mode with very low energy), and 6 (the
mode with the highest energy).

4.2. Monodimensional Approach. In the mono-dimensional
configuration, classical signal representations such as Fourier
transform or short-time Fourier transform are not suited
for description of a signal that can be decomposed in a
sum of dispersive modes (nonstationary and nonlinear time-
frequency patterns). Therefore, these techniques cannot
correctly represent the signal having modal structures (see
Figures 12(a) and 13(a)). This signal processing problem has
attracted much interest for the last decades [13, 18, 19]. In
this paper we based our monosensor approach on works
[12, 17, 20]. The idea is to find a representation well adapted
for modal signal structure to achieve modal filtering. The
best way is to take into account the physics of oceanic
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waveguide propagation and build a representation adapted
to the signal structure in the same way as Fourier transform
is adapted to a monochromatic signal. Here, we discuss only
an adapted frequency representation FT,. However, on the
same rule an adapted time-frequency representation can be
constructed and used [12, 17].

The adapted processing tools are based on the com-
bination between acoustic wave propagation (waveguide
propagation law) and signal processing theory (unitary
equivalence). Building of the adapted frequency representa-
tion is based primary on definition of the unitary operator
of transformation adapted to guided waves. This unitary
operator is linked to the dispersion law v,, = f(t), where v is
the instantaneous frequency and ¢ is the time. For a perfect
waveguide model and for each mode m the dispersion law is
defined by

Vln)frf(t) _ 2m—1)Vit ’
ap[2 - (r/V1)’]

(10)

where V; is the sound speed in water, D is the waveguide
depth, ¢ is the time, and r is the distance. This relation defines
temporal domain of group delay Dy = (R*/V1, +o0], where
R*/V7 is arrival time of the wavefront.

Starting from the dispersive relation given in 10, the
instantaneous frequency vy, is the derivative of the instan-

taneous phase gbfnarf(t):

(1) = 2nj A ()
t

. (em-1V, r\? (11)
727'[74D |:t2— (W) ]

=2y (m)&(t)
with v.(m) the cut-off frequency of mode m defined by
ve(m) = @m = )V l)vref. (12)

4D

&(t) is called the general dispersive function and is defined as

follows:
(1) = [tz - (Vrl)z] (13)
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As a result, the pressure signal of the perfect waveguide
model is defined by

pparf(t) _ ng(t)ehivc(wf(t) (14)

with g, (t) the envelope evolution of mode m. The unitary
operator of transformation should transform nonlinear
mode structures in linear ones (in time-frequency domain),
and thus allow the use of classical Fourier filtering tech-
niques. In construction of such representation, the unitary
equivalence formalism is used [13]. One of the unitary
operators is a warping operator W, (applied to a signal x(¢))
defined as follows:

aw(t) 1/2

5 - x[w(t)]. (15)

(Wyx)(t) =

The function w(t) has to be derivable and bi-univocal,
and function w~!(¢) has to exist. The operator W,, is applied
to the signal in order that (W,, pP*®)(¢) becomes a sum of
linear structures

ow(t 1/2 )
(Wwpparf) (t) = Z 1’;5 ) ‘ C,p 2 e (miw(n)], (16)

To do so, we deduce from (16), the deformation function
w(t) defined on R* — Dy

2
w(t) = E1(1) = <t2 + %) (17)

Finally, the unitary operator of transformation adapted
to a perfect waveguide is

1/2

aw(t) Cmleriv[(m)t_ (18)

(WWpParf>(t) _ Z .

m

Note that this tool is reversible, so one can go back to the
initial representation space (time or frequency).

In this short presentation of adapted transformation for
the perfect waveguide we demonstrated the principal idea
of this technique which consists in transformation of modes
into linear structures. In our work we use a method adapted
to Pekeris waveguide model, as it is a more complex model
(closer to reality) taking into account the interaction with the
sea bottom (described in details in [12]).

As the non-linear time-frequency signal structures
become linear after this transformation, the signal becomes
stationary (see Figures 12(b) and 13(b)). In this case, one
can use classical frequency filtering tools to filter modes. The
modal filtering is then done in the adapted frequency domain
(Pekeris frequency) by a simple bandpass filtering defined by
the user.

5. Estimators

In Section4 we demonstrated how extracting modes
from the recorded signal by multi and mono-dimensional
approaches. In this section we discuss depth and distance
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FIGURE 11: Modes nos. 1, 4, and 6 extracted from F-K representation given in Figure 7(a) by mask filtering.
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TABLE 1: Values of A¢(m, n,z).
Sign of y,(z)
+ —
Sign of Yin(2) * 0 n
- T 0

estimators based on modal processing. For depth estimation,
we use a matched-mode technique, and for distance esti-
mation our approach is based on mode phase analysis. For
both approaches, F-K and FT,, we use the same estimators
for localization in depth and distance. The only difference
is the representation space of modal filtering: frequency-
wavenumber for F-K method and adapted Fourier spectrum
for FT, method.

5.1. Range Estimation. The range estimation is combined
with the mode sign estimation; therefore we call the esti-
mator sign-distance estimator. The estimator applied only
on the real data is based on mode phase analysis and
calculates a cost function C based on two mode phases
(m and n, where n > m) extracted from the data. Modes
are not necessarily consecutive; however their numbers and
associated wavenumbers (calculated by Moctesuma) have to
be known.

The sign-distance estimator is originally based on a work
published in [20]. We present this estimator very succinctly,
more details can be found in [21]. The principle is based on
the definition of mode phase given in (4). To suppress the
unknown parameters in this equation, the initial estimator
A® uses the difference between two mode phases:

AD(m,n, f) = O (f) = Pu(f)

= Ap(m, n,z) +Ad(m, n, zgra) +r Ak, (m, n, f)
(19)

with
(i) A¢(m,n,z) being difference between two mode
phases at depth z; the values of this parameter are
defined by (for details see Table 1):
Ap(m,n,2) = ¢(ym(2)) — ¢ (yn(2))

= n(ssign(lpm(z)),f sign(y,(z)) (mOd(27T)))

(20)

(ii) Ak, (m, n’f) = krm(f) - krn(f)

The estimation is done in sequential way; that is, superior
mode signs (of order n) are estimated using inferior mode
signs (of order m). The starting point is the absolute mode
sign of mode no. 1 which is always positive: §abs(1,zs) - +.
For example to estimate the sign of mode n = 5, one can
use in theory modes m = {1,2,3,4}. As the frequency band
shared by two modes (m and n) has to be maximized for
the estimation performance, we propose the following rule to
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TABLE 2: Absolute mode sign choice rule: the absolute sign of mode
n ibs(n,zs) depends on the absolute sign of mode m §abs(m, z,) and
the pass function A¢(m, n, z;) (Where n > m).

Sas (11, 2) Ap(m,n,z,) Sabs (11,25)
+ 0 +
+ m -
— O —
- n +

choose inferior mode number () for estimation of superior
sign mode number (n):

m={n—-3n-2,n—1}. (21)

The sign of A¢p(m,n,zura) is known as the depth z of
HLA is known (in our case it is D). To estimate mode signs
for real data, for each frequency f the quantity Ad., is
measured, and then we calculate the cost function C defined
as

2
>

C(T, A¢(m) n, Zs)) = Z ’ d(A(Dexp(m’ n, f)y AD(m, n, f)
f
(22)
where d is the distance function defined as

d(¢1,¢2) = arg(exp(i(¢1 — ¢2))) (23)

with arg defined on a basic interval (—m,7]. The sign-
distance estimator is found by the minimization of the cost
function C:

{?, Ap(m,n, Zs)} = arg min

C(l’, A¢(m) n, Zs))) (24)
r,A¢(m,n,z,)={0,m}

where 7 € (min, max) and

0 if modes m and n have the same signs,

AA¢(m, n,zs) = <|

7 if modes m and n have opposite signs.
(25)

The sign-distance estimator is calculated for 2 possible
values of AAq’)(m, n,zs): 0 and 7. By minimizing C, we find the
searched value of &b(m, n,zs) (using (25), the relative sign
between modes m and n is estimAated) and also the distance.
As we know the absolute sign S;ps(m,2;) of inferior mode
m (known or estimated in previous step of estimation) and
the estimated value of the pass function &/)(m, n, z;) betwen
modes m and n, we can find the absolute sign of mode
n — §abs(n,zs). The rule of mode sign estimation is given
in Table 2.

The mode sign estimation for Ny,oq = K takes at least
K — 1 steps as the first mode sign is always positive and as the
estimator works sequentially on mode couples.

5.2. Depth Estimation. Source depth estimation is based
on Matched-Mode Processing. The principle of MMP is
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FIGURE 14: Theoretical ambiguity functions for matched-mode localization. Results obtained for the set of modes 1 to 5 and frequency band
(5,95) Hz. In (a) the contrast function G is calculated at the basis of mode excitation factor modulus, and in (b) the mode sign information

is integrated.

to compare modes in terms of excitation factors extracted
from the real data with those extracted from the replica
fields. The modeled acoustic field (replica) is simulated with
Moctesuma. The depth estimator is based on a correlation
which measures a distance between mode excitation factors
estimated from real and from simulated data (for a set of
investigated depths). The depth for which this correlation
reaches maximum (the best matching) is chosen as the
estimated source depth.

The mode excitation factors are extracted by F-K or
TF, approach on real and replica data in the same manner.
They are positive as they are extracted from positive value
spaces (F-K transform or modulus of the adapted Fourier
transform). Their signs are then obtained using the sign-
distance estimator presented in the previous section. The
mode signs are estimated only for real data. For the reference
data, as the simulations are done for a set of determined
source depths, mode signs are known. The combination of
mode excitation factors with mode signs allows canceling
secondary peaks in the correlation function. These peaks
are due to “mirror solutions” of modal functions for some
depths when considering only mode excitation factor modu-
lus (see Figure 14). Therefore, adding mode sign information
to mode excitation factor modulus improves significantly the
performance of depth localization (shown on examples in
Section 6).

The localization performance is strongly dependent of
the matching accuracy between real and simulated acoustic
fields. Study of the influence of environmental and system

effects on the localization performance is presented in [11,
22]. The dilation used to build masks in the f-k plane makes
the method more robust against these errors.

To compare mode excitation factors extracted from real
and simulated data, a normalization based on the closure
relationship is applied:

D em(z) =1, (26)

where ¢,, is an excitation factor of mode m. Then, the
comparison between mode excitation factors extracted from
the real data ¢! and replica data c™! is made using the
contrast function G:

Numod ( .real _ .simul 2
GNmod (Zs) _ _1010g(2m=1 (Cn;\] Cm (Zs)) )’ (27)
mod

where N 04 is the number of analyzed modes

z, = arg max Gy, (z,). (28)
Zs

The maximum of G indicates the estimated depth of the
source.

In matched-mode localization, modes for which the
function G defined by (27) is calculated are theoretically
unrestricted. However, in case of ULF localization, only the
first modes are used. The upper mode number limit is given
by the environment and existence of cut-off frequencies as
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the methods presented in this paper are based on broadband
signal processing. In our analysis the number of used modes
is between 5 and 7.

Theoretical performances of depth localization for the
studied environment and for all source depths are presented
in Figure 14 (each vertical line corresponds to a contrast
function G). The figure presents two plots: for the method
without mode signs (a) and for the method with mode
signs (b). The result is obtained by the application of (27)
to mode excitation factors directly taken from Moctesuma
simulations. For the method without mode signs, one can
notice the existence of “mirror solutions” which is a line
of secondary peaks intersecting with the primary peaks line
indicating the true source positions. That line does not exist
for the method with mode signs, as the “mirror solutions”
are cancelled by adding mode signs to mode excitation factor
modulus. In such way, one can remove the localization
ambiguity, which is problematic especially in low signal-to-
noise conditions.

5.3. Source Spectrum Estimation. To perform matched-mode
localization, knowledge (at least partial) of quantities such
as geoacoustical parameters of the environment and spectral
characteristics of the source is crucial. This results from the
fact that the simulated acoustic field should be simulated
in geoacoustical conditions similar (as much as possible)
to the real conditions existing in the location of interest.
In general, environmental parameters can be estimated
using inversion methods [23, 24]. Unluckily, in passive
approach the knowledge of the source spectrum remains
notwithstanding problematic. As the influence of the source
spectrum is relevant (see (2) and (7)), we propose an
estimator of source spectrum based on the analysis of the
first mode (most horizontal), as this mode is always excited.
The property of distinct attenuation of signal frequencies
(growing non linearly with the frequency) is taken into
account by the estimator in order to improve estimation
quality. The proposed estimator can be formulated as
follows:

- 1Y

X(f) = A(f) - i 22X (), (29)
"'n=1
where Xi( f) is the estimated source spectrum, A(f) is
a spectral factor correcting the signal attenuation over
frequency, N, is a number of hydrophones, and X,™°d {1} ( )
is the spectrum of the first mode on hydrophone # estimated
from the f-k plane. For better performance the correction
factor A(f) can be measured in the field (by recording
a known broadband signal at some distance). As we do
not operate on real field data, to calculate A(f) we use
theoretical values of spectral attenuation (for frequency
range of interest).

6. Localization

We present some examples of source localization using
methods described in Sections 4 and 5. First, examples of
localization in distance and in depth are presented using a
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single hydrophone, and then using a horizontal hydrophone
array (HLA). Moreover, we show the interest of mode signs
and source spectrum estimations in case of depth localization
by F-K and FT, approaches. Due to limited paper’s length,
we do not expose here the study of the robustness of
the methods against noise. These considerations have been
studied in [11, 25]. We give only some most important
conclusions. The simulations on source depth estimation
demonstrate that to obtain the primary peak-to-secondary
peak ratio of 10dB the signal-to-noise ratio has to be
superior to —5dB for F-K method and 5 dB for FT, method.
The impact of noise on source range estimation seems to
be more relevant. These considerations concern white (in
time and in space) gaussian model of local (non propagating)
noise.

6.1. One Hydrophone. The objective of this section is to
show performance of FT, localization method using a single
hydrophone. The methods are validated for the environment
and configuration described in Section 3 for a signal-to-noise
ratio of 15 dB. The distance between source and hydrophone
is equal to 10 km. Source is deployed at 40 m of depth and
the hydrophone is on the seabed.

We first apply the deformation of the signal described in
Section 4.2 for the Pekeris model. The parameters used to
warp the modal signal are

(i) water column depth: 130 m;

(ii) sound speed velocity in water: 1500 m/s;
(iii) sound speed velocity in sediments: 2000 m/s;
(iv) water density: 1 kg/m?;

(v) sediment density: 2 kg/m>.

Within the parameters, the water column depth is a
correct value, and other parameters are approximations of
the real values to demonstrate robustness of the method.

Then, the FT, method allows a filtering of modes (classic
bandpass filter applied on spectral representation given in
Figure 13(b)), and these modes are analyzed for distance and
depth estimation.

6.1.1. Distance. For the distance localization an access to
mode phases is essential. First, a modal filtering by FT,
is performed and then for each analyzed mode, its phase
is calculated through a Fourier transform. Wavenumbers
needed by the estimator defined in (19) are provided by
Moctesuma.

In Figure 15 we show the cost function C corresponding
to several distance estimations. As the distance estimator
works on mode couples, we present five distance estimations
for mode couples: (2,1), (3,1), (4,2), (5,3), and (6,4) and
research area r € (8,13) km with a step Ar = 25m. The
estimated distances are given in Table 3 (the real distance is
10km). The first 4 estimations are correct, and the last one
is false, which is due to limited frequency band of mode 6.
Moreover, the sign-distance estimator provides mode signs.
For this example, the mode signs were estimated on the same
mode couples as distance. The estimation of mode signs no.
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FiGure 15: Cost functions C of sign-distance estimator in a single hydrophone scenario. The results are given for mode couples: (2,1), (3,1),
(4,2), (5,3), and (6,4) and radial distance search zone r € (8, 13) km. The source is 10 km distant from the hydrophone. Solid and dashed

lines are given for two possible values of AAQS(m, n,z): 0 and 7.

1 to 6 is correct and the absolute signs are 1 — +,2 — —,
3 > +,4 - +,5— —and6 — +.

6.1.2. Depth. For depth localization an estimation of mode
excitation factors is needed. First, a modal filtering is
performed on real and simulated data by FT, approach,
and then for each analyzed mode, its mode excitation factor
modulus is calculated as a mean over frequency. Moreover,
mode signs estimated above can be used in the contrast
function G.

In Figure 16 we show the result of depth localization.
The performance is given for the methods “without mode

signs” and “with mode signs.” The difference in performance
between two methods is relevant which results from the
importance of taking into account mode signs when cal-
culating the contrast function G. The method “with mode
signs” eliminates the “mirror solutions” (decrease of the
contrast function G from 22.5dB to 4.5dB for a secondary
peak at 105m by adding mode signs). Figure 17 highlights
also a problem that can appear when adding mode signs:
if the mode sign estimation is false (here, sign of mode
3 is false), then the localization performance decreases
significantly. However, as one can choose between 3 options
when estimating mode signs (the current mode sign # is
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FiGurg 16: Contrast functions G for depth source localization by
FT, approach. The results are given for methods: without mode
signs (circles) and with mode signs (squares). The source is located
at 40 m of depth. The vertical resolution is 5 m.

estimated using three inferior modes m = {n —3,n —2,n —
1}), the probability of this error should decrease (if the
signal-to-noise ratio is sufficiently high).

Due to the oscillating character of modal functions and
because we consider only modal function modulus, there
exist “mirror” depths which give secondary peaks in the
contrast function G (Figure 14(a)). To explain this fact and
the reason why they disappear when integrating mode signs
in the depth estimation, let us present an example. Figure 18
shows 6 mode excitation factors extracted from simulated
data at two different source depths: 40 m and 105 m. For
these two depths the mode excitation factor moduli are
almost the same (Figure 18(a)), and so the difference in the
contrast function for these depths is not relevant. When the
complete information about mode excitation factors (i.e.,
modulus and sign) is considered (Figure 18(b)), these depths
become discriminated. This is due to especially modes no. 2,
6, but also 4.

In the mono-dimensional configuration in lower signal-
to-noise ratio conditions the mode sign and distance
estimations can be inaccurate. Also, the depth localization
performance cannot be satisfied. Therefore, we propose the
multi-dimensional configuration that is more robust and
efficient due to a richer information about the source and
the environment recorded on the HLA.

6.2. Horizontal Line Array. This section presents results of
localization in distance and in depth using F-K approach.
The objective is to show the performance of F-K localization
method. The methods are validated in the environment and
configuration described in Section 3 for a signal-to-noise
ratio of 5dB. The distance between the source and the first
hydrophone of HLA is 10 km. The source depth is 105 m and
the HLA is on the seabed.

According to the Shannon theorem and for the ULF
band (fmax = 100 Hz) the maximal spatial sampling should
be done every 7.5m. Thus, in theory we could consider
every second HLA hydrophone without any information
lost (as the whole HLA samples linearly the space every
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FiGure 17: Contrast functions G for depth source localization by
FT, approach with false mode sign estimation. The mode sign no.
3 is estimated with an error (estimated as negative, but should be
positive). The configuration localization is the same as in Figure 16.

TaBLE 3: Results of the source distance estimation for FT, approach.

Mode couple Estimated distance (km)
2and 1 9.925

3and 1 10

4 and 2 10

5and 3 10

6 and 4 9.625

3.347m). However, with a higher space sampling, better
noise canceling algorithms can be implemented. What is
more important, is a length of the HLA. When the length of
HLA reduces, the localization performance decreases. This is
provoked by a spreading of the signal in the f-k plane which
results from a not sufficiently long radial distance sampling
of the modal signal [16]. Different issues of the use of HLA
are discussed in [10].

The first step of the method is a Vier velocity correction
which is done with the minimum value of the sound
speed profile in water Vi, = 1508.4m/s. Then, the F-K
transform is calculated and this representation is used for
mode filtering. These modes are then analyzed for distance
and depth estimations.

6.2.1. Distance. After F-K filtering, the phase of each mode
is calculated through a Fourier transform. The wavenumbers
needed by the estimator defined in (19) are provided by
Moctesuma simulator. This estimation is applied to each
hydrophone of the HLA (240 estimations) [16].

We apply the estimator on five different mode couples:
(2,1), (4,1), (4,2), (5,2), (6,4), and (7,4), and research erea
r € (8,13) km with step Ar = 25 m. The estimated distance
values are given in Figure 19 and its mean values are given
in Table 4. Moreover, the sign-distance estimator gives as a
result mode sign. In multi-dimensional case, we dispose of
N, estimations of mode signs for each mode couple option.
For a mode number equal to 7, the sign-distance estimator
is applied on following mode couples: (2,1) (for mode 2),
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FIGURE 18: Mode excitation factors extracted from 2 simulations: source at 40 m and 105 m of depth. (a) represents the mode excitation
factor modulus (no sign information) and (b) shows the mode excitation factor modulus combined with sign information.
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FIGURE 19: Results of distance estimation by F-K method for 6 mode couples. For each mode couple the estimation is done for all HLA
hydrophones (240 distance estimations). The true value of distance is 10 km.
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TABLE 4: Mean values of source distance estimation for multi-
dimensional approach. The bin width is 5 m.

Mode couple Mean distance value (km)
2and 1 10.01

3and 1 10.01

4 and 3 10.005

5and 2 10

6 and 5 10.005

7 and 6 10.005

(3,1), (3,2) (for mode 3), (4,1), (4,2), (4,3) (for mode 4),
(5,2),(5,3), (5,4) (for mode 5), (6, 3), (6,4), (6,5) (for mode
6), (7,4), (7,5), and (7,6) (for mode 7) and the user has to
select the couple he wants to use. This information is used
here to maximize the probability of correct choice within
available options for each estimation step. As the mode sign
estimation is sequential it is primordial to not commit an
error at the beginning to avoid its propagation. At each step
(for each mode sign estimation) a series of 3 parameters
is calculated to help the user in taking the decision. For
the first step these parameters are calculated once (for the
couple (2,1)), for the second step we dispose of two set
of parameters (for the couples (3,1) and (3,2)), and for
the following steps we have always three sets of parameters.
These parameters are defined as follows.

(i) Choice reliability:

IN — floor(N,/2+1)]
floor(N,/2 + 1)

* 100, (30)

where N is a number of sign changes (N € [0, N,]).
This criteria should be maximal.

(i) Estimation variability:

, (31)

Z(re)”
N,

where r, denotes a set of N, distance estimations
and " denotes a second derivative with respect to
the hydrophone number. For the no-error estimation
of distance the first derivative is equal to interhy-
drophone distance. Then, the second derivative is
equal to zero as the first derivative is a constant func-
tion. This criterion allows to measure the variability
of distance estimations across all hydrophones and
should be minimal.

(iii) Error distance estimation:

| UN, S0 (it — v

i
Te

(32)

>

where r»*! denotes a distance estimation for nth
hydrophone at actual step analysis (i + 1) and 7!
denotes the final estimation of distance from previ-
ous step (i). This criterion allows cancel secondary
peak solutions for which the first two criteria gave
good results and should be obviously minimal.
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Figure 20: Contrast functions G for depth source localization by
F-K approach. The results are given for methods: without mode
signs (circles) and with mode signs (squares). The source is located
at 105 m of depth. The vertical resolution is 5 m.
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FiGure 21: Result of the source spectrum estimation for source
ULF-2 (to be compared with Figure 4(d)).

For the example presented here, the mode signs were
estimated on the same mode couples as distance. The
estimation of signs of modes no. 1 to 7 is correct and the
absolute signsarel - +,2 - +,3 - +4 - —,5 - —,
6 - —and7 — —.

6.2.2. Depth. After modal filtering, the mode excitation
factor modulus of each mode is calculated as a mean over
the f-k region. Moreover, the sign-distance estimator can be
used for mode signs estimation.

In Figure 20 we show the result of depth localization. The
performance is given for method “without mode signs” and
“with mode signs.” The difference between both methods
is relevant which confirms the importance of taking into
account mode signs when calculating the contrast function
G. The method “with mode signs” eliminates the “mirror
solutions” (decrease of the contrast function from 21 dB to
6 dB for a secondary peak at 35 m by adding mode signs).

6.3. Source Spectrum Issue. In Section 5.3 we described
a simple method of estimation of the source spectrum.
Now, we quantify the impact of this estimation on depth
localization.

Let us consider an example of depth localization in the
environment described in Section 3. The source ULF-2 is
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Figure 22: Contrast functions G for depth source localization by
F-K approach combined with source spectrum estimation. The
simulation is given for source ULF-2 located at 70 m of depth and
10km distant from the HLA. (a) shows the gain given by taking
into account the estimated spectrum of an unknown source for
localization method without mode signs. (b) shows this gain in
case of localization algorithm with integrated mode signs into the
contrast function.

located at 70 m of depth. As we do not know the spectral
properties of the localized source we consider two cases.

(i) We use a source with flat spectrum for simulation of
the replica field (source ULF-1)-common approach
when unknown source.

(ii) We estimate a source spectrum by the method
defined in (29) and use it to simulate the replica field.

In Figure 21, we present spectrum of the source ULF-
2 estimated by the proposed method (compare with
Figure 4(d)). The results of localization without and with
source spectrum estimation are shown in Figure 22. We
can note that estimating the source spectrum improves
considerably the localization performance (of about 20 dB in
the example).
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Nevertheless, our method is designed for broadband
sources. Therefore, even if spectral characteristics of the
source are perfectly known, but present narrowband
or comb-type structures, the localization performance
decreases. The performance decrease due to nonbroadband
source is higher than the gain due to acquaintance of source
spectral characteristics.

7. Conclusion

In this paper we propose passive source localization in shal-
low water based on modal filtering and features extraction.
The depth and distance of an Ultra Low Frequency source
are estimated in the mono-dimensional configuration (a
single hydrophone) and in the multi-dimensional configu-
ration (a horizontal line array). The localization techniques
are, respectively, based on adapted Fourier transform and
frequency-wavenumber transform. In both representations
modes are separable and thus can be filtered. We discuss
modal filtering tools, then the localization itself is performed.

For distance estimation, we base our localization method
on the analysis of mode phases. The proposed distance
estimator is naturally combined with mode sign estimator.
For depth localization, we use matched-mode processing,
a technique that widely demonstrated its performance in
a shallow water environment. The principle is based on
comparison (by a contrast function) of mode excitation
factors extracted from real data with a set of mode excitation
factors (for simulated source depths) extracted from replica
data (modeled with Moctesuma). We demonstrate that
adding the mode signs to the mode excitation factor modulus
improves significantly the localization performance in depth.
We also propose a method of estimation of the source
spectrum, which is very important for depth localization
using Matched-Mode Processing.

The localization results, in depth and distance, obtained
on signals simulated with Moctesuma in realistic geophysical
conditions are very satisfactory and demonstrate the perfor-
mance of the proposed methods.
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