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A time-domain filtering algorithm is proposed to recover myocardial kinematic function using output-onlymeasurements without
the time history of external loads. The main contribution of this work is that the overall effect of all the external loads on the
myocardium is treated as a random variable disturbed by the Gaussian white noise because the external loads of the myocardium
are usually unknown in practical exercises. The kernel of our proposed algorithm is an iterative, multiframe, and sequential
filtering procedure consisting of a Kalman filter and a least-squares filter. In our proposed implementation, the initial guess of
myocardial kinematic function and residual innovation of all the state variables are first computed using a Kalman filter via state
space equations only driven by the Gaussian white noise, and then the residual innovation is fed into a least-squares filter to
estimate the total external loads of themyocardium. In the end, the initial guess of myocardial kinematic function is corrected using
external loads provided by the least-squares filter. After the introduction of the whole structure of our algorithm, we demonstrate
the ability of the framework on synthetic data and MR image sequences.

1. Introduction

Ischemic heart disease (IHD), or myocardial ischaemia, is
a heart disease characterized by restricted blood supply to
a certain area of muscle wall of the heart (myocardium),
usually due to the blockage or shrinkage of the coro-
nary artery. The restricted blood supply in the particular
area of the myocardium can cause dysfunction or even
permanent damage (infarction) if left untreated. In daily
clinical practice, because of recent technological advances in
cardiac imaging modalities, particularly magnetic resonance
imaging (MRI), multislice computed tomography (CT),
and echocardiography, assessment of the regional kinematic
function of the myocardium has been largely applied to esti-
mate the location of infarction and evaluate the seriousness
of infarction by clinical specialists. In the medical image
community, the idea to indicate IHD or infarction accurately
via quantification of myocardial kinematic function has
stimulated a huge number of computing algorithms to
overcome practical difficulties, for example, relatively sparse
spatial resolution and low temporal sampling rate of current
imaging modalities. Most early works utilize pixel intensities

to evaluate myocardial kinematic function using one or even
more imagingmodalities [1–3], but the performance of these
approaches varies largely because of the quality of the image.
Recently, more and more feature points, such as tagging
lines [4–6] or boundaries [7, 8], have been introduced as
extra constraints to enhance the performance of intensity-
based approaches, however, these intensity-based approaches
still suffer from noise in the image data. The recovery
of a dense motion field and deformation parameters for
the entire myocardium from a sparse set of image-derived
displacements/veolcities seems an ill-posed problem which
needs more physically meaningful constraints to obtain a
unique solution in some optimal sense.

Therefore, a large number of strategies have been
developed over the past two decades to introduce a vari-
ety of physically meaningful constraints into myocardial
motion analysis, including notable examples of mathemati-
cally motivated regularization [9], deformable superquadrics
[10], spatiotemporal B-Spline [11], Fisher estimator with
smoothness and incompressibility assumptions [12], as well
as finite-element method- (FEM-) based modal analysis [13–
15]. From the introduction of biomechanical model-based
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constraint [16–18] into the medical image community, the
biomechanical model has attracted great attention because of
its physiologically meaningful representation of myocardial
dynamics. Contrary to previous frame-to-frame strategies
with biomechanical model-based constraint, multiframe
analysis strategies are gradually accepted since the periodic
nature of myocardial dynamics is widely recognized. A
number of image analysis works are motivated to adopt
different biomechanical models from system point of view
[19, 20]. In [21], the authors adopt system control the-
ory [22] into medical image analysis by establishing a
biomechanical model-based state-space framework for the
multiframe estimation of the periodic myocardial motion:
“the physical constraints take the role of the spatial regulator
of the myocardial behavior and spatial filter/interpolator
of the data measurements, while techniques from statis-
tical filtering theory impose spatiotemporal constraints to
facilitate the incorporation of multiframe information to
generate optimal estimates of the myocardial kinematics in
2D.” The authors of [21] also apply a similar state-space
filtering structure to estimate parameters of biomechanical
models and myocardial motion simultaneously in [23, 24],
but the filtering techniques in [23, 24] are realized by the
extended Kalman filter and H∞ filter, respectively. However,
the computation of the Kalman filter has prohibited its
popularity in 3D motion analysis. Thus, a reduced-rank
Kalman filter was proposed to reduce the computation
and estimate 3D myocardial kinematic function using a
small number of principal modal components in [25]. In
spite of the potential advantage of computational speed in
[25], the effect of infarction might not be reflected by a
small number of principal modal components because the
influence of infarction to the whole myocardium could be
localized and small. In the most recent works feedback,
control techniques are also applied to estimate cardiac
motion with a collocate state estimator [26] and parameters
of biomechanical model using an extended Kalman filter [27]
or H∞ filter [28] seperately. Despite sharing the same origin
from the control theory, techniques in [26–28] still belong to
the class of “deterministic models” as defined in [29], which
are different from “stochastic models” in [21, 24]. However,
the importance of external loads to the biomechanical model
has not been addressed in multiframemedical image analysis
in spite of a simple fact that the loading condition of each
patient is not the same. Though different biomechanical
constraints, from isotropic material to anisotropic material
or from small deformation to large deformation, have been
applied tomyocardial motion analysis, most of works assume
external loads of the biomechanical model as implicitly
available forces from the image-derived boundary [18, 23,
24] or from a priori knowledge [26–28, 30]. In [31], external
loads are obtained by a weighting between boundary-derived
force from images and the electrical force from simulation.
All these deterministic treatments of external loads are not
patient-specific and a minor error in external loads might
alert the dynamics of the same biomechanical model largely,
which would damage the positive effect of model constraint
eventually. In [32], a frame-to-frame statistical EM algorithm
is applied to estimate the active forces, strains, and stresses

together despite the fact that the active forces are time-
varying after the displacements of the myocardium are
reconstructed by using the MRI-SPAMM tagging technique
and a deformable model from images.

Inspired by the work [33] of input estimation in
the inverse heating problem without the time history of
external input, we proposed a biomechanical constrained
sequential filtering framework which performs multiframe
estimation of the nonrigid myocardial kinematic function
and external loads of system simultaneously from medical
image sequence. Our work is also developed from earlier
works like the state-space-based motion recovery algorithms
with the external loads constructed from boundaries [21,
24] and model-based filtering framework with external
loads simulated from an electromechanical coupling model
[30]. Contrary to previous approaches using deterministic
approximation of external loads, our proposed framework
treats external loads as a stochastic input after the biome-
chanical model is converted into a stochastic state-space
representation, which is more rational because of largely
unknown knowledge of external loads of each patient’s
heart. Since the external loads in our approach are treated
as a stochastic variable, we start to call external loads as
input forces from here, which is a proper description in the
stochastic control theory [22]. Therefore, the main difference
of our work to previous multiframe estimation efforts is that
rather than making ad hoc mathematical assumptions on
the behavior of input forces, we allow uncertainties inside
input forces because of unobservable loading condition of
the heart, which is a better description of clinical situation
from the stochastic control theory point of view. To achieve
optimal estimation, we cyclically feed the updated estimation
of input forces and imaging-derived data into the filtering
framework until reaching largely data-driven convergence: a
Kalman filter is first used to generate the residual innovation
sequences without input forces, followed by a recursive
least-square filter which is derived to use the sequences of
residual innovation to compute values of input forces to the
myocardium. Finally, myocardial kinematic function can be
recovered by using the estimated input forces.

The outline of the paper is as follows. Section 2 describes
the underlying myocardial dynamics, that is, the state-space
representation of biomechanical model. The combination
of the Kalman filter and the recursive least-square filter
to recover input forces and correct the estimation of
myocardial kinematic function is introduced in Section 3.
We finally evaluate our algorithm in Section 4 and present
the corresponding discussion and conclusion in Section 5.

2. Representation of Myocardial Dynamics

As a rule of thumb, the heart is a complex mechanical system
in terms of large deformation and complicated material
properties [34]. Many sophisticated models have been built
over tremendous experiments to reproduce the behavior of
the heart [34]. However, the complexities of these models
limit their performance in understanding patient’s data
because of high computational requirements. Furthermore,
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Figure 1: (a) Mid-ventricle MRI slice of a canine heart, (b) FEM representation of left ventricle constructed from MRI slice, and (c) TTC
stained postmortem myocardium with the infarcted tissue highlighted.

some errors of initialization can be accumulated and ampli-
fied through the model dynamics because of the determin-
istic nature of these models. The purpose of this paper is
to build a stochastic representation of myocardial dynamics,
which relaxes the requirement of complexity and accuracy of
the model by introducing uncertainties into the biomechan-
ical model. In the following subsections, a deterministic the
finite-element representation of the myocardium using the
law of linear elasticity is built, and then this representation
plus its relation of measurement will be converted into
stochastic state space equations. The reason to choose
linear elasticity in this work is to construct a rationally
realistic and computationally feasible analysis framework
using imaging data and other available measurements, the
structure, dynamics, and material of the myocardium. In the
stochastic representation, the model errors, which could be
caused by an imperfect model, insufficient discretization, or
incorrect initialization, and measurement errors are properly
addressed as noise terms in each state space equation. It
is noted that other computational cardiac mechanics of
materials also can be adopted into this stochastic framework.

2.1. Law of Linear Elasticity. In the current 2D implementa-
tion, we adopt an isotropic linear elastic material property,
where the stress and strain relationship obeys Hooke’s law
[35], to approximate myocardial dynamics:

σ = Sε, (1)

where σ is the stress tensor and ε is the strain tensor.
In the law of mechanical deformation, the infinitesimal

strain tensor or Cauchy’s strain tensor will be used to
describe the deformation of an object with elastic material
properties [35]. The infinitesimal strain tensor is calculated
by

ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ux
∂x
∂uy

∂y
∂ux
∂y

+
∂uy

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where ux is the displacement along x axis and uy is the
displacement along y axis in location (x, y). In our 2D
implementation, the plane strain condition is assumed. So
the material constitutive matrix S is

S = E
(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎣

1− ν ν 0

ν 1− ν 0

0 0
1− 2ν

2

⎤
⎥⎥⎥⎥⎦
, (3)

where E is Young’s modulus and ν is Poisson’s ratio [35].
In previous work [36], the values of these two myocardial
material variables are specified as E = 75 kpa and ν = 0.47. In
the following subsection, the finite-element representation,
numerical discretization of the myocardium will be built
using the material constitutive law established in the follow-
ing subsection.

2.2. Finite-Element Mesh of Myocardium. The finite-element
method has been a standard numerical method in solving
partial differential equations. In this implementation, a
triangular mesh is generated to represent a 2D myocardial
slice, which is segmented in the MR images by a spatial-
temporal active region model strategy [37]. The displace-
ments of all the vertices in the mesh are calculated by an
automatic nonrigid registration algorithm [38]. The finite-
element mesh over one image plane and corresponding MR
image are illustrated by Figure 1. Over the constraint of linear
isotropic linear elasticity and the linear triangular finite-
element mesh, the nodal displacement-based governing
dynamic equation of each element is established under the
principle of minimum potential energy. These equations
finally can be assembled together in matrix form as [35]

MÜ(t) + CU̇(t) + KU(t) = R(t), (4)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively, R is the load vector, and U is the
displacement vector. AlsoM is a known function of material
density and is assumed temporally constant for incompress-
ible material, K is a function of material constitutive law, and
is related to Young’s modulus and Poisson’s ratio which are
again assumed constant. Finally, C is frequency dependent,
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and we assume Rayleigh damping C = αM + βK with small
constant α and β for the low damping myocardial tissue [35].

We need to point out that the input forces R, which are
driven by electrical excitations and blood pressure, of the
cardiac system are highly complicated. In clinical practice,
observations of intraventricular blood pressures are too
sparse and noisy. In spite of many efforts which are aimed to
recover intracardiac electrical excitations from body surface
potentials [39], the coupling of electrical excitations and
active forces remain unknown in clinical practice because
of difficulties. So it is a good strategy to assume the whole
input forces to the cardiac system are a Gaussian random
variable, which represents the unobservable nature. The
uncertainties of input forces could be removed or reduced
if new observations of input forces can be reliably collected
in clinical practice in the future. In the ideal case, where
the input forces are fully known, the least-square filter will
vanish, and the Kalman filter will be able to recover the
motion from images directly.

2.3. Continuous State-Space Equations. In order to apply our
simultaneous estimation strategy as the structure in [33],
the dynamic equation (4) needs to be transformed into a
continuous stochastic state equation first. Let the state vector
be x(t) = [U(t), U̇(t)]T and we can have

ẋ(t) = Acx(t) + BcW(t) + n(t), (5)

where n(t) is the process noise which is an additive, zero-
mean, white noise (E[n(t)] = 0; E[n(t)n(s)′] = Qn(t)δts,
where Qn is the process noise covariance). The input forces
W(t), the system matrices Ac and Bc are

W(t) =
[
R(t)

]
,

Ac =
⎡
⎣ 0 I

−M−1K −M−1C

⎤
⎦,

Bc =
⎡
⎣ 0

−M−1

⎤
⎦,

(6)

the matrices Bc and W are not the same as the works in
[21, 24] because we modify them for the estimation of input
forces.

An associated measurement equation, which describes
the observations provided by the images or imaging-derived
data y(t) can be expressed in the form:

y(t) = Hx(t) + e(t), (7)

where e(t) is the measurement noise which is additive, zero
mean, and white (E[e(t)] = 0; E[e(t)e(s)′] = Re(t)δts,
where Re is the measurement noise covariance), independent
of n(t). Also, H is the measurement matrix which should
be specified by the relation between state vector x(t) and
measurement vector y(t).

The process noise in (5) and the measurement noise in
(7) are crucial in our stochastic approach. For example, linear
elasticity is used in this work to approximate the dynamics

of the myocardium. However, it is not the most realistic
material model for myocardial dynamics. The distance
between linear elasticity and real myocardial dynamics will
contribute to the process noise in (5), as uncertainties in
model. Other errors, such as discretization and initialization,
also can be treated as uncertainties in computational model,
that is, the process noise in (5). How to obtain the proper
process noise is still a great challenge and active topic in
many state-space approaches [40]. So is the measurement
noise. The process noise and the measurement noise are
adjusted manually in this work because the aim of this work
is to establish a proper stochastic framework to address
the issue of input forces. However, it is worthy to explore
the properties and effects of the process noise and the
measurement noise of this framework in future work.

2.4. Discrete State-Space Equations. The MR images are
usually collected distinctly over the whole cardiac cycle,
so (7) should be discretized according to corresponding
imaging instants. However, (5) also needs to be discretized
so that it can be run in a computer. It should be noted that
the continuous-discrete Kalman filter has been proposed to
recover continuous myocardial kinematic function in [41].
However, the state equation is still discretized in a very small
time step to approximate the effect of continuous dynamics
in [41]. We discretize (5) and (7) over the imaging sampling
interval T . Since the imaging sampling interval T is always a
known constant, we can replace kT with k in

x(k + 1) = Ax(k) + BW(k) + n(k),

y(k) = Hx(k) + e(k),
(8)

A = eAcT , B = A−1c
(
eAcT − I

)
Bc, (9)

A and B can be computed using Pade approximation
[42]. The mathematical derivation of discrete state-space
equations from continuous state-space equations is provided
in [21]. Here if there are N sample nodes to represent the
myocardium, A is a 4N × 4N matrix, B is a 4N × 2N matrix,
x is a 4N × 1 vector andW is a 2N × 1 vector.

2.5. Discrete State-Space Equations with Noisy Input Forces.
In order to model the input forces as a random variable,
typically seen in estimation and tracking literature [33, 43],
Equation (8) are transformed into stochastic equations with
noisy input forces:

x(k + 1) = Ax(k) + B[W(k) + n(k)], (10)

y(k) = Hx(k) + e(k), (11)

where n(k) and e(k) are the additive, zero-mean, white
noises, but independent from each other. As can be seen in
(10), the uncertainties in input forces W(k) are modeled
by putting n(k) and W(k) together. So the input forces
are disturbed by the noise n(k), which represents the
unobservable nature of the input force. Though the dynamic
of state x is driven by the unobservable input forces now, we
will provide an additional least-square filter to estimate the
input forces and correct the estimation of state x.
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3. Simultaneous Estimation of Myocardial
Motion and Input Forces

To handle unknown input forces in (10), we propose
a framework of simultaneous estimation of myocardial
kinematic function and input forces, which consists of two
parts: a Kalman filter and a recursive least-square filter. Let
x−, x̂(k), and x(k) denote the prediction of the true state x(k)
without the input forces W(k), the estimation of the true
state x(k) without the input forcesW(k), and the estimation
of the true state x(k) with the input forcesW(k), respectively.
Then our proposed framework can be summarized below:

(1) Prediction without input forces:

x−(k) = Ax(k − 1),

P−(k) = AP(k − 1)AT + BQnB
T.

(12)

(2) Update with measurements:

S(k) = HP−(k)HT + Re,

G(k) = P−(k)HTS−1(k),

P(k) = [1−G(k)H]P−(k),

z(k) = Y(k)−HX−(k),

x(k) = x−(k) +G(k)z(k),

(13)

where the covariance of residual innovation sequence z(k) is
S(k).

(3) Estimation of input forces:

ΦS(k) = H[AMS(k − 1) + I]B,

Σ = ΦS(k)γ−1Pb(k − 1)ΦT
S (k) + S(k),

Kb(k) = γ−1Pb(k − 1)ΦT
S (k)Σ

−1,

Pb(k) = [I − KbΦS(k)]γ−1Pb(k − 1),

W(k) =W(k − 1) + Kb(k)
[
Z(k)−ΦS(k)W(k − 1)

]
.

(14)

(4) Correction with input forces:

Ms(k) = [I −G(k)H][AMS(k − 1) + I],

x̂(k) = x(k) +MS(k)BW(k).
(15)

The detailed derivation of steps (3) and (4) can be
found in the appendix of [33] However P(k) is the error
covariance matrix of the Kalman filter without information
of input forces, S(k) is the residual innovation covariance,
G(k) is the Kalman gain, ΦS(k) andMS(k) are the sensitivity
matrices, z(k) is the residual innovation, Pb(k) is the error
covariance of the estimated input vector W(k), and Kb(k)
is the correction gain for the updating W(k). Also, Φs(k),
Ms(k), Kb(k), and Pb(k) are a 4N × 2N matrix, a 4N × 4N
matrix, a 4N ×4N matrix, a 2N ×4N matrix, and a 2N ×2N
matrix, respectively, if there are N nodes in the triangular
mesh of the myocardium. When γ = 1, we will get the

usual sequential least-square estimator, which is only suitable
for a constant input force system. In the system with time-
varying input forces, however, we like to prevent Kb(k) from
reducing to zero. This is accomplished by introducing the
factor γ. By setting 0 < γ < 1, Kb(k) is effectively prevented
from shrinking to zero. Hence, the corresponding least-
square filter can preserve its updating ability continuously.
However, the inherent data truncation effect brought by γ
causes variance increases inW(k) in the estimation problem
resulting from noise. Thus, it is necessary to compromise
between fast adaptive capability and the loss of estimate
accuracy.

Here, the Kalman filter is used to generateG(k), S(k), and
z(k), based on the state transition matrix A, input matrix
B, and process and measurement noise covariance matrices
Qn and Re. The least-square filter is derived to compute the
onset time histories of the unknown input forces by utilizing
the Kalman gain, residual innovation covariance S(k), and
residual innovation z(k). In addition, our framework is
initialized by setting x(−1) = 0,W(−1) = 0, andMS(−1) =
0. Since P(−1) = p × I4N×4N and Pb(−1) = pb × I4N×4N
are normally assumed, where I is the identity matrix, p
and pb are the constant scalar, we initialize p and pb as
large numbers, such as 106 and 102, respectively. This has
the effect of treating the errors in the initial estimation of
the input forces as large. However, after a few time steps,
the estimation results should converge to their actual values
rapidly if the state-space equations can capture the system
dynamics quickly. This also shows that the present technique
is not sensitive to the errors in the initial estimation. Though
Qn and Re should be determined according to the noise level
in the input forces andmeasurements, it is adjustedmanually
in this work according to empirical experiences.

4. Experiments

4.1. Synthetic Data. Our filtering strategy is first validated in
synthetic data of a 2D object undergoing body forces only in
the vertical direction (y-axis) with the bottom being fixed.
The magnitude of body forces in each triangular element is
decided by the area of that element by setting the density
of body forces to 1 Newton. Material properties and other
parameters are taken as Young’s modulus E = 75 kpa, Pois-
son’s ratio ν = 0.4, damping coefficients α = 0.01 and β =
0.1. The simulation is generated by a general purpose finite-
element software, Abaqus. However 21 sampling frames of
the motion are acquired, with displacements and velocities in
all nodes, as the ground truth. Then Gaussian noises (20 dB)
are added in all nodes to generate noisy measurements. A
single Kalman filter (KL) and our framework of the Kalman
filter and the least-square filter (KLLS) are implemented for
the estimation of kinematic function. In KL implementation,
the nodal displacements with noise in the top of the synthetic
object are used to construct input forces through the penalty
method, which is the same as the work in [21]. The setting
of process noise Qn and measurement noise Re is the same in
KL and KLLS in order to maintain a fair comparison, where
Qn = 10−5 and Re = 10−8. In KLLS, γ is set to 0.82. The
displacementmagnitude and strainmaps of the ground truth
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Table 1: Differences between the ground truth and the KL/KLLS estimated nodal positions.

Method Frame number Maximum error Mean error Standard deviation

KL

number 4 0.181 0.063 0.036

number 8 0.146 0.074 0.037

number 12 0.168 0.086 0.043

number 16 0.258 0.104 0.060

number 20 0.227 0.120 0.062

KLLS

number 4 0.067 0.021 0.017

number 8 0.072 0.026 0.021

number 12 0.083 0.013 0.024

number 16 0.093 0.031 0.028

number 20 0.114 0.044 0.036
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Figure 2: (a) Mean, (b) max, and (c) standard deviation errors of the Kalman filter; (d) mean, (e) max, and (f) standard deviation errors of
the Kalman filter and the least-square filter; all the x axis in the figures are the numbering of frame.

and the estimated results for quantitative assessments and
comparisons of two filtering strategies are shown in Figure 3.
Overall point-by-point positional errors are measured by
their mean and standard deviation. The mean is calculated
by

Mean = 1
N

N∑

i

|Esti − Trui| i = 1, . . . ,N , (16)

where N is the number of nodes, Est is the estimated nodal
value and Tru is the true nodal value. The standard deviation
is calculated by

SD =

√√√√√ 1
N

N∑

i

(Esti −Mean)2 i = 1, . . . ,N , (17)

where N is the number of nodes and SD is the standard
deviation. The growth of errors in KL and KLLS are
illustrated in Figure 2, which shows errors of KLLS has stable
behavior in comparison with KL. From Table 1, we also
can see the quantitative measures of accumulated errors:
such as in frame #20, the maximum, mean and standard
deviation of errors of KLLS are 0.114, 0.044, and 0.036; the
maximum, mean and standard deviation of errors of KL
are 0.227, 0.120, and 0.062. The comparison between the
estimated forces and ground truth are also shown in Table 2.
Overall, our framework shows superior performance over
the same measurements with the same noise level because
of simultaneous estimation of kinematic function and input
forces, but a single Kalman filter with boundary forces fails
here because of wrong input forces dominated by noisy
displacements in boundary.
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Figure 3: From first row to fourth row: ground truth, estimation
results of our framework, estimation results of a single Kalman
filter and color scale mapping. From first column to third column:
magnitude maps of displacement, strain maps in y-axis and strain
maps in xy-axis.

Table 2: Comparison of the magnitude to total nodal forces
between ground truth and estimation (KLLS).

Frame number Ground truth Estimated result

number 4 3.82e + 003 3.24e + 003

number 8 3.81e + 003 3.22e + 003

number 12 3.78e + 003 2.99e + 003

number 16 3.73e + 003 2.99e + 003

number 20 3.70e + 003 2.89e + 003

4.2. Canine Image Data. The MR image data and repre-
sentation of left ventricle (LV) are displayed in Figure 1.
Myocardial displacements and velocities can be extracted
using our previous multiframe algorithm [24] or other
algorithms [19, 38, 44]. The infarcted tissue is highlighted
in the triphenyl tetrazolium chloride (TTC) stained after
mortem myocardium (Figure 1), which provides the clinical
gold standard for the assessment of the image analysis results.
The parameters of material properties of themyocardium are
initialized as Young’s modulus is set to 75 kpa, Poisson’s ratio
is set to 0.47, damping coefficients α = 0.01 and β = 0.1.
The parameters of KLLS are initialized as the process noise
Qn is set to 10−4, measurement noise is set to 10−10 and
γ is set to 0.53. The estimated radial, circumferential, and
RC shear strain maps are shown in Figure 4. The infarct
tissue can be identified in the strain maps, and the most
obvious difference is observed in the RC shear strain map,
where the lower-right quarter of the myocardium has much
larger strain than other normal tissues. These patterns are in

good agreement with the highlighted TTC-stained tissue in
Figure 1, demonstrating the clinical relevance of our strategy.

5. Conclusion

In this paper, we have presented a biomechanically con-
strained filtering framework for the multiframe estimation
of the nonrigid cardiac kinematics from medical image
sequence. In spite of linear elasticity used to approximate
myocardial system dynamics, our framework could allow
convenient incorporation of other material constraints.
The input estimation filtering formulation facilitates the
considerations of input data uncertainty, and the Kalman
filtering principles are adopted to achieve optimal estimation
of the myocardial kinematics over corrected input forces.
Quantitative validation has been conducted using synthetic
data with known ground truth, and physiological experiment
results are acquired from MR image sequences, as validated
by post-mortem tissue staining.

The conventional Kalman filtering strategy consists of
two steps: prediction and correction. The successful place
of the conventional Kalman filtering strategy is computing
the estimated state variables between predictions and mea-
surements in minimum mean square sense. However, the
predictions generated by the model could be faulty if the
input term of the model is wrongly added, and then the
error of estimations could be dominated by the imperfect
predictions. In the case of myocardial dynamics, it will
demand arduous work, including tremendous experiments,
to determine patient’s loading condition, which is not
feasible in daily clinical practice. So it is reasonable to treat
the loading, that is, input forces, of the heart as stochastic
sources. In our particular application, it can be easily seen
that the response of the cardiac system will vary largely with
different loading conditions from (4). The forces constructed
from boundaries or image features are obviously different
from the real situation in the myocardium and a minor
error from these image-derived forces could be amplified
by (4) easily. Since the patient-specific observations of
input forces in the cardiac system are still unavailable, it
is meaningful to handle the uncertainties in input forces
and measurements simultaneously, which can increase the
accuracies of estimated state variables if estimated input
forces are closed to ground truth.

Though this approach is inspired by [33] from the
heating problem, it is closely related with previous state space
approaches [21, 30, 41]. Works like [21, 30, 41] could be
considered as one special situation of our approach where
least-square filter vanishes if the external loading can be
specified deterministically. The demanding computation also
prohibits the performance of our filtering strategy in 3D
because of burdensome computation of the Kalman filter
and extra calculation of the least-square filter. Since the
computation of the conventional 3D Kalman filter could
be properly reduced by applying model reduction [25] or
reduced rank filter [45], it will be worthy to apply similar
techniques in our work. Further, the material properties of
the biomechanical models may be estimated along with the
motion properties through the augmentation of the state
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Figure 4: From left to right: estimated displacement magnitude, radial, circumferential, and RC shear strain maps for frame #9 (with respect
to frame number 1).

vector by the material parameters and the construction of the
nonlinear augmented state-space representation [24].
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