
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 319065, 14 pages
doi:10.1155/2010/319065

Research Article

Low-Complexity Design of Frequency-Hopping Codes for MIMO
Radar for Arbitrary Doppler

Badrinath S., Anand Srinivas, and V. U. Reddy

Communication Research Center, IIIT-H, Hyderabad 500032, India

Correspondence should be addressed to V. U. Reddy, vur@iiit.ac.in

Received 8 February 2010; Revised 11 May 2010; Accepted 30 September 2010

Academic Editor: M. Greco

Copyright © 2010 Badrinath S. et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

There has been a recent interest in the application of Multiple-Input Multiple-Output (MIMO) communication concepts to
radars. Recent literature discusses optimization of orthogonal frequency-hopping waveforms for MIMO radars, based on a newly
formulated MIMO ambiguity function. Existing literature however makes the assumption of small target Doppler. We first extend
the scope of this ambiguity function to large values of target Doppler.We introduce the concept of hit-matrix in theMIMO context,
which is based on the hit-array, which has been used extensively in the context of frequency-hopping waveforms for phased-
array radars. We then propose new methods to obtain near optimal waveforms in both the large and small Doppler scenarios.
Under the large Doppler scenario, we propose the use of a cost function based on the hit-matrix which offers a significantly lower
computational complexity as compared to an ambiguity based cost function, with no loss in code performance. In the small
Doppler scenario, we present an algorithm for directly designing the waveform from certain properties of the ambiguity function
in conjunction with the hit-matrix. Finally, we introduce “weighted optimization” wherein we mask the cost function used in the
heuristic search algorithm to reflect the properties of the required ambiguity function.

1. Introduction

MIMO radar is a recent evolution of radar that utilizes
multiple transmitters and receivers [1, 2]. MIMO radar
waveforms can have any degree of coherence with each
other, ranging from complete coherence (in which case it is
equivalent to a phased-array radar) to complete incoherence
(orthogonality). The choice of radar waveforms [3] plays an
important role in the resolution characteristics of the radar.
The optimization of radar waveforms for the phased-array
radar, which is also viewed as single-input multiple-output
(SIMO) radar, focuses on obtaining a desirable ambiguity
function in terms of range and Doppler resolutions. On the
other hand, MIMO radars provide spatial resolution and
spatial diversity in addition to range and Doppler resolution.

Frequency-hopping codes have been used in pulse
compression radars [4] because of their highly desirable
ambiguity properties. The design of frequency-hopping
codes for SIMO radars to obtain desired ambiguity functions
[5] has been well studied. A method to design discrete
frequency-coding waveforms for the netted radar has been

proposed in [6] and a modified Genetic algorithm to design
orthogonal discrete frequency-coding waveforms for MIMO
radar has been presented in [7]. The hit-array [8, 9] has
also been extensively used for waveform design in the SIMO
context.

Recently, Chen and Vaidyanathan [10, 11] have dealt
with the design of frequency-hopping codes for MIMO case
based on the optimization of a newly formulated MIMO
ambiguity function [12]. Their approach to designing radar
waveforms is to first parameterize these waveforms and then
apply simulated annealing to find a near-optimal set of
parameters using a “cost function” that allows comparison
of different parameter sets. The formulation assumes small
target Doppler resulting in a simpler cost function. This
formulation, however, is inapplicable in the presence of large
target Doppler.

In this paper, we first extend the scope of this ambiguity
function to large values of target Doppler, and then introduce
the concept of hit-matrix in the MIMO context. Next,
we propose new methods to obtain optimal waveforms
in both the large Doppler and small Doppler scenarios.
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Figure 1: Transmitters and receivers in a MIMO radar (MF =Matched filter).

In the case of large Doppler, we propose a cost function
based on the hit-matrix which offers a significantly lower
computational complexity as compared to an ambiguity-
based cost function, with no loss in code performance. In
the small Doppler case, we present an algorithm for directly
designing the waveform from certain properties which can
be obtained from the ambiguity function in conjunction
with the hit-matrix. Finally, we introduce a “weighted
optimization” wherein we weight the cost function, used in
the heuristic search algorithm, to reflect the properties of the
required ambiguity function.

In Section 2, we present our model for MIMO radar and
frequency-hopping waveforms. In Section 3, we reformulate
Chen and Vaidyanathan’s MIMO ambiguity function such
that it is applicable to any general value of Doppler. In
Section 4, we describe the use of hit-matrix as an opti-
mization tool. The hit-matrix corresponds to a digitized
version of the ambiguity function which is relatively simple
to compute. In Section 5, using a hit-matrix-based cost
function, we use simulated annealing to search for the best
frequency-hopping codes under the large Doppler scenario.
In Section 6, we present an algorithm for directly obtaining
a waveform corresponding to a good ambiguity function
in the small Doppler case. In Section 7, we propose a
method to obtain waveforms satisfying certain conditions
on the ambiguity function. A heuristic search performed
using a weighted cost function, with the weights representing
conditions on ambiguity function, illustrates our proposed
method. Section 8 concludes this paper.

2. SystemModel

2.1. MIMO Radar Model. Consider a monostatic MIMO
radar that contains M transmitters and N receivers with
their antennas configured as uniform linear arrays, as shown
in Figure 1. We assume a point target and also that the
target, transmitters and receivers lie in the same 2D plane.
Let dT and dR represent the spacing between consecutive
transmitters and receivers, respectively, and let γ = dT /dR.

We define the spatial frequency of the target as

f = dR sin(θ)
λ

, (1)

where θ is the target angle with respect to the broadside
direction and λ is the wavelength of the RF carrier of the
transmitted waveforms. Let τ and ν be the target delay
(which is a measure of target range) and Doppler frequency
(a measure of target velocity), respectively. The spatial
frequency f corresponds to the angular location of the target
with respect to the arrays of the radar. Let {um(t)}, m ∈
{0, . . . ,M−1} represent theM transmitter waveforms. Then,
the waveform received at the nth receiver antenna can be
expressed as [11]

yn(t)
∣
∣
τ,ν, f ≈

M−1
∑

m=0
um(t − τ)e j2πνte j2π f (γm+n). (2)

2.2. Frequency-Hopping Waveforms. Frequency-hopping sig-
nals are good candidates for the radar waveforms because
they are easily generated and have constant modulus. The
waveforms can be represented as (see Figure 2)

um(t) =
L−1
∑

l=0
φm(t − Tl), (3)

where

φm(t) =
Q−1
∑

q=0
e j2πcm,qΔ f ts

(

t − qΔt
)

,

s(t) =
⎧

⎨

⎩

1, if 0 < t < Δt,

0, otherwise.

(4)

Here, cm,q is the (m, q)th element of the matrix [C]M×Q
and it can assume values from the set {1, . . . ,K}, where K
is the total number of frequency hops available. As shown
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Figure 2: The structure of frequency-hopping waveforms.

in Figure 2, each transmitter waveform um(t) consists of
a stream of L identical pulses φm(t). Each pulse in turn
contains Q constant amplitude frequency subpulses each
having width Δt and frequency cm,qΔ f . Here we only
concern ourselves with waveforms that are orthogonal at zero
Doppler and zero delay mismatch, that is,

∫∞

−∞
um(t)u∗m′(t)dt = 0, ∀m /=m′. (5)

To attain orthogonality, we impose the following condi-
tions on the waveforms [11]:

Δ f Δt = 1,

cm,q /= cm′,q, ∀m /=m′, ∀q.
(6)

Orthogonal waveforms result in a uniform gain in all
directions, which is a key aspect of detection using MIMO
radars. For fixed Δt and Δ f , these waveforms can be
completely described by the code matrix:

C =
[

cm,q

]

M×Q (7)

and the pulse spacing vector:

−→
T =

[

T0 T1 · · · TL−1
]

1×L. (8)

The pulse spacing vector plays a role in shaping the Doppler
resolution of the waveforms. In this paper, however, we will
not be dealing with optimization of this vector.

3. MIMORadar Ambiguity Function

The resolution of a radar system is determined by the
response to a point target in the matched filter output.
This response can be characterized by a function called the
ambiguity function. The traditional Woodward ambiguity
function for a SIMO radar is given as

χ(τ, ν) =
∫∞

−∞
u(t)u∗(t − τ)e− j2πνtdt. (9)

In the above expression, τ and ν represent the delay and
Doppler mismatch at the receiver, respectively. The ideal
ambiguity function should be sharp around the region of
zero-mismatch, that is, (τ, ν) = (0, 0). This idea has been
extended to the MIMO case in [11]. Consider the expression
for the received signal in a MIMO radar given in (2). Let
(τ1, ν1, f1) represent the true parameters of a target, and let
(τ2, ν2, f2) be the assumed parameters at the receiver. The
summed match filter output is given as

N−1
∑

n=0

∫∞

−∞

(

yn(t)
∣
∣
τ1,ν1, f1

)(

yn(t)
∣
∣
τ2,ν2, f2

)∗
dt

=
⎛

⎝

N−1
∑

n=0
e j2π( f1− f2)n

⎞

⎠

×
⎛

⎝

M−1
∑

m=0

M−1
∑

m′=0

∫∞

−∞
um(t − τ1)u∗m′(t − τ2)

× e j2π(ν1−ν2)te j2π( f1m− f2m′)γdt

⎞

⎠.

(10)

In the above expression, the second term corresponds to
the ambiguity function when only one receiver is present,
while the first term brings out the effect of having multiple
receivers. To simplify the ambiguity function and the wave-
form design problem, the first term can be decoupled from
the above expression. The resulting expression is termed the
“MIMO ambiguity function”. We can now consider (τ1 − τ2)
to be the delay mismatch and (ν1 − ν2) to be the Doppler
mismatch, and rewrite the expression. The MIMO radar
ambiguity function is thus given as [11]

χ
(

τ, ν, f , f ′
) =

M−1
∑

m=0

M−1
∑

m′=0
χm,m′(τ, ν)e j2π( f m− f ′m′)γ, (11)

where τ and ν represent the Doppler and delay mismatch at
the receiver, f represents the target’s true spatial frequency,
f ′ represents the assumed spatial frequency at the receiver,
and χm,m′(τ, ν) represents the cross-ambiguity function
between the waveforms um(t) and um′(t), given by

χm,m′(τ, ν) =
∫∞

−∞
um(t)u∗m′(t + τ)e j2πνtdt. (12)

For frequency-hopping waveforms (see Figure 2), (12) be-
comes

χm,m′(τ, ν) =
L−1
∑

l=0

L−1
∑

l′=0
χ
φ
m,m′(τ + Tl − Tl′ , ν)e j2πνTl , (13)

where

χ
φ
m,m′(τ, ν) =

∫ QΔt

0
φm(t)φ∗m′(t + τ)e j2πνtdt. (14)

We assume that the maximum expected target delay is less
than the time interval between any two consecutive pulses
of each transmitter waveform as they are colocated. This
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assumption implies that |τ| < (minl,l′(|Tl −Tl′ |)−QΔt) due
to which

χ
φ
m,m′(τ + Tl − Tl′ , ν) = 0 for l /= l′ (15)

and hence

χm,m′(τ, ν) = χ
φ
m,m′(τ, ν)

L−1
∑

l=0
e j2πνTl . (16)

χ
φ
m,m′(τ, ν) is the cross-ambiguity between two individual
pulses of different waveforms (φm(t) and φm′(t)) and can be
expanded as

χ
φ
m,m′(τ, ν)

=
Q−1
∑

q=0

Q−1
∑

q′=0
χrect

(

τ +
(

q − q′
)

Δt, ν +
(

cm,q − cm′,q′
)

Δ f
)

× e j2π(ν+(cm,q−cm′ ,q′ )Δ f )qΔte− j2πcm′ ,q′Δ f τ ,
(17)

where

χrect(τ, ν)

=
∫ Δt

0
s(t)s(t + τ)e j2πνtdt

=
⎧

⎨

⎩

(Δt − |τ|)sinc(ν(Δt − |τ|))e jπν(Δt−|τ|), if |τ| < Δt,

0, otherwise
(18)

represents the ambiguity function of the rectangular pulse
s(t). In [11], the Doppler is assumed to be small (νΔt ≈ 0)
due to which (17) reduces to

χ
φ
m,m′(τ, ν) =

Q−1
∑

q=0

Q−1
∑

q′=0
χrect

(

τ +
(

q − q′
)

Δt,
(

cm,q − cm′,q′
)

Δ f
)

× e j2πΔ f (cm,q−cm′ ,q′ )qΔte− j2πcm′ ,q′Δ f τ

= χ
φ
m,m′(τ, 0).

(19)

In the subsequent sections, we do not assume small Doppler
and work with (17). We next describe the hit-matrix
formalism in Section 4 and waveform optimization for the
large Doppler case in Section 5.

4. The Hit-Matrix Formalism

The hit-array has been introduced as a tool to analyze
frequency-hopping waveforms in [9]. The central concept
in this formulation is that of a “hit”, which occurs when
the received pattern has been shifted in the time-frequency

space in such a way that it overlaps with the original pattern
at exactly one time-frequency position. In this section, we
extend the hit-array to the hit-matrix, which is applicable to
frequency-hopping codes for MIMO radar under the large
Doppler scenario. We define the hit-matrix for the code
matrix C as

H = [

hk,l
]

(2Q−1)×(2K−1), (20)

−Q < k < Q, −K < l < K , k, l ∈ Z, (21)

where

hk,l =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M−1
∑

m=0

M−1
∑

m′=0

Q−k−1
∑

q=0
δ
(

cm,q − cm′,(q+k) + l
)

, if k ≥ 0,

M−1
∑

m=0

M−1
∑

m′=0

Q+k−1
∑

q=0
δ
(

cm,q − cm′,(q−k) − l
)

, otherwise,

(22)

and δ(·) refers to the Kronecker delta function. The concept
of hit-array was used in phased array as well as multiple
access radars for approximating auto- and cross-ambiguity
functions. The hit-array is either auto-hit-array (Ĥm,m) or
cross-hit-array (Ĥm,m′) as defined below (see (24)). The hit-
matrix H can be obtained by summing the individual auto-
and cross-hit arrays as follows:

H =
M−1
∑

m=0

M−1
∑

m′=0
Ĥ(m,m′), (23)

where

Ĥ(m,m′) =
[

ĥk,l(m,m′)
]

(2Q−1)×(2K−1),

ĥk,l(m,m′) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q−k−1
∑

q=0
δ
(

cm,q − cm′,(q+k) + l
)

, if k ≥ 0,

Q+k−1
∑

q=0
δ
(

cm,q − cm′,(q−k) − l
)

, otherwise.

(24)

As an example, consider the code matrix:

C =
⎡

⎣
1 2 3

3 1 2

⎤

⎦. (25)
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HereM = 2, Q = 3, and K = 3. The cross-hit arrays for this
code are

Ĥ(0, 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ĥ(1, 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 0 2 0 0

1 0 0 2 0

0 1 0 0 1

0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ĥ(0, 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0

1 0 0 1 0

0 2 0 0 1

0 0 2 0 0

0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ĥ(1, 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0

0 1 0 0 1

0 0 3 0 0

1 0 0 1 0

0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(26)

and the resulting hit-matrix is

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0

1 3 2 1 1

1 2 6 2 1

1 1 2 3 1

0 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (27)

Ambiguity Function and the Hit-Matrix. We now describe
how the hit-matrix of a frequency-hopping code relates to
its ambiguity function. Consider the MIMO radar ambiguity
function in (11) which, in view of (16) and (17), can be
expressed as

χ
(

τ, ν, f , f ′
) = Ω

(

τ, ν, f , f ′
)

⎡

⎣

L−1
∑

l=0
e j2πνTl

⎤

⎦, (28)

where

Ω
(

τ, ν, f , f ′
)

=
⎡

⎣

M−1
∑

m=0

M−1
∑

m′=0

Q−1
∑

q=0

Q−1
∑

q′=0
Gm,m′,q,q′(τ, ν)e j2π( f m− f ′m′)γ

⎤

⎦

(29)

represents the ambiguity between two pulses and

Gm,m′,q,q′(τ, ν) = χrect
(

τ +
(

q − q′
)

Δt, ν +
(

cm,q − cm′,q′
)

Δ f
)

· e j2π(ν+(cm,q−cm′ ,q′ )Δ f )qΔte− j2πcm′ ,q′Δ f τ

(30)

is the cross-ambiguity between the qth subpulse of um(t) and
the (q′)th subpulse of um′(t). A plot of |Gm,m′,q,q′(τ, ν)| is
shown in Figure 3. The position of its peak is (τpeak, νpeak) =
(−(q − q′)Δt,−(cm,q − cm′,q′)Δ f ). Along the τ-axis, this
function drops to zero at a shift of Δt from τpeak, and
along the ν-axis, it falls by roughly 6 dB relative to the

τ

2Δt
2Δ f

v

−[cm,q − cm ,q ]Δ f )

(τ, v) = (−[q − q]Δt,

Figure 3: Cross-ambiguity between subpulses, |Gm,m′ ,q,q′ (τ, ν)|.

peak at a shift of Δ f from νpeak. Hence most of the energy
of each subpulse ambiguity function is located within an
area of 4Δ f Δt around (τpeak, νpeak). For different values of
(m,m′, q, q′), the shape of Gm,m′,q,q′(τ, ν) remains the same,
and only the position of its peak in the delay-Doppler space
changes. The set of possible values of (τpeak, νpeak) is given as

(

τpeak, νpeak
)

∈ {(

kΔt, lΔ f
)}

, k, l ∈ Z,

−Q < k < Q, −K < l < K .
(31)

The number of 4-tuples (m, m′, q, q′) for which
Gm,m′,q,q′(τ, ν) peaks at the position (τ0, ν0) is

P(τ0, ν0) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M−1
∑

m=0

M−1
∑

m′=0

Q−τ0/Δt−1∑

q=0
δ

(

cm,q−cm′,(q+τ0/Δt)+
ν0
Δ f

)

,

if τ0 ≥ 0,

M−1
∑

m=0

M−1
∑

m′=0

Q+τ0/Δt−1∑

q=0
δ

(

cm,q−cm′,(q−τ0/Δt)−
ν0
Δ f

)

,

otherwise,

= hk,l
∣
∣
k=τ0/Δt,l=ν0/Δ f .

(32)

Thus each element of the hit-matrix corresponds to the
number of functions Gm,m′,q,q′(τ, ν) centered at the same
point in the delay-Doppler space. The (MQ)2 different
functions Gm,m′,q,q′(τ, ν) for different values of the 4-tuple
(m,m′, q, q′) are the building blocks of the overall MIMO
ambiguity function, and the distribution of the positions
of their peaks in the delay-Doppler space plays a key role
in determining the shape of the overall ambiguity function.
The value of h0,0 corresponds to the height of the mainlobe
in the ambiguity function and is constant for a given code
matrix size. The values of hk,l outside of (k, l) = (0, 0)
correspond to sidelobes in the ambiguity function centered
at (τ, ν) = (kΔt, lΔ f ). The higher these values of hk,l, the
higher will be the corresponding sidelobes. Also, since the
spatial frequency parameters f and f ′ appear as complex
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exponential weights in the summation of (29), a reduction
in the values of the hit-matrix outside of (k, l) = (0, 0) will
result in a corresponding reduction in sidelobes along the
spatial frequency dimensions as well.

5. WaveformDesign for Large Doppler

We now describe how frequency-hopping codes can be
optimized under the large Doppler scenario to yield a
desired ambiguity function. Since the second product term
in the right-hand-side of (28) is not dependent on the
choice of code matrix C, we only concern ourselves with
the optimization of the first term Ω(τ, ν, f , f ′). To apply
heuristic search algorithms like simulated annealing, we
require a cost function that allows the desirability of different
codes to be compared. Following the formulation of [11], a
cost function for the large Doppler case is given as follows:

fp(C) =
∫ QΔt

−QΔt

∫ KΔ f

−KΔ f

∫ 1/γ

0

∫ 1/γ

0

∣
∣Ω

(

τ, ν, f , f ′
)∣
∣pdf df ′dνdτ.

(33)

It can be shown that the height of the peak in Ω(τ, ν, f , f ′)
at (τ, ν, f , f ′) = (0, 0, f , f ) is constant, and hence this cost
function favors codes that have their sidelobes flattened out
over the delay, Doppler and spatial frequency dimensions.
Increasing the value of p increases the penalty on higher
sidelobes. fp(C) can be evaluated for each code using
Riemann sums with a sufficient number of bins instead of
integrations. However, this results in a high computational
complexity which increases as O(M2Q2BT), where BT is the
time-bandwidth product of the code.

Now, consider the elements of the hit-matrix H. From
(22), h0,0 = MQ, and as explained in the previous section, it
corresponds to the height of the mainlobe in the ambiguity
function, and hk,l outside of (k, l) = (0, 0) correspond to
sidelobes in the ambiguity function. The higher these values
of hk,l, the higher will be the corresponding sidelobes. This
motivates us to choose the following cost function based on
the hit-matrix:

gp(C) =
Q−1
∑

k=−Q+1

K−1
∑

l=−K+1

(

hk,l
)p, (34)

which favors the codes that have their sidelobes flattened out
over the delay, Doppler and spatial frequency dimensions.
Evaluation of gp(C) is far less computationally intensive
than fp(C), and increases only as O(M2Q2). This allows the
heuristic search algorithms using this cost function to rapidly
traverse the code space, thereby allowing good codes to be
found faster.

We now describe how we apply simulated annealing
using gp(C). We use a slightly modified form of simu-
lated annealing called quantum-simulated annealing, which
allows faster convergence. The quantum-simulated anneal-
ing parameters are temperature (T), rate of decrease of
temperature (α), jump size (J) and rate of decrease of jump
size (β). The algorithm is initialized with a value of T > 0
and J > 0, choosing α and β from (0, 1). The steps of the
algorithm are as follows.

(1) Randomly draw a code matrix C from {0, 1, . . . ,K −
1}MQ such that the code is orthogonal, that is,
cm,q /= cm′,q form /=m′.

(2) Randomly draw j from {1, 2, . . . , 
J�}.
(3) Set C′ = C, and repeat steps 3(a) to 3(c) j times.

(a) Randomly draw m from {0, . . . ,M − 1} and q
from {0, . . . ,Q − 1}.

(b) Select k from {0, . . . ,K − 1} with k /=
{c′m,q,∀m}.

(c) Set c′m,q = k.
(At this point, we will have the original code C,
and C′ obtained from the above steps.)

(4) Randomly draw U from [0, 1].

(5) If U < exp((gp(C)− gp(C′))/T), then set C = C′.

(6) Set T = αT and J = βJ .

(7) If a sufficiently small value of gp(C) has been
obtained, terminate the algorithm. Otherwise, return
to step 2.

Consider as an example the optimization of frequency-
hopping codes for (M,Q,K) = (4, 6, 24). The total number
of possible codes of this size is (K !/(K − M)!)Q = 2.8 ×
1032. We found the number of Riemann sum bins, required
for reasonable accuracy in the evaluation of fp(C) for this
code size, to be 100 each along the delay and Doppler
dimensions, and 20 each along the two spatial frequency
dimensions. Hence, while fp(C) requires the computation
and summation of 2.3 × 109 terms per iteration, gp(C)
only needs 576 computations per iteration, resulting in a
significant decrease in complexity.

5.1. Simulation Results. We present a number of examples
to demonstrate the effectiveness of the hit-matrix-based
cost function in designing good frequency-hopping codes.
We have generated codes of various sizes by simulated
annealing using both fp(C) and gp(C) at p = 3. The
code parameters used were M = 4, Q ∈ {6, . . . , 10} and
K ∈ {MQ/2,MQ, 2MQ, 3MQ} for each value of Q. Other
parameters used were Δt = 1, Δ f = 1 and γ = 1. For
simulated annealing, we set the parameters T = 10, J = 12,
α = 0.9 and β = 0.95.

First, we consider the code obtained for (M,Q,K) =
(4, 6, 24) using g3(C). The decrease in the cost with respect
to the iterations of simulated annealing is shown in Figure 4.
The final code obtained is

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

20 2 24 5 6 1

22 14 4 24 1 20

18 1 12 6 23 22

11 24 9 2 17 14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (35)

A plot of the hit-matrix of this code is shown in Figure 5
and a plot of |Ω(τ, ν, f , f ′)| at ( f , f ′) = (0, 0) is shown
in Figure 6. We observe that the ambiguity function of the
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above code has a very sharp mainlobe along the delay and
Doppler dimensions, with 98% of the sidelobes lying 10 dB
below the peak. Also note the visual similarity between the
plots of hit-matrix and ambiguity function. Although it may
appear that optimization using gp(C) involves just the time
and Doppler dimensions, it takes the spatial frequency into
consideration as well. To show this, we consider values of
Ω(τ, ν, f , f ′) at different values of (τ, ν).

(1) (τ, ν) = (0, 0). TheΩ function can be expressed from
(29) and (30) as follows:

Ω
(

0, 0, f , f ′
) =

M−1
∑

m=0

M−1
∑

m′=0
δm,m′e j2π( f m− f ′m′)γ

=
M−1
∑

m=0
e j2π( f− f ′)mγ.

(36)

The above expression is independent of the code
matrix, and thus the ambiguity function in this
form cannot be optimized along the spatial frequency
dimensions at (τ, ν) = (0, 0).

(2) (τ, ν) /= (0, 0). Noting that each peak, given by
|Gm,m′,q,q′(τ, ν)|, corresponds to a hit which is
reflected in (34), and the ambiguity function consists
of a weighted sum of hits with the weights being
of the form e j2π( f m− f ′m′)γ, optimizing the hit-matrix
is analogous to optimizing the upper bound on
the ambiguity function along the spatial frequency
dimensions.

We may point out here that the ambiguity function
has a very low magnitude when (τ, ν) /= (0, 0) for all mis-
matched values of f and f ′. To show this, various cuts of
|Ω(τ, ν, f , f ′)| are shown in Figure 7 (at γ = 1). We now
compare various codes obtained using fp(C) and gp(C).
We take samples from the function |Ω(τ, ν, f , f ′)| and plot
their empirical cumulative distribution function (ECDF),
which show the percentage of samples of |Ω(τ, ν, f , f ′)|
less than specified magnitudes. The highest peak has been
normalized to 0 dB. Figure 8 shows the ECDF curves for
various codes obtained at Q = 6. Note that use of either
cost function yields codes with similar ECDF curves. In
Figure 9, we have plotted the magnitude of 95th percentile of
|Ω(τ, ν, f , f ′)| for different codes, as a function of the time
bandwidth products BT = (QΔt × KΔ f ). Note that up to
BT = 392, fp(C) and gp(C) both yield codes with a similar
number of undesirable peaks. The curve corresponding to
fp(C) could not be extended beyond BT = 392 because of
increasing computational complexity. However, using gp(C),
codes with BT as high as 1200 (and higher) could be easily
generated.

A large Doppler scenario will arise when a MIMO radar
operating in the Ka band (27GHz to 40GHz) is expected
to detect 5000 km class missile targets. To see how the cost
function in [11], which assumes low Doppler, performs
in comparison to the large Doppler cost function in (33),
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Figure 7: Various cuts of |Ω(τ, ν, f , f ′)| for the code whose hit-matrix is shown in Figure 5.

when Doppler frequency is a significant percentage of the
signal bandwidth, we conducted the following simulation.
We obtained the codes from the minimization of the two
cost functions at p = 3, choosing the Doppler frequency
as 25% of the transmitter waveform bandwidth for three
different values of K . Figure 10 gives the ECDF curves of the
corresponding |Ω(τ, ν, f , f ′)|. Note from the plots that the
large Doppler cost function yields an improvement of 0.5 dB
for K = 12 and 1.0 dB for K = 48 at 90%. We may point
out here that the bandwidth increases with increasing K , and
accordingly the Doppler frequency goes up as it is 25% of the
bandwidth.

6. Waveform Optimization for Small Doppler
Case (ν � Δ f )

As derived in [11], for the small Doppler condition (νΔt ≈ 0)
and under the assumption of no range folding, we have from
(16) and(19)

χm,m′(τ, ν) ≈ χ
φ
m,m′(τ, 0)

L−1
∑

l=0
e j2πνTl . (37)

In this case, we can write the ambiguity function from (11),
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(16) and (19) as follows:

χ
(

τ, ν, f , f ′
)

=
⎡

⎣

M−1
∑

m=0

M−1
∑

m′=0
χ
φ
m,m′(τ, 0)e j2π( f m− f ′m′)γ

⎤

⎦.

⎡

⎣

L−1
∑

l=0
e j2πνTl

⎤

⎦,

(38)

which, in view of (28), becomes

χ
(

τ, ν, f , f ′
) = [

Ω
(

τ, 0, f , f ′
)]

.

⎡

⎣

L−1
∑

l=0
e j2πνTl

⎤

⎦. (39)

Note from (38) that the φm(t) terms (corresponding to

the waveform pulses), which are contained in χ
φ
m,m′(τ, 0),
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do not affect the Doppler resolution. The objective behind
waveform design is to obtain a set of waveforms with a
desirable MIMO ambiguity function. In [11] a heuristic
search (simulated annealing) is performed over the space of
all code-matrices, to acquire a code C which minimizes the
cost function.

In the SISO case, we expect the ambiguity function
to be sharp about the point of zero-mismatch, that is,
(τ, ν) = (0, 0). Similarly, in the MIMO scenario, we want
the ambiguity function to be sharp around the region of
zero-mismatch, which corresponds to values of the function
Ω(τ, 0, f , f ′) over the line {(τ, f , f ′) | τ = 0, f = f ′}. As the
waveforms are assumed to be orthogonal, we can write

Ω
(

0, 0, f , f ′ | f = f ′
)

=
M−1
∑

m=0

M−1
∑

m′=0
δ(m−m′)e j2π f γ(m−m′) =M.

(40)

Thus, at zero-mismatch Ω(0, 0, f , f ′ | f = f ′) is a constant
value proportional to the number of transmitters and is
independent of the chosen code-matrix. The objective now
is to suppress all the peaks not lying on this line. Therefore,
the code optimization problem under the small Doppler
scenario (as given in [11]) reduces to the minimization of
the cost function:

f ′p(C) =
∫ QΔt

−QΔt

∫ 1/γ

0

∫ 1/γ

0

∣
∣Ω

(

τ, 0, f , f ′
)∣
∣pdf df ′dτ (41)

In the next subsection, we explain our proposed algorithm.
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The Hit-Matrix under the Small Doppler Assumption. In this
scenario, the hit-matrix reduces from a (2Q − 1)× (2K − 1)
matrix to a (2Q − 1) × (1) array. We define the hit-matrix
under small Doppler, H sd, as follows

H sd = [

hk,0
]

(2Q−1)×(1),

−Q < k < Q, k ∈ Z,
(42)

where hk,0 is given by

hk,0 =
M−1
∑

m=0

M−1
∑

m′=0

Q−|k|−1
∑

q=0
δ
(

cm,q − cm′,(q+|k|)
)

, (43)

and δ(·) refers to the Kronecker delta function.
Note that the hit-matrix Hsd will also have a close

correlation with the ambiguity function under the low
Doppler scenario. Further, it is easy to see that h0,0 is a
constant equal to MQ and is independent of the values in
the code matrix. Our objective in code design can now be
described by the following two conditions.

(1) Condition A. Within the constraints defining the code
matrix (M,Q,Δ f ,Δt,K), the sidelobe levels must be
reduced. This means that the total number of hits,
given by

S =
Q−1
∑

k=−Q+1
hk,0, (44)

should be made as small as possible.

(2) Condition B. A key aspect of waveform design is to
achieve high mainlobe to peak sidelobe ratio in its
ambiguity function. This is reflected in hk,0. We know
from the previous condition that the sum total of all
the elements of hk,0 over all values of k equals S. Also,
h0,0 is constant and is equal to MQ. Our objective,
therefore, is to spread out the remaining (S − MQ)
elements corresponding to (S −MQ) peaks over the
2Q − 2 summation terms of hk,0 (excluding k = 0)
thereby minimizing the peak sidelobe. This can be
expressed in compact form as follows

Minimize : max
k;k /= 0

hk,0. (45)

6.1. Waveform Design. In this section, we propose a direct
waveform design algorithm that yields codes that satisfy both
Conditions A and B described above. This algorithm requires
the number of frequencies K to be constrained toMQ/2 (the
consequences of such a restriction are discussed in the next
subsection).

Towards finding codes that satisfy Condition A, we define

S′ =
Q−1
∑

k=1
hk,0. (46)

Since h0,0 =MQ and hk,0 = h−k,0, we can write S = 2S′+MQ.
Hence, minimizing S for a given value ofMQ is equivalent to

minimizing S′. Now, from (43) we note that if the pair of
entries cm,q and cm′,q′ in the code matrix C are equal, they
will contribute a value of 1 (or one “hit”) to hk,0 at k = |q −
q′|. Thus we can say that S′ will equal the number of pair of
entries with identical values that can be found in the code
matrix.

Using this alternate interpretation of S′, we proceed to
show that under the constraint K = MQ/2, S′ will be
minimized only when each of the K usable frequency values
occur exactly twice in the code matrix. To see this, consider
an example withMQ = 6, which means that the code matrix
has 6 entries and 3 frequency choices are available. Let X , Y
and Z correspond to the 3 frequencies. If we choose each of
these three frequencies twice, that is, we make the selection
{X ,X ,Y ,Y ,Z,Z}, the possible pairs of entries with identical
frequencies will be {X ,X}, {Y ,Y} and {Z,Z}, thus giving
S′ = 3. Suppose we pick {X ,X ,Y ,Z,Z,Z}, the number of
possible same-frequency pairs will be four: one {X ,X} pair
and three {Z,Z} pairs giving S′ = 4, one higher than the case
where each frequency was used twice. Other combinations
can also be shown to yield a higher value of S′. A similar
argument can be extended to other values ofM andQ as well.

Next, we provide the conditions under which Condition
Bwill be satisfied. Any code matrix withK =MQ/2 and with
each frequency used twice will have S′ = MQ/2. In order to
satisfyCondition B, we require that theseMQ/2 hits be spread
as uniformly as possible among the Q − 1 summation terms
of (46). This leads to the condition

Nm ≤ hk,0 ≤ (Nm + 1), ∀k ∈ {1, 2, . . . ,Q − 1}, (47)

where

Nm =
⌊
(MQ/2)
Q − 1

⌋

, (48)

which implies that all the values of hk,0 for k > 0 must equal
either Nm or Nm + 1.

For a given value ofM andQ, there will exist several code
matrices that satisfy Conditions A and B simultaneously. We
now describe an algorithm that will randomly generate one
such code matrix in each run. Initially, we start with a code
matrix that has all entries “vacant”, and hence hk,0 = 0 for
all k ∈ {1, . . . ,Q − 1}. The algorithm has two steps. In Step
1 (see Figure 11), we first randomly select a pair of vacant
entries cm,q and cm′,q′ such that |q−q′| = Q−1, and fill these
entries with frequency index 1. This increments the value of
hk,0 at k = (Q− 1) by 1, while leaving it unchanged for other
values of k > 0. We repeat this procedure another Nm − 1
times, using a different frequency index each time, until we
have hk,0 = Nm at k = (Q − 1). Next we proceed to similarly
increment the other values of hk,0 to Nm, in the order k =
(Q − 2), (Q − 3), . . . , 1. Step 1 is completed when hk,0 = Nm

at k = 1.
In the cases where (MQ/2)/(Q − 1) is not an integer,

the code matrix will still have some vacant entries after Step
1. Step 2 of the algorithm (see Figure 12) aims to fill the
remaining entries, while ensuring that

max
k∈{1,...,Q−1}

hk,0 ≤ (Nm + 1). (49)



EURASIP Journal on Advances in Signal Processing 11

Restart
algorithm

Is
(r − 1) ≡ 0
(mod Nm) ?

Set
k ← K − 1

Is k = 0?

No

No

No

Yes

Yes

Yes

Initialize
k ← (Q − 1), r ← 1,

C ← (M ×Q empty matrix)

All entries of C are called
“vacant” initially

Start of
Step 1

Do there exist one
or more pairs of

vacant entries cm,q and

cm′ ,q′ in C such

that |q − q′| = k?

Randomly pick a pair of
vacant entries cm,q

and cm′ ,q′ in C

that satisfy |q − q′| = k.

Set cm,q ← r,

cm′ ,q′ ← r and r ← r + 1

The entries cm,q and cm′ ,q′

are no longer called vacant

Step 1
completed.
Proceed
to Step 2

Figure 11: Step 1 of the algorithm.

Is k = 0? Finished
No

No

No

Yes

YesYes

Set
k ← k − 1

Does C
still have
any vacant
entries ?

Restart
algorithm

Initialize k ← (Q − 1),
and take the values of
r and C obtained at
the end of Step 1

Start of
Step 2

Do there exist one
or more pairs of
vacant entries cm,q

and cm′ ,q′

in C such that
|q − q′| = k?

from Step 1

Randomly pick a pair of
vacant entries cm,q and cm′ ,q′

in C that satisfy |q − q′| = k

Set cm,q ← r,

cm′ ,q′ ← r and r ← r + 1

The entries cm,q and cm′ ,q′ are

no longer vacant

Restart
algorithm
from Step 1.

Figure 12: Step 2 of the algorithm.



12 EURASIP Journal on Advances in Signal Processing

1

1

1 2

2 1

1

1 1

1

3

3

2

2 2

2

2 3 1

2 3

3

31

4

4

Step 1, first iteration
k = 3,n = 1

Step 1, second iteration
k = 2,n = 2

Step 1, third iteration
k = 1,n = 3

Step 2, first iteration
k = 3,n = 4

Step 2, second iteration
k = 2,n = 4

Figure 13: A possible sequence of code matrices obtained at various stages of the algorithm (M = 2 and Q = 4).

This is achieved by again traversing through the values of hk,0
in the order k = (Q− 1), (Q− 2), . . . , 1, and incrementing by
one hit wherever possible. Flow charts providing the details
of the two steps are shown in Figures 11 and 12. As can be
seen from the algorithm flow charts, there are certain cases
under which we need to discard the code matrix obtained
after a few iterations and restart from the beginning of
Step 1. This case arises when, from a partially filled code
matrix, it is not possible to fill the remaining positions
in such a way that the resulting code matrix will generate
orthogonal waveforms. However, the probability of such an
event occurring is very low. Through extensive simulations
(for various values of M and Q), we have observed that
the probability of a code being generated with three or less
restarts is over 99%.

Consider a simple example for M = 2 and Q = 4. Since
(MQ/2)/(Q−1) = 4/3 is not an integer, both Step 1 and Step
2 will need to be performed. The one possible sequence of
code matrices obtained at various stages of the algorithm are
shown in Figure 13.

6.2. Related Discussion. For frequency-hopping waveforms,
the parameters which can be controlled are - {M,Q,K ,
Δt,Δ f }. The proposed algorithm assumes one of these
parameters K to be equal to MQ/2. One possible limitation
of this method is the loss of flexibility in designing codes
for a required time-bandwidth product, BT. Table 1 lists all
possible time-bandwidth products between 0 and 400 for
which codes can be designed from the proposed algorithm
for M = 4. Note that the bandwidth of the waveform
is KΔ f , the duration of each pulse is QΔt and, hence,
BT = KQΔtΔ f . From the entries of the table, we may
state that constraint on K is not a serious limitation on
the flexibility in designing the code. On the other hand, the
algorithm hardly needs any computations in comparison to
those required by a heuristic search-based method such as
simulated annealing.

6.3. Simulation Results. We will now present simulation
results to demonstrate the effectiveness of our proposed
algorithm. We have generated codes of various sizes using
both methods, the heuristic search proposed by [11] with
the cost function (41) at p = 3 and our proposed algorithm.
The code parameters used wereM = 4, Q ∈ {6, . . . , 14} and
K = MQ/2 for each value of Q. From the code matrices

Table 1: Values of BT for which codes can be designed with the
proposed algorithm (M = 4 and Δ f Δt = 1).

32 160 288

50 162 294

64 192 300

72 196 324

96 200 338

98 216 350

100 224 360

128 242 384

144 250 392

150 256 400

obtained from both methods for M = 4, Q = 10, we
plotted the Empirical CDFs of their respective |Ω(τ, 0, f , f ′)|
functions (see Figure 14). In order to see how a randomly
generated code performs on average, we generated randomly
100 orthogonal code matrices of same size and plotted ECDF
of the code corresponding to the median cost. Note from the
plots that both methods are similar in terms of performance
and they show a marked improvement over a randomly
generated code.

In order to compare the performance of the twomethods
with increasing code size, we have plotted the magnitude
below which 95% of the samples of |Ω(τ, 0, f , f ′)| lie. The
lower the curve, the lower is the corresponding sidelobe level,
which corresponds to a better code. From Figure 15, we see
that the performance of the proposed algorithm is either very
similar or slightly better than that of the heuristic search-
basedmethod for allQ. Themarginal performance loss of the
heuristic method for some values of Q, as seen in the figure,
may be because the simulated annealing has converged to one
of the local minima.

7. Weighted Optimization (Δ f ≤ ν < KΔ f )

When optimizing frequency-hopping codes using either
fp(C) and gp(C), the aim is to minimize the sidelobe levels
over the entire range of delay-Doppler space, that is, for
−QΔt < τ < QΔt and −KΔ f < ν < KΔ f . However, it is
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possible to place a higher importance on the minimization
of sidelobe peaks in a subregion of the delay-Doppler space,
by using a weighted cost function defined as follows:

g′p(C) =
Q−1
∑

k=−Q+1

K−1
∑

l=−K+1
λk,l

(

hk,l
)p
, (50)

where λk,l is the weight applied to (k, l)th element of H
(see (20)). We now discuss possible applications of such a
weighted cost function.
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Figure 16: CDFs of the optimized codes with and without
weighting in the specified region (M = 4, Q = 10, K = 80, lmax = 8,
kmax = 2).

Example 1. When the range of target Doppler is smaller than
the overall bandwidth of the transmitted signals (max(|ν|) <
KΔ f ), optimization can be performed for a subset of the
Doppler values using the weights:

λk,l =
⎧

⎨

⎩

1, if 0 < |l| < lmax,

0, otherwise,
(51)

where lmax = 
max(|ν|)/Δ f �.

Example 2. Using this method, it is possible to find
waveforms with their ambiguity sidelobes constrained to
particular regions of the the delay-doppler space. Suppose
we wish to find codes with very few ambiguity sidelobes
occurring in a region close to the mainlobe. Consider the
following mask

λk,l =
⎧

⎨

⎩

1, if 0 < |l| < lmax, 0 < |k| < kmax,

0, otherwise,
(52)

where lmax and kmax are bounds on the regions of delay-
Doppler space. Thus, a penalty is applied on sidelobes
occurring inside the region of interest and the cost is
unaffected by sidelobes occurring outside this bounded
region. To show the gain this method could have, we now
compare the final ambiguity functions obtained by using
gp(C) and g′p(C). In order to compare them, we consider
the delay-Doppler subspace of the corresponding ambiguity
functions bounded by lmax and kmax and plot their respective
CDFs. The parameters for this simulation were M = 4,
Q = 10, K = 80, lmax = 8 and kmax = 2. Figure 16 shows
the gain achievable within the region of interest.
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8. Conclusion

In this paper, we have shown how the MIMO radar ambi-
guity function for orthogonal frequency-hopping waveforms
can be extended to general values of Doppler. We have
also presented the hit-matrix as an analysis tool for these
waveforms. To enable the optimization of these waveforms
under the large Doppler scenario using simulated annealing,
cost functions have been presented based on the ambiguity
function as well as the hit-matrix. The codes obtained using
both cost functions are shown to have similar performance
based on their ECDF curves. The hit-matrix-based cost
function has a significantly lower computational complexity,
and can be useful when searching for codes with high time-
bandwidth products, where using a ambiguity-based cost
function is infeasible.

Under the small Doppler scenario, an algorithm has been
proposed which directly computes the code matrix of a given
size. It has been shown to perform as well as the heuristic
search proposed by Chen and Vaidyanathan [11]. The use of
weighted cost functions to optimize the ambiguity function
within a subregion of the delay-Doppler space has also been
explored. This method of “Weighted Optimization” also
addresses the problem of waveform design for intermediate
Doppler.
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