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This paper concerns the mean square error optimal weighting factors for multiple window spectrogram of different stationary and
nonstationary processes. It is well known that the choice of multiple windows is important, but here we show that the weighting
of the different multiple window spectrograms in the final average is as important to consider and that the equally averaged
spectrogram is not mean square error optimal for non-stationary processes. The cost function for optimization is the normalized
mean square error where the normalization factor is the multiple window spectrogram. This means that the unknown weighting
factors will be present in the numerator as well as in the denominator. A quasi-Newton algorithm is used for the optimization. The
optimization is compared for a number of well-known sets of multiple windows and common weighting factors and the results
show that the number and the shape of the windows are important for a small mean square error. Multiple window spectrograms
using these optimal weighting factors, from ElectroEncephaloGram data including steady-state visual evoked potentials, are shown
as examples.

1. Introduction

Estimation and detection of frequency changes of shorter
or longer duration in the ElectroEncephaloGram (EEG)
connected to stimuli, for example, evoked or induced
potentials are often of great interest. To statistically differ
between responses from different types of stimuli, choosing
an spectral estimator with small bias and low variance is
important.

The idea of multiple windows or multitapering was intro-
duced by Thomson, [1], and in the last decades the Thomson
method has been used in many different application areas.
It has been shown to outperform the Welch method
[2] in terms of leakage, resolution, and variance for a
stationary spectrally smooth process, [3]. For nonsmooth
spectra, however, the performance of the Thomson method
degrades due to cross-correlation between subspectra [4].
Other appropriate choices are then, for example, [5–7]. A
comparison of Hermite and Slepian functions (the Thomson
method) has shown that in the case of time-varying signals

and spectrogram estimation, Hermite functions are a better
choice [8].

The choice of windows has been studied in the lit-
erature but how to weight the different multiple window
spectrograms in the final average has not gained that much
attention. In [9], the weighting factors are optimized for the
Peak-Matched Multiple Windows, [6]. A criterion is used
where normalized bias, variance, and mean square error
is optimized for the predefined peaked spectrum. In the
nonstationary case, different approaches to approximate a
time-varying spectrum with a few windowed spectrograms
have been taken, for example, [10–13].

In this paper we compare the Hermite functions, the
Thomson windows, the Peak Matched Multiple Windows,
and the Welch windows and evaluate the performance with
optimal weighting factors for different processes. The cost
function for optimization is the normalized mean square
error where the normalization factor is the multiple window
spectrogram. This means that the unknown weighting
factors will be present in the numerator as well as in the
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Figure 1: The three different test covariance matrices for bandlimited white noise processes: (a) stationary process, (b) long-event
nonstationary process, and (c) short-event nonstationary process.

denominator. A quasi-Newton algorithm is used for the
optimization. We compare the results from the usual equally
weighted multiple window spectrogram as well as an optimal
scaling factor-adjusted multiple window spectrogram. Pre-
liminary results have been presented in [14]. A nonstationary
process model, which could be appropriate for, for example,
induced responses in the EEG, is studied. We illustrate
the weighted multiple window spectrogram estimates by
showing examples of steady-state visual evoked potential
(SSVEP).

The paper is organized as follows. Section 2 presents the
optimized weighting factors and in Section 3 the evaluation
for different stationary and nonstationary processes is pre-
sented. In Section 4 examples of estimation of SSVEP are
shown. Section 5 concludes the paper.

2. Optimization ofWeighting Factors

The Multiple Window Spectrogram ̂Sx(n, k) of the zero mean
real-valued random process x(n), n = 0, . . . ,N0−1 is defined
by

̂Sx(n, k) =
I
∑

j=1

αj
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2

, (1)

for k = 0 · · ·K − 1 and 0 ≤ n ≤ (N0 − N)/L, where the
assumption is that the data is stationary for the N samples
x(n L) · · · x(N − 1 + nL). Equation (1) is a weighted sum
of spectrograms obtained by using the data windows h j =
[hj(0) · · · hj(N − 1)]T , and the weighting factors αj , j =
1 · · · I . The parameter L is the step size and K the number
of values in the DFT.

With only one window, I = 1, the spectrogram has too
large variance to be useful in the analysis of a stochastic
process, as the variance is approximately the squared Wigner
spectrum Sx(n, k)2.

2.1. Mean Square Error Optimization. The mean square error
(MSE) is a natural choice of optimization since it includes
both variance and squared bias. Optimizing the MSE for
a model where the power varies with time, which might
be the case for nonstationary processes, focuses too much
on high-power parts of the process. To avoid this, the
optimization can be done normalizing with the true Wigner
spectrum at each time and frequency value. However, this
might give a strange result if the Wigner estimate is biased.
Therefore, we consider the normalized MSE (nMSE) where
the expectation of the multiple window spectrogram is used
for the normalization at each time and frequency value.
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Figure 2: The normalized mean square error for the three bandlimited white noise processes with EQWEI (circles), SCWEI (pluses), and
OPTWEI (stars) for different window sets, Thomson multiple windows (TH), Peak Matched multiple windows (PM), Welch method (WO),
and Hermite functions (HE): (a) stationary process, (b) long-event nonstationary process, and (c) short-event nonstationary process.

The nMSE, which is computed in the time interval [−T ·
L · · ·T · L] and in the frequency interval [−M/K · · ·M/K],
is the average of a number of (2M+1×2T+1) time-frequency
values, giving the cost function:

ξ = 1
(2M + 1)(2T + 1)

T
∑

n=−T

M
∑

k=−M

ε(n, k)

E2
[

̂Sx(n, k)
] , (2)

where the MSE for each time and frequency value is defined
as

ε(n, k) = Variance
[

̂Sx(n, k)
]

+ Bias2
[
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]

. (3)

The variance is
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where the covariance matrix Rn
X = E[xxT] with

x = [x(nL) · · · x(nL + N − 1)]T and Φ(k) = diag
[1 e−i2πk/K · · · e−i2π(N−1)k/K ] and the superscript H
denotes conjugate transpose, according to [4]. Reduction

of the variance is established if the correlation between the
windowed periodogram (subspectra),

Sj(n, k) =
∣
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, (5)

from the windows h j and hg , j /= g, is small for all frequency
values k.

The bias is

Bias
[

̂Sx(n, k)
]

= E
[

̂Sx(n, k)
]

− Sx(n, k)

=
I
∑

j=1

αjhTj Φ
H(k)Rn

XΦ(k)h j − Sx(n, k),
(6)

where Sx(n, k) is the known Wigner spectrum of the
model. The optimization cost function of (2) includes the
expressions of (4) and (6) where h j , j = 1, . . . , I are known
windows and Rn

X is the time-variable nonstationary covari-
ance matrix. The unknown variables are αj , j = 1, . . . , I
which appear both in the numerator and the denominator
of (2). The minimization of the criterion is therefore done
iteratively with a quasi-Newton algorithm [15]. The criterion
and its derivative are used in the algorithm. The algorithm is
described in [9]. Using these weights in the multiple window
spectrogram is referred to as optimal weights (OPTWEI).
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Figure 3: The optimized weighting factors for the bandlimited white noise process when the different multiple window sets are applied to the
different cases, Thomson windows (stars), Peak Matched multiple windows (pluses), Welch method (circles), Hermite functions (crosses):
(a) stationary process, (b) long-event nonstationary process, and (c) short-event nonstationary process.

2.2. Averaging and Scale Optimization. Usually, the spec-
trograms from different windows are equally weighted and
averaged in the final estimate, that is,

αj = 1
I

, j = 1 · · · I. (7)

Using equal weights according to (7) is referred to as equal
weights (EQWEI).

The mean square error could be optimized according
to the nMSE criterion, using equal weights scaled with a
constant factor, that is,

αcj =
c

I
, j = 1 · · · I , (8)

where a closed form expression for the factor c is found from

c =
∑T

n=−T
∑M

k=−M S2
x(n, k)/E2

[

̂Sx(n, k)
]

∑T
n=−T

∑M
k=−M Sx(n, k)/E

[

̂Sx(n, k)
] . (9)

The weighting factors αcj are referred to as scaled weights
(SCWEI).

3. Results

3.1. Bandlimited White Noise Process. The evaluation is
done for different stationary and nonstationary processes.

The bandlimited white noise process with the covariance
function

rw(n−m) = B
sin(πB(n−m))
πB(n−m)

(10)

generates a Toeplitz covariance matrix Rstat(n,m), which is
shown in Figure 1(a) for B = (8 + 3)/128 ≈ 0.0859, (Case 1).
The locally stationary process approach [16, 17], where the
covariance function of a nonstationary process is defined by

rns(n,m) = rw(n−m)e−((n−m)/2Fsc)
2

e−((n+m)/Fsc)
2

, (11)

gives a time-variable bandlimited spectrum where the time-
variable power of the bandlimited white-noise process
changes with a Gaussian envelope. Two examples are seen in
Figure 1(b) as a long-event nonstationary process (Fsc = 120)
(Case 2) and in Figure 1(c) as a short-event nonstationary
process (Fsc = 50) (Case 3).

The weighting factors are optimized using four different
sets of multiple windows. The Thomson multiple windows
(TH) [1] give uncorrelated subspectra and thereby low
variance for a stationary white noise process and the window
functions h j are given by the eigenvectors of the (N × N)
Toeplitz covariance matrix with elements given by (10) with

B = I + 3
N

, (12)

where I is the number of multiple windows in the set.
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Figure 4: The normalized mean square error for the three bandlimited peaked spectrum processes with EQWEI (circles), SCWEI (pluses),
and OPTWEI (stars) for different window sets, Thomson multiple windows (TH), Peak-Matched multiple windows (PM), Welch method
(WO) and Hermite functions (HE): (a) stationary process, (b) long-event nonstationary process, and (c) short-event nonstationary process.

The Peak-Matched (PM) multiple windows [6] are
designed to give small correlation between subspectra when
the spectrum of the stationary process includes peaks
and notches. The windows are given by the solution of
the generalized eigenvalue problem where the number of
windows satisfies (12). Other parameters to be defined are
the peak height chosen as C = 20 dB and the sidelobe
suppression chosen as K = 30 dB [6]. The number of
windows is I and is related to the bandwidth B and window
length N as in (12).

The Welch method (WO) [2] utilizes time-shifted equal
windows. In this paper we use a Hanning window of
appropriate length so that the number of windows, I , is fitted
into the total window length N with 50% overlap.

A set of Hermite functions (HE) is computed as

h1(t) = e−t
2/2,

h2(t) = 2te−t
2/2,

hj(t) = 2thj−1(t)− 2
(

j − 2
)

hj−2(t), j = 3 · · · I ,

(13)

with t = n/FH for n = −N/2 · · ·N/2− 1. The parameter FH
is chosen so that the first Hermite function is approximately
equal to the first Slepian function of the Thomson method in
each case (similar approach as in [8]).

The number of windows is chosen as I = 8 for all
different methods and the window lengths are in all cases
N = 128 giving B ≈ 0.0859 for the Thomson and
Peak-Matched multiple windows. For Case 1 (stationary
process), the nMSE is computed and optimized only for the
frequency, f = 0, that is, M = 0 and T = 0. For the
nonstationary cases we choose, M = 8 and T · L = 192
with T = 8, (17 × 17 values) for Case 2 and T · L = 32
with T = 8, (17 × 17 values) for Case 3. These choices
include the whole covariance matrix in each case and give
a balance between different time and frequency values in the
average.

The nMSE for Case 1 is shown in Figure 2(a), for
the different multiple window sets, where the nMSE from
EQWEI is shown with circles, the SCWEI with pluses, and
OPTWEI with stars. The Thomson windows and Hermite
functions are optimal for the stationary bandlimited white-
noise process using the EQWEI and thereby the optimization
of the weighting factors (SCWEI and OPTWEI) does not
give any improvement of the nMSE. The Peak-Matched
multiple windows do not give a small error using EQWEI,
but with SCWEI and also OPTWEI, the nMSE decreases.
The overall smallest error, however, is given by the Thomson
and Hermite multiple windows as expected, as these two sets
are optimal for a stationary bandlimited process. The Peak-
Matched multiple windows and the Welch method are not
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Figure 5: The optimized weighting factors for the bandlimited peaked spectrum process when the different multiple window sets are
applied to the different cases, and Thomson windows (stars), Peak Matched multiple windows (pluses), Welch method (circles), and Hermite
functions (crosses): (a) stationary process, (b) long-event nonstationary process, and (c) short-event nonstationary process.

able to reach the same nMSE even when the weighting factors
are optimized.

In Case 2, Figure 2(b), the results from the long-event
nonstationary process show the importance of using SCWEI
and OPTWEI compared to the EQWEI in the nonstationary
case. The difference of these two sets of weights is, however,
not that large. It could also be noted that the Hermite
functions perform slightly better than the Thomson multiple
windows, which is in concordance with the study of nonsta-
tionary processes in [8]. In Case 3, Figure 2(c), using EQWEI
on the short-event nonstationary process gives a very large
error. Using SCWEI and OPTWEI gives a much lower nMSE.

The weighting factors αj for OPTWEI are depicted in
Figure 3 for the different window sets and the different cases.
For the stationary process, the optimal weighting factors for
the Thomson multiple windows (stars) are equally given
by αj = 1/8 ≈ 0.125. This is almost also the case for
the Hermite functions (crosses), where the Peak-Matched
multiple windows as well as the Welch method give more
irregular weighting factors. Overall, however, the optimal
weighting factors result almost in equally averaged spectra in
all cases which coincides with theory for stationary processes.
Of more interest is the long-event nonstationary process in
Figure 3(b), where now both the Thomson and the Hermite
windows give weights where more power is given to the
spectrogram from the first window function with decreasing
power to the following ones. Similar appearance is seen

for the Welch method, where we should remember that
all the windows have the same frequency shape but have
their power centered at different time points. Most of the
power is laid on the resulting spectrograms of the middle
windows which intuitively seems quite natural. For the more
short-event nonstationary process, the resulting weighting
factors have a different behavior, see Figure 3(c), where now
the multiple windows located at end points of the time
interval for the Welch method are given most power. This
shows the importance of considering the weighting factors
in estimation procedure. However, for the bandlimited white
noise process, we should remember that using SCWEI in all
cases gave almost as small error as OPTWEI.

As the optimization is made using a quasi-Newton
algorithm, we cannot be sure of convergence to the global
minimum. To verify, we optimize the weighting factors in
all cases using 100 different initial sets of weighting factors.
The set of initial values is randomly picked from a rectangle
distribution with values between zero and one and the
resulting sum is normalized to one. For all three bandlimited
white noise processes and for all sets of windows, the
optimization converged to the same minimum error for all
the 100 cases, based on equal sets of weighting factors.

3.2. Bandlimited Peaked Spectrum Process. Instead of using
a bandlimited white noise process, the stationary covariance
function in (10) is replaced with the covariance function
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Figure 6: Logarithmic spectrogram of SSVEP of long-event nonstationary character, estimated using a single window spectrogram with
a Hanning window and the Peak-Matched multiple windows with EQWEI/SCWEI and with OPTWEI from Figure 5(b). Horizontal and
vertical lines indicate flickering light of (a), (b), (c) 12 Hz, 5–10 s, (d), (e),(f) 15 Hz, 5–10 s.

rx(n − m) of a bandlimited peaked spectrum according to
[6]:

Sx
(

f
) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−2C| f |/10Blog10(e),
∣

∣ f
∣

∣ ≤ B

2
,

0,
∣

∣ f
∣

∣ >
B

2
.

(14)

In (14), Sx( f ) is a peaked spectrum with Sx(0) = 1, B =
11/128 ≈ 0.0859, and Sx(B/2) = −C dB, where C = 20 dB.
The nonstationary processes are found from (11) with rw(n−
m) replaced with rx(n−m).

The results from these processes are presented in
Figure 4. For the stationary-peaked spectrum process,
Figure 4(a), the EQWEI of the Welch method happens to
give the smallest error. Using SCWEI we can lower the nMSE
for all methods but using OPTWEI combined with Peak
Matched multiple windows gives the smallest nMSE of all
methods, which is concordance with [6, 9], where these
windows and optimized weighting factors are shown to be

optimal for this process. In Case 2, Figure 4(b), for the long-
event nonstationary process, the benefit of using windows
with properties suitable for the process becomes visible as
the smallest nMSE is given for the Peak-Matched multiple
windows combined with OPTWEI. In this case, the SCWEI
is far from giving the same result. In Case 3, we also see a
similar result for the short-event nonstationary process.

The different weighting factors are depicted in Figure 5,
and for the stationary case, we see in Figure 5(a) the
characteristic weighting for the PM given by 1/λi, where λi is
the eigenvalues from the solution of the eigenvalue problem
giving the peak-matched multiple windows optimizing at the
frequency M = 0; see [9]. Of more interest is the nonstation-
ary processes of Cases 2 and 3. The optimal weightings of
Peak-Matched and Thomson multiple windows are similar
and they all give most power to the spectrogram from the first
window and decreasing power to the following spectrograms.
It is also worth notifying that this power increases for
the short-event process of Case 3; see Figure 5(c). Most
important, however, is how the weighting changes between
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Figure 7: Logarithmic spectrogram of SSVEP of short-event nonstationary character, estimated using a single window spectrogram with
a Hanning window and the Peak-Matched multiple windows with EQWEI/SCWEI and with OPTWEI from Figure 5(b). Horizontal and
vertical lines indicate flickering light of (a), (b), (c) 9 Hz, 10.4–12.2 s, (d), (e), (f) 9 Hz, 4.7–5.7 s.

the peaked spectrum process and the bandlimited white
noise process and also how the weighting changes with the
non-stationarity of the process.

The convergence of the optimization of the weighting
factors in the three cases of bandlimited peaked spectrum
processes is also investigated using the same randomly picked
initial values as for the bandlimited white noise process and
all different window sets. The results show that a minimum
of 90% (usually around 95%) of the initial values converge
to the global minimum giving the true optimal weighting
factors. In the cases where the algorithm did not converge,
the final error and the weighting factors were very far
away from the true values and the divergence was easily
discovered.

4. Real Data Examples

To show the performance for real-data, sampled ElectroEn-
cephaloGram data (EEG) were studied, where a flickering
light (Grass Photic stimulator Model PS22C) was introduced

at different time points. The light stimulation lasted approx-
imately 1 s or 5 s. For a repetitive periodic visual stimulus
a steady-state visual evoked potential (SSVEP) arises in the
EEG. We assume the short stimulation (∼1 s) to introduce a
short-event nonstationary process and the long stimulation
(∼5 s) to introduce a long-event nonstationary process in
the measured EEG. The subject was supine with closed
eyes on a bed in a silent laboratory where ambient light
was dimmed. The flickering light, with set frequency and
time interval, was flashed at the subject from a distance of
approximately 1 m. Data were recorded using a Neuroscan
system with a digital amplifier (SYNAMP 5080, Neuro Scan,
Inc.). Amplifier band-pass settings were 0.3 and 50 Hz. The
sample rate was 256 Hz which was downsampled to a sample
rate of Fs = 64 Hz in Matlab. In all examples channel PZ is
chosen.

We illustrate the performance of the methods with
examples of four different data sets. Example 1 is given
from flickering light of 12 Hz and example 2 is given
from flickering light of 15 Hz. For both these examples
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the flickering lasts between time points 5 and 10 s and we
assume these responses to be two long-event nonstationary
processes. The third and fourth examples are given from
flickering of 9 Hz between time points 10.4 and 12.2 s and
time points 4.7 and 5.7 s, respectively. These two examples
are assumed to be responses of short-event nonstationary
processes.

We assume that we can model the different long-
event nonstationary SSVEPs of Examples 1 and 2 as ban-
dlimited peaked spectrum processes; see [18]. Logarithmic
spectrograms are depicted in Figure 6, where we compare
the spectrograms using the single Hanning window with
different weightings of the Peak Matched multiple windows
using OPTWEI from Figure 5(b) and EQWEI/SCWEI. In
all cases, the window length is N = 128. Note that
the spectrogram using EQWEI is equal to SCWEI as the
difference is only a gain factor and the coloring is adjusted
between the minimum and maximum value of each plot. We
should also remember that the bandwidth of this estimator
is B = Fs(I + 3)/N = 5.5 Hz, which is also clearly seen in the
examples in Figures 6(b) and 6(e). The spread of the power
caused by the large frequency bandwidth makes it difficult
to know where the actual response frequency is located.
Equal weighting of the multiple window spectrograms is
not appropriate for data where it is important to locate the
maximum power at a certain frequency. In the time-scale,
however, we see that the resulting responses show up in
the time interval where they should be located according to
the stimuli given. The single window Hanning spectrograms
are well resolved in frequency but the variance is however
too large to be reliable, which is seen in Figures 6(a) and
6(d).

In Figure 7, we compare the spectrogram estimates using
the single Hanning window with different weightings of
the Peak-Matched multiple windows using OPTWEI from
Figure 5(c) and EQWEI/SCWEI. The single Hanning spec-
trogram in Figures 7(a) and 7(d) is difficult to interpret
and the spectrograms using EQWEI/SCWEI give a too wide
estimate in frequency; see Figures 7(b) and 7(e). Using
OPTWEI, the short-event nonstationary processes in Figures
7(c) and 7(f) are located correctly in the time interval as
well as at the appropriate frequency. The last case however,
Figure 7(f), has a large amount of power outside the time
interval of stimuli, around 6-7 s. This is explained by the fact
the stimulus sequence also activated the person and thereby
also the alpha activity raised; see [18].

Even better is to actually estimate a model covariance
function, using, for example, many trials from the same
experiment for a robust estimate. From the properties of this
modeled covariance function an appropriate set of multiple
windows can be chosen and the weighting factors could be
nMSE optimized to estimate the single stimulus response.

5. Conclusion

We compare the Hermite functions, the Thomson windows,
the Peak-Matched Multiple Windows, and the Welch win-
dows and compute the performance with optimal weighting
factors for different stationary and nonstationary processes.

The cost function for optimization is the normalized mean
square error where the normalization factor is the multiple
window spectrogram. This means that the unknown weight-
ing factors will be present in the numerator as well as in
the denominator. A quasi-Newton algorithm is used for the
optimization. The results show that the weighting factors, as
well as the shape of the windows, are important factors for a
small error. It is also shown that a scaling optimization of the
usual averaging could give almost as small mean square error
as an optimization of the individual weighting factors in case
of a smooth spectrum. For a peaked spectrum, a significant
reduction of the normalized mean square error is achieved
using individual optimization of the weights.
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