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A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and
the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale
curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to
force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange
equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and
texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm.
Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect
and curvelet-like artifacts, while preserving fine details.

1. Introduction

Image denoising is a very important preprocessing in many
computer vision tasks. The tools for attracting this problem
come from computational harmonic analysis (CHA), varia-
tional approaches, and partial differential equations (PDEs)
[1]. The major concern in these image denoising models is to
preserve important image features, such as edges and texture,
while removing noise.

In the direction of multi-scale geometrical analysis
(MGA), the shrinkage algorithms based on the CHA tools,
such as contourlets [2] and curvelets [3–5], are very impor-
tant in image denoising because they are simple and have
efficient computational complexity and promising properties
for singularity analysis. Therefore, the pseudo-Gibbs artifacts
caused by the shrinkage methods based on Fourier transform
and wavelets attempt to be overcame by the methods based
on MGA at least partially. However, there are still some
curve-like artifacts in MGA-based shrinkage methods [6].

Algorithms designed by variatinal and PDE models
are free from the above lacks of MGA but cost heavy

computational burden that is not suitable for time critical
application. In addition, the PDE-based algorithms tend to
produce a staircasing effect [7], although they can achieve a
good trade-off between noise removal and edge preservation.
For instance, the total variation (TV) minimizing [8] method
has some undesirable drawbacks such as the staircasing effect
and loss of texture, although it can reduce pseudo-Gibbs
oscillations effectively. Similar problem can be found in
many other nonlinear diffusion models such as the Perona-
Malik model [9] and the mean curvature motion model
[10]. In this paper, we will focus on the hybrid variational
denoising method. Specificity, we will emphasis on the
improvement on the TV model, and we will propose a
novel gradient fidelity term based on the curvelet shrinkage
algorithm.

1.1. Related Works and Analysis. To begin with, we will
review some related works of the variational methods. To
cope with the ill-posed nature of denoising, the variational
methods often use regularization technique. Let u0 denote
the observed raw image data and u is the original good image;
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Figure 1: (a) The noisy “Lena” image with standard deviation 35; (b) the denoised “Lena” image by the TV algorithm; (c) the denoised
“Lena” image by the curvelet hard shrinkage algorithm.

then the regularization functional-based denoising is given
by

û = argmin
u
{λEdata(u,u0) + Esmooth(u)}, (1)

where the first term Edata(u,u0) is the image fidelity term,
which penalizes the inconsistency between the under-
estimated recovery image and the acquired noisy image,
while the second term Esmooth(u) is the regularization term
which imposes some priori constraints on the original image
and to a great degree determines the quality of the recovery
image, and λ is the regularization parameter which balances
trade-off between the image fidelity term Edata(u,u0) and the
regularization term Esmooth(u).

A classical model is the minimizing total variational (TV)
functional [8]. The TV model seeks the minimal energy of an
energy functional comprised of the TV norm of image u and
the fidelity of this image to the noisy image u0:

û = argmin
u∈BV(Ω)

E(u) =
∫

Ω

{

|∇u| +
1
2
λ(u− u0)2

}

dx dy. (2)

Here, Ω denotes the image domain and BV(Ω) is the space
of functions of L1(Ω) such that the TV norm is TV(u) =
∫

Ω |∇u| dxdy < ∞. The gradient descent evolution equation
is

∂u

∂t
= div

( ∇u
|∇u|

)

+ λ(u0 − u). (3)

In this formulation, λ can be considered as a Lagrange
multiplier, computed by

λ = 1
|Ω|σ2

∫

Ω
div

⎛

⎝

∇u
√

|∇u|2 + ε2

⎞

⎠(u− u0)dx. (4)

Although the TV model can reduce oscillations and regular-
ize the geometry of level sets without penalizing discontinu-
ities, it possesses some properties which may be undesirable
under some circumstances [11], such as staircasing and loss
of texture (see Figures 1(a)–1(c)).

Currently, there are three approaches which can partially
overcome these drawbacks. One approach to preventing
staircasing is to introduce higher-order derivatives into the
energy. In [12], an image u is decomposed into two parts:
u = u1 + u2. The u1 component is measured using the
total variation norm, while the second component u2 is
measured using a higher-order norm. More precisely, one
solves the following variational problem that now involves
two unknowns:

min
u1,u2

E(u1,u2)

=
∫

Ω

{

|∇u1| + αH(∇u2) + λ(u1 + u2 − u0)2
}

dx dy.
(5)

Here H(∇u2) could be some higher-order norm, for exam-
ple, H(∇u2) = |∇2u2|. More complex higher-order norms
were brought to variational method in order to alleviate the
staircasing effect [13].

The second approach overcoming the staircasing effect is
to adopt the new data fidelity term. Gilboa et al. proposed
an adaptive fidelity term to better preserve fine-scale features
[14]. Zhu and Xia in [7] introduced the gradient fidelity term
defined by

E(u,u0) =
∫

Ω
α(u− u0)2dx dy

+
∫

Ω
β‖∇u−∇(Gσ ⊗ u0)‖2dx dy,

(6)

where Gσ is the Gaussian kernel with scale σ , and the symbol
“⊗” denotes the convolution operator. Their studies show
that this gradient fidelity term can alleviate the staircasing
effect. However, classical Gaussian filtering technique is the
uniform smoothing in all direction of images and fine details
are easily destroyed with these filters. Hence, the gradient
of smoothed image is unreliable near the edges, and the
gradient fidelity cannot preserve the gradient and thereby
image edges.

The third approach is the combination of the variational
model and the MGA tools. In [14], the TV model has been
combined with wavelet to reduce the pseudo-Gibbs artifacts
resulted from wavelet shrinkage [15]. Nonlinear diffusion



EURASIP Journal on Advances in Signal Processing 3

Minimizing TV with
gradient fidelity on
curvelet shrinkageShrinkage

Pσu0

Curvelet shrinkage
algorithm

T(u0, σ)

Stop?

Parameters
update

Threshold parameter λ

u0

Noisy image

u

Figure 2: Illustrate the proposed self-optimizing image denoising approach.

has been combined with wavelet shrinkage to improve the
rotation invariance [16]. The author in [17] presented a
hybrid denoising methods in which the complex ridgelet
shrinkage was combined with total variation minimization
[6]. From their reports, the combination of MGA and PDE
methods can improve the visual quality of the restored image
and provides a good way to take full advantages of both
methods.

1.2. Main Contribution and Paper’s Organization. In this
paper, we add a new gradient fidelity term to the TV
model to some second-order nonlinear diffusion PDEs for
avoiding the staircasing effect and curvelet-like artifacts. This
new gradient fidelity term provides a good mechanism to
combine curvelet shrinkage algorithm and the TV regular-
ization.

This paper is organized as follows. In Section 2, we
introduce the curvelet transform. In Section 3, we propose
a new hybrid model for image smoothing. In this model,
we have two main contributions. We propose a new hybrid
fidelity term, in which the gradient of multi-scale curvelet
shrinkage image is used as a feature fidelity term in order
to suppress the staircasing effect and curvelet-like artifacts.
Secondly, we propose an adaptive gradient descent flow
algorithm, in which the spatial-varying parameters are
adaptively estimated to improve the ability of preserving the
details of edges and texture of the desired image. In Section 4,
we give numerical experiments and analysis.

The pipeline of our proposed method is illustrated in
Figure 2. There are three core modules in our method. In
the first module, we apply the curvelet shrinkage algorithm
to obtain a good initial restored image Pσu0. The second
module is the minimizing TV with the new gradient fidelity,
and this module is a global optimizing process which is
guided by our proposed general objective functional. The
third one is the parameters adjustment module, which
provides an adaptive process to compute the value for the
system’s parameters. The rationale behind the proposed
method is that high visual quality image restoration scheme
is expected to be a blind process to filter out noise, preserve
the edge, and alleviate other artifacts.

2. Curvelet Transform

In the next, we review the basic principles of curvelets
which were originally proposed by Candès et al. in [5]. Let
W(r)(r ∈ (1/2, 2)) and V(t) (t ∈ (−1, 1)) be a pair of
smooth, non-negative real-valued functions; here W(r) is
called “radial window” and V(t) is called “angular window”.
Both of them need to satisfy the admissibly conditions:

+∞
∑

j=−∞
W2

(

2 j r
)

= 1, r ∈
(

3
4

,
3
2

)

,

+∞
∑

l=−∞
V 2(t − l) = 1, t ∈

(−1
2

, 1
)

.

(7)

Now, for each j ≥ j0, let the window Uj in Fourier domain
be given by

Uj(r, θ) = 2−3 j/4W
(

2− j r
)

V

(

2� j/2	θ
(2π)

)

, (8)

where � j/2	 is the integer part of j/2 and (r, θ) denotes the
polar coordinate; thus the support of Uj is a polar “wedge”
which is determined by “radial window” and “angular
window”. Let Uj be the Fourier transform of ϕj(x), that
is, ϕ̂ j(x) = Uj(ω). We may think of ϕj(x) as a “mother”
curvelet in the sense that all curvelets at scale 2− j are
obtained by rotation and translations of ϕj(x). Let Rθ be
the rotation matrix by θ radians and R−1

θ its inverse, then
curvelets are indexed by three parameters: a scale 2− j ( j ≥
j0), an equispaced sequence of orientation θj,l = 2π ·
2−� j/2	 · l (l = 1, 2 . . . , 0 ≤ θl ≤ 2π), and the position

x
( j,l)
k = R−1

θj,l
(k12− j , k22− j) (k = (k1, k2) ∈ Z2). With these

parameters, the curvelets are defined by

ϕj,l,k(x) = ϕj

(

Rθj,l

(

x − x
( j,l)
k

))

. (9)

A curvelet coefficient is then simply the inner product
between an element u ∈ L2(R2) and a curvelet ϕj,l,k, that is,

cj,l,k =
〈

u(x),ϕj,l,k

〉

=
∫

R2
u(x)ϕj,l,k(x)dx. (10)
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Figure 3: The elements of wavelets (a) and curvelets on various scales, directions and translations in the spatial domain (b).

Let μ = ( j, l, k) be the collection of the triple index.
The family of curvelet functions forms a tight frame of
L2(R2). That means that each function u ∈ L2(R2) has a
representation:

u(x) =
∑

μ

〈

u(x),ϕμ

〉

ϕμ, (11)

where 〈u,ϕμ〉 denotes the L2-scalar product of u and ϕμ.
The coefficients cμ(u) = 〈u(x),ϕμ〉 are called coefficients of
function u. In this paper, we apply the second-generation
curvelet transform, and the digital implementations can be
outlined roughly as three steps [5]: apply 2D FFT, product
with frequency windows, and apply 2D inverse FFT for each
window. The forward and inverse curvelet transforms have
the same computational cost of O(N2 logN) for an N × N
data [11]. More details on curvelets and recent applications
can be found in recent reviewer papers [3–6, 18, 19]. Figure 3
shows the elements of curvelets in comparison with wavelets.
Note that the tensor-product 2D wavelets are not strictly
isotropic but have three directions, while curvelets have
almost arbitrary directional selectivity.

3. Combination TVMinimization with
Gradient Fidelity on Curvelet Shrinkage

3.1. The Proposed Model. We start from the following
assumed additive noise degradation model:

u0 = u + v, (12)

where u0 denotes the observed raw image data, u is the
original good image, and v is additive measurement noise.
The goal of image denoising is to recover u from the observed
image data u0. The shrinkage algorithm on some multi-scale
frame {ϕμ : μ ∈ Λ} can be written as follows:

Cμu0 = Cμu + Cμv, (13)

where Cμ is the corresponding MGA operator, that is,
Cμ(u) = 〈u,ϕμ〉, for all μ ∈ Λ, and “Λ” is a set of
indices. The rational is that the noise Cμv is nearly Gaussian.
The principles of the shrinkage estimators which estimate
the frame coefficients {Cμu} from the observed coefficients
{Cμu0} have been discussed in different frameworks such as
Bayesian and variational regularization [20, 21].

Although traditional wavelets perform well only for
representing point singularities, they become computation-
ally inefficient for geometric features with line and surface
singularities. To overcome this problem, we choose the
curvelet as the tool of shrinkage algorithm. In general, the
shrinkage operators are considered to be in the form of a
symmetric function T : R → R; thus the coefficients are
estimated by

˜Cμu = T
(

Cμu0

)

, ∀μ ∈ Λ. (14)

Let {ϕ̃μ : μ ∈ Λ} denote the dual frame, and then a denoised
image Pλu0 is generated by the reconstruction algorithm:

Pλu0 =
∑

μ∈Λ
Tλ

(

cμ(u0)
)

ϕ̃μ. (15)

Following the wavelet shrinkage idea which was proposed
by Donoho and Johnstone [22], the curvelet shrinkage
operators Tλ(·) can be taken as a soft thresholding function
defined by a fixed threshold λ, that is,

Tλ(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x − λ, x ≥ λ,

0, |x| < λ,

x + λ, x ≤ λ.

(16)

or a hard shrinkage function

Tλ(x) =
⎧

⎨

⎩

x, |x| ≥ λ,

0, |x| < λ.
(17)
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Figure 4: (a) Original “Toys” image. (b) Noisy “Toys” image for Gaussian noise with standard deviation σ = 20. (c)–(f) Denoising of “Toys”
image shown in (b) where the curvelet transform is hard-thresholding according to (17) for different choices of λ.

The major problem with wavelet shrinkage methods, as
discussed, is that shrinking large coefficients entails an
erosion of the spiky image features, while shrinking small
coefficients towards zero yields Gibbs-like oscillation in the
vicinity of edges and loss of texture. As a new MGA tool,
Curvelet shrinkage can suppress this pseudo-Gibbs and
preserve the image edge; however, some shapes of curve-like
artifacts are generated (see Figure 4).

In order to suppress the staircasing effect and curvelet-
like artifacts, we propose a new objective functional:

E(u) = TV(u) + Edata(u,u0)

=
∫

Ω
|∇u| dxdy + α

(

x, y
)

∫

Ω
(u− u0)2dx dy

+ β
(

x, y
)

∫

Ω
|∇u−∇(Pλu0)|2dx dy.

(18)

In the cost functional (18), the term
∫

Ω |∇u −
∇(Pλu0)|2 dxdy is called curvelet shrinkage-based gradient
data fidelity term and is designed to force the gradient of u to
be close to the gradient estimation ∇(Pλu0) and to alleviate
the staircase effect. And the parameters α(x, y) > 0 and
β(x, y) > 0 control the weights of each term. For the sake
of simplicity for description, we always let α := α(x, y) and
β := β(x, y) in the following sections.

3.2. Basic Properties of Our Model. Let us denote

E(u) = α
∫

Ω
(u− u0)2dx dy + β

∫

Ω
|∇u−∇(Pλu0)|2 dx dy.

(19)

Then, the cost function is a new hybrid data fidelity term,
and its corresponding Euler equation is

α(u0 − u) + β(Δu− Δ(Pλu0)) = 0. (20)

Proposition 1. The Euler equation (20) equals to produce a
new image whose Fourier transform is described as follows: if
α > 0, β > 0, then

F(u) = αF(u0) + β
(

w2 + v2
)

F(Pλu0)
α + β(w2 + v2)

. (21)

Proof. Apply Fourier transform to the Euler equation (20)
and we will get

α(F(u0)− F(u)) + β(F(Δu)− F(Δ(Pλu0))) = 0. (22)

According to the differential properties of the Fourier
transform

F(Δu)(w,v) = F

(

∂2

∂x
u +

∂2

∂y
u

)

(w, v)

= −(w2 + v2)F(u)(w,v),

(23)

we have

α(F(u0)− F(u)) + β
((

w2 + v2)(F(Pλu0)− F(u))
) = 0.

(24)

If α > 0, β > 0, then we get

F(u) = αF(u0) + β
(

w2 + v2
)

F(Pλu0)
α + β(w2 + v2)

, (25)

where w and v are parameters in the frequency domain.
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Proposition 1 tells us that the Euler equation (20) equals
to compute a new image whose Fourier frequency spectrum
is the interpolation of F(u0) and F(Pλu0). The weight
coefficients of F(u0) and F(Pλu0) are α/(α + β(w2 + v2)) and
β(w2 + v2)/(α + β(w2 + v2)), respectively.

Proposition 2. The energy functional Edata(u,u0) is convex.

Proof. For all 0 ≤ λ ≤ 1, for all u1,u2, on one hand we have
the following conclusion:

(λu1 + (1− λ)u2 − u0)2 ≤ λ(u1 − u0)2 + (1− λ)(u2 − u0)2.
(26)

On the other hand, we have the following conclusion:

‖λ∇u1 + (1− λ)∇u2 −∇(Pλu0)‖2

= ‖λ(∇u1 −∇(Pλu0)) + (1− λ)(∇u2 −∇(Pλu0))‖2

= λ2‖∇u1 −∇(Pλu0)‖2 + (1− λ)2‖∇u2 −∇(Pλu0)‖2

+ 2λ(1− λ)〈∇u1 −∇(Pλu0),∇u2 −∇(Pλu0)〉

≤ λ2‖∇u1 −∇(Pλu0)‖2 + (1− λ)2‖∇u2 −∇(Pλu0)‖2

+ 2λ(1− λ)‖∇u1 −∇(Pλu0)‖ · ‖∇u2 −∇(Pλu0)‖

= [λ‖∇u1 −∇(Pλu0)‖ + (1− λ)‖∇u2 −∇(Pλu0)‖]2.
(27)

Then, we have

‖λ∇u1 + (1− λ)∇u2 −∇(Pλu0)‖
≤ λ‖∇u1 −∇(Pλu0)‖ + (1− λ)‖∇u2 −∇(Pλu0)‖.

(28)

According to (26) and (28), we get the Edata(λu1 + (1 −
λ)u2,u0) ≤ λEdata(u1,u0) + (1− λ)Edata(u2,u0).

From Proposition 2, the convexity of the energy func-
tional can guarantee the global optimizing and the existence
of the unique solution, while Proposition 1 shows us that
the solution has some special form in Fourier domain.
Combining Propositions 1 and 2 together, we can remark
that the unique solution of (19) is

ũ = F−1

(

αF(u0) + β
(

w2 + v2
)

F(Pλu0)
α + β(w2 + v2)

)

. (29)

Then, we can prove the following existence and unique-
ness theorem.

Theorem 1. Let u0 ∈ L∞(Ω) be a positive, bounded function
with infΩu0 > 0; then the minimizing problem of energy
functional E(u) = TV(u)+Edata(u,u0) in (18) admits a unique
solution u ∈ BV(Ω) satisfying

inf
Ω

(u0) ≤ u ≤ sup
Ω

(u0). (30)

Proof. Using the lower semicontinuity and compactness of
BV(Ω) and the convexity of Edata(u,u0), the proof can be
made following the same procedure of [23, 24] (for detail,
see appendix in [24]).

3.3. Adaptive Parameters Estimation. For solving the min-
imizing energy functional E(u), it often transforms the
optimizing problem into the Euler-Lagrange equation. Using
the standard computation of Calculus of Variation of E(u)
with respect to u, we can get its Euler-Lagrange equation:

−div
( ∇u
|∇u|

)

+ α(u− u0) + β(Δ(Pλu0)− Δu) = 0,

∂u

∂−→n
∣

∣

∣

∣

∂Ω
= 0,

(31)

where −→n is the outward unit normal vector on the boundary
∂Ω, and −→n = ∇u/|∇u|. For a convenient numerical
simulation of (31), we apply the gradient descent flow and
get the evolution equation:

∂u

∂t
= div

( ∇u
|∇u|

)

+ α(u0 − u) + β(Δu− Δ(Pλu0)),

u(x, 0) = u0(x).

(32)

There are three parameters λ,α,β involved in the iterative
procedure. For the threshold parameter λ in the curvelet
coefficients shrinkage, the common one is to choose λ =
kσ2, where σ denotes the standard deviation of Gaussian
white noise. The Monte-Carlo simulations can calculate an
approximation value σ2 of the individual variance. In our
experiments, we use the following hard-thresholding rule for
estimating the unknown curvelet coefficients:

Tλ(x) =
⎧

⎨

⎩

x, |x| ≥ kσ2,

0, |x| < kσ2.
(33)

Here, we actually chose a scale-dependent value for k: we
have k = 4 for the first scale (the finest scale) and k = 3
for the others.

For the parameters α and β, they are very important
to balance trade-off between the image fidelity term and
the regularization term. An important prior fact is that
the Gaussian distributed noise has the following restriction
condition:

∫

Ω
(u0 − u)2 = |Ω|σ2. (34)

Therefore, we merely multiply the first equation of (32) by
(u0 − u) and integrate by parts over Ω; if the steady state
has been reached, the left side of the first equation of (32)
vanishes; thus we have

∫

Ω
div

⎛

⎝

∇u
√

|∇u|2 + ε2

⎞

⎠(u0 − u) + α
∫

Ω
(u0 − u)2

+ β
∫

Ω
(Δu− Δ(Pλu0))(u0 − u) = 0.

(35)

Obviously, the above equation is not sufficient to estimate the
values of α and β simultaneously. This implies that we should
introduce another prior knowledge. Borrowing the idea of
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spatial varying data fidelity from Gilboa [14], we compute
the parameter by the formula:

α ≈
(u− u0) div

(

∇u/
(
√

|∇u|2 + ε2

))

S
(

x, y
) , (36)

where S(x, y) ≈ σ4/PR(x, y), and PR(x, y) is the local power
of the residue R = u0 − u. The local power of the residue is
given by

PR
(

x, y
) = 1

|Ω|
∫

Ω

(

R
(

x, y
)− η(R)

)2
wx,y

(

x, y
)

dx dy,

(37)

where wx,y is a normalized and radially symmetric Gaussian
Function window, and η(R) is the expected value. After we
compute the value of α, we can estimate the value of β using
(38), that is,

β ≈
∫

Ω div
(

∇u/
(
√

|∇u|2 + ε2

))

(u0 − u)dx + α|Ω|σ2

∫

Ω(Δ(Pλu0)− Δu)(u0 − u)dx
.

(38)

3.4. Description of Proposed Algorithm. To discretize equa-
tion (32), the finite difference scheme in [8] is used. Denote
the space step by h = 1 and the time step by τ. Thus we have

D±x
(

ui, j
)

= ±
[

ui±1, j − ui, j
]

,

D±y
(

ui, j
)

= ±
[

ui, j±1 − ui, j
]

,

∣

∣

∣Dx(ui, j)
∣

∣

∣

ε
=
√

(

D+
x

(

ui, j
))2

+
(

m
[

D+
y

(

ui, j
)

,D−y
(

ui, j
)])

+ε,

∣

∣

∣Dy(ui, j)
∣

∣

∣

ε
=
√

(

D+
y

(

ui, j
))2

+
(

m
[

D+
x

(

ui, j
)

,D−x
(

ui, j
)])

+ε,

(39)

wherem[a, b] = (sign(a)+sign(b)/2)·min(|a|, |b|) and ε > 0
is the regularized parameter chosen near 0.

The numerical algorithm for (32) is given in the follow-
ing (the subscripts i, j are omitted):

u(n+1) − u(n)

τ
=
⎛

⎜

⎝D−x

(

D+
x u

(n)
∣

∣Dxu(n)
∣

∣

ε

)

+ D−y

⎛

⎜

⎝

D+
y u

(n)

∣

∣

∣Dyu(n)
∣

∣

∣

ε

⎞

⎟

⎠

⎞

⎟

⎠

+ α
(

u0 − u(n)
)

+ β
(

Δu(n) − Δ(Pλu0)
)

(40)

with boundary conditions

u(n)
0, j = u(n)

1, j , u(n)
N , j = u(n)

N−1, j ,

u(n)
i,0 = u(n)

i, j , u(n)
i,N = u(n)

i,N−1,
(41)

for i, j = 1, 2, . . . ,N − 1. The parameters are chosen like this:
τ = 0.02, ε = 1, while the parameters λ,α,β are computed

(a) (b)

(c) (d)

Figure 5: The restored “Toys” images (a) by the curvelet shrinkage
method (SNR = 13.33, MSSIM = 0.85); (b) by using the “TV” model
(SNR = 14.21, MSSIM = 0.85); (c) by using the “TVGF” model
(SNR = 13.28, MSSIM = 0.72); (d) by using our proposed model
(SNR = 14.37, MSSIM = 0.88).

dynamically during the iterative process according to the
formulae (33), (36), and (38).

In summary, according to the gradient descent flow
and the discussion of parameters choice, we now present a
sketch of the proposed algorithm (the pipeline is shown in
Figure 2).

Initialization. u(0) = u0, α(0) > 0, β(0) > 0, Iterative-Steps

Curvelet Shrinkage.

(1) Apply curvelet transform (the FDCT [5]) to noisy
image u(0) and obtain the discrete coefficients cj,l,k.

(2) Use robust method to estimate an approximation
value σ , and then use the shrinkage operator in (33)
to obtain the estimated coefficients c̃ j,l,k.

(3) Apply the inverse curvelet transform and obtain the
initial restored image Pλu0.

Iteration. While n < Iterative-Steps Do

(1) Compute u(n+1) according to (40).

(2) Update the parameter α(n+1) according to (36).

(3) Update the parameter β(n+1) according to (38).

End Do
Output: u∗.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The subimages of the original, noisy, and restored “Toys”
in Figure 5: (a) the original image; (b) the noisy image; (c) the
restored image by the curvelet Shrinkage method; (d) the restored
image by using the “TV” model; (e) the restored image by using
the “TVGF” model; (f) the restored image by using our proposed
model.

3.5. Analysis of Staircase and Curve-Like Effect Alleviation.
The essential idea of denoising is to obtain the cartoon
part of the image uC , preserve more details of the edge
and texture parts uT , and filter out the noise part un. In
classical TV algorithm and Curvelet threshold algorithm, the
staircase effects and curve-like artifacts are often generated
in the restored cartoon part uc, respectively. Our model
provides a similar ways to force gradient to be close to
an approximation. However, our model provides a better
mechanism to alleviate the staircase effects and curve-like
artifacts.

Firstly, the “TVGF” model in [7] uses the Gaussian
filtering to approximation. However, because Gaussian filter
is uniform smoothing in all directions of an image, it will
smooth the image too much to preserve edges. Consequently,
their gradient fidelity term cannot maintain the variation of
intensities well. Differing from the TVGF model, our model
takes full advantage of curvelet transform. The curvelets
allow an almost optimal sparse representation of object with
C2-singularities. For a smooth object u with discontinuities
along C2-continuous curves, the best m-term approximation
um by curvelet thresholding obeys ‖u−um‖ ≤ Cm−2(logm)3,
while for the wavelets the decay rate is only m−1.

Secondly, from the regularization theory, the gradient
fidelity term

∫

Ω β‖∇u−∇(Pλu0)‖2dxdy works as Tikhonov
regularization in Sobolev functional space W1,2(Ω) = {u ∈

(a) (b)

(c) (d)

Figure 7: The difference images between the original “Toys”
image and restored “Toys” images in Figure 6: (a) by the curvelet
Shrinkage method; (b) by using the “TV” model; (c) by using the
“TVGF” model; (d) by using our proposed model.

L2(Ω); ∇u ∈ L2(Ω)× L2(Ω)}. The problem of inf(E(u),u ∈
W1,2(Ω)) admits a unique solution characterized by the
Euler-Lagrange equation (Δu − Δ(Pλu0)) = 0. Moreover,
the function u − Pλu0 is called harmonic (subharmonic,
superharmonic) Ω if it satisfies Δ(u−Pλu0) = (≥,≤)0. Using
the mean value theorems [25], for any ball = BR(x, y) ⊂ Ω,
we have

Δ(u− Pλu0) = (≥,≤)0

=⇒ u
(

x, y
) = (≤,≥)Pλu0

+
1

πR2

∫

B

(u− Pλu0)dx′ dy′.

(42)

However, in [7], the gradient fidelity term is chosen as

Δ(u−Gσ ⊗ u0) = (≥,≤)0

=⇒ u
(

x, y
) = (≤,≥)Gσ ⊗ u0

+
1

πR2

∫

B
(u−Gσ ⊗ u0)dx′ dy′.

(43)

Comparing the above two results, we can understand the
difference between two gradient fidelity term smoothing
mechanism. We remark that the gradient fidelity term in
[7] will tend to produce more edge blurring effect and
remove more texture components with the increasing of
the scale parameter σ of Gaussian kernel, although it
helps to alleviate the staircase effect and produces some
smoother results. However, our model tends to produce the
curvelet shrinkage image and can remain the curve singu-
larities in images; thus it will obtain good edge preserving
performance.

In addition, another rationale behind our proposed
model is that the spatially varying fidelity parameters α(x, y)
and β(x, y) are incorporated into our model. In our proposed
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(a) (b)

(c) (d)

(e) (f)

Figure 8: The original, noisy, and restored “Boat” images: (a) the
original image; (b) the noisy image (SNR = 7.36, MSSIM = 0.43); (c)
the restored image by the curvelet Shrinkage method (SNR = 13.51,
MSSIM = 0.76); (d) the restored image by using the “TV” model
(SNR = 14.36, MSSIM = 0.78); (e) the restored image by using
the “TVGF” model (SNR = 13.25, MSSIM = 0.76); (f) the restored
image by using our proposed model (SNR = 14.67, MSSIM = 0.79).

algorithm, as described in (36), we use the measure S(x, y) ≈
σ4/PR(x, y); here PR(x, y) is the local power of the residue
R = u0 − u. In the flat area where uR ≈ un (basic cartoon
model without textures or fine-scale details), the local power
of the residue is almost constant PR(x, y) ≈ σ2 and hence
S(x, y) ≈ σ2. We get a high-quality denoising process u ≈
uC = uorig so that the noise, the staircase effect, and the
curve-like artifacts are smoothed. In the texture area, since
the noise is uncorrelated with the signal, thus the total power
of the residue can be approximated as PNC(x, y) + Pn(x, y),
the sum of local powers of the noncartoon part and the noise,
respectively. Therefore, textured regions are characterized by
high local power of the residue. Thus, our algorithm will
reduce the level of filtering so that it will preserve the detailed
structure of such regions.

(a) (b)

(c) (d)

Figure 9: The difference images between the original “Boat” and
restored “Boat” images in Figure 8: (a) by the curvelet Shrinkage
method; (b) by using the “TV” model; (c) by using the “TVGF”
model; (d) by using our proposed model.

4. Experimental Results and Analysis

In this section, experimental results are presented to demon-
strate the capability of our proposed model. The results
are compared with those obtained by using the curvelet
shrinkage method [26], the “TV” model (2) proposed by
Rudin et al. [8], and the “TVGF” model proposed by Zhu
and Xia [7].

In the curvelet shrinkage method, denoising is achieved
by hard-thresholding of the curvelet coefficients. We select
the thresholding at 3σj,l for all but the finest scale where it is
set at 4σj,l; here σj,l is the noise level of a coefficient at scale
j and angle l. In our experiments, we actually use a robust
estimator to estimate noise level using the following formula:
σj,l = MED(abs(c( j, l) − MED(c( j, l))))/.6745, here, c( j, l)
represents the corresponding curvelet coefficients at scale j
and angle l, and MED(·) represents the medium operator to
calculate the medium value for a sequence coefficients.

The solution of the “TV” model in (2) is obtained by
using the following explicit iterative:

u(n+1) − u(n)

τ
=
⎛

⎜

⎝D−x

(

D+
x u

(n)
∣

∣Dxu(n)
∣

∣

ε

)

+ D−y

⎛

⎜

⎝

D+
y u

(n)

∣

∣

∣Dyu(n)
∣

∣

∣

ε

⎞

⎟

⎠

⎞

⎟

⎠

+ λ
(

u0 − u(n)
)

.

(44)

Here τ and ε are set to be 0.02 and 0.01, respectively. The
regularization parameter λ is dynamically updated to satisfy
the noise variance constrains according to (4).
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(a) (b)

(c) (d)

(e) (f)

Figure 10: The subimages of the original, noisy, and restored
“Lena”: (a) the original image; (b) the noisy image (SNR = 1.54,
MSSIM = 0.15); (c) the restored image by the curvelet shrinkage
method (SNR = 13.72, MSSIM = 0.79); (d) the restored image
by using the “TV” model (SNR = 12.94, MSSIM = 0.71); (e) the
restored image by using the “TVGF” model (SNR = 12.01, MSSIM
= 0.61); (f) the restored image by using the proposed model (SNR
= 14.36, MSSIM = 0.82).

The solution of the “TVGF” model is obtained by using
the following explicit iterative:

u(n+1) − u(n)

τ
=
⎛

⎜

⎝D−x

(

D+
x u

(n)
∣

∣Dxu(n)
∣

∣

ε

)

+ D−y

⎛

⎜

⎝

D+
y u

(n)

∣

∣

∣Dyu(n)
∣

∣

∣

ε

⎞

⎟

⎠

⎞

⎟

⎠

+ β
(

Δu(n) − Δ(Gσ ⊗ u0)
)

+ α
(

u0 − u(n)
)

.

(45)

Here the size and standard deviation σ of Gaussian lowpass
filter Gσ are set to be 7 and 1, respectively. The evolution step

(a) (b)

(c) (d)

Figure 11: The difference images between the original “Lena” and
restored “Lena” images in Figure 10: (a) by the curvelet Shrinkage
method; (b) by using the “TV” model; (c) by using the “TVGF”
model; (d) by using our proposed model.

length τ is set to be 0.02. The weight β is set to be 0.5 as
suggested in [7], and α is dynamically updated according to

α = 1
|Ω|σ2

×
⎡

⎣

∫

Ω
div

⎛

⎝

∇u
√

|∇u|2 + ε

⎞

⎠(u− u0)dx

+β
∫

Ω
(Δ(Gσ ⊗ u0)− Δu)(u0 − u)dx

]

,

(46)

where ε is set to be 0.01, and σ2 is the noise variance.

4.1. Image Quality Assessment. For the following experi-
ments, we compute the quality of restored images by the
signal-to-noise ratio (SNR) to compare the performance of
different algorithms. Because of the limitation of SNR on
capturing the subjective appearance of the results, the mean
structure similarity (MSSIM) index as defined in [27] is
used to measure the performance of the different methods.
As shown by theoretical and experimental analysis [27], the
MSSIM index intends to measure the perceptual quality of
the images.

SNR is defined by

SNR = 10 log10

{ ∥

∥u− μu
∥

∥
2

‖u∗ − u‖2

}

. (47)
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Table 1: The SNR, MSSIM of the restored “Lena” images by using four models. The numbers in the bracket under the “MSSIM” column
refer to the total iteration number of the algorithm.

Noise
standard

Noisy image Curvelet shrinkage method “TV” Model “TVGF” Model Proposed model

deviation
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM

20 7.59 0.34 16.62 0.86 16.76
0.85

(1923)
15.68

0.82
(969)

17.26
0.88

(486)

25 5.63 0.27 15.70 0.84 15.68
0.82

(2290)
14.75

0.77
(1115)

16.36
0.86

(615)

30 4.04 0.22 14.95 0.82 14.81
0.80

(2991)
13.79

0.71
(1135)

15.58
0.85

(763)

35 2.70 0.18 14.29 0.81 13.92
0.76

(3000)
12.88

0.67
(1142)

14.92
0.84

(898)

40 1.54 0.15 13.72 0.79 12.94
0.71

(3000)
12.01

0.61
(1151)

14.36
0.82

(1033)

(a) (b)

(c) (d)

(e) (f)

Figure 12: The detail of the original, noisy, and restored “Barbara”
images: (a) the original image; (b) the noisy image (SNR = 8.73,
MSSIM = 0.48); (c) the restored image by the curvelet shrinkage
method (SNR = 12.05, MSSIM = 0.77); (d) the restored image
by using the “TV” model (SNR = 12.74, MSSIM = 0.77); (e) the
restored image by using the “TVGF” model (SNR = 11.39, MSSIM
= 0.72); (f) the restored image by using our proposed model (SNR
= 13.15, MSSIM = 0.81).

(a) (b)

(c) (d)

Figure 13: The difference images between the original “Barbara”
and restored “Barbara” images in Figure 12: (a) by the curvelet
Shrinkage method; (b) by using the “TV” model; (c) by using the
“TVGF” model; (d) by using our proposed model.

MSSIM is given by

MSSIM(u,u∗) = 1
M

M
∑

j=1

SSIM
(

uj ,u∗j
)

, (48)

where u and u∗ are the original and the restored images,
respectively; μu∗ is the mean of the image u∗; uj and u∗j are
the image contents at the jth local window, respectively; M
is the number of local windows in the image;

SSIM
(

x, y
) =

(

2μxμy + C1

)(

2σxy + C2

)

(

μ2
x + μ2

y + C1

)(

σ2
x + σ2

y + C2

) , (49)
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The subimages of the original, noisy, and restored
“Barbara” images: (a) the original image; (b) the noisy image (SNR
= 2.71, MSSIM = 0.26); (c) the restored image by Curvelet Shrinkage
method (SNR = 10.45, MSSIM = 0.68); (d) the restored image
by using the “TV” model (SNR = 10.12, MSSIM = 0.61); (e) the
restored image by using the “TVGF” model (SNR = 9.93, MSSIM =
0.56); (f) the restored image by using our proposed model (SNR =
10.81, MSSIM = 0.70).

where μx is the mean of the image x; σx is the standard
deviation of the image x; σxy is the covariance of the image x
and image y; C1,C2 are the constants.

In order to evaluate the performance of alleviation of
staircase effect and curve-like artifacts, the difference image
between the restored image and the original clean image is
used to visually judge image quality.

The stopping criterion of both the proposed method,
“TV” method, and the “TVGF” method is that the MSSIM
reached maximum or the total iteration number reached the
maximal iteration number 3000.

4.1.1. Qualitative and Quantitative Results. Firstly, we take
“Toys” image (see Figure 4(a)) as the test image, and we add

(a) (b)

(c) (d)

Figure 15: The difference images between the original “Barbara”
and restored “Barbara” images in Figure 14: (a) by the curvelet
Shrinkage method; (b) by using the “TV” model; (c) by using the
“TVGF” model; (d) by using our proposed model.

Gaussian noise with standard deviation σ = 20 (the noisy
image is shown in Figure 4(b)). The SNR value of noisy
Toys image is 3.99 dB while the value of MSSIM is 0.30.
The results of the curvelet shrinkage, the TV algorithm, the
TVGF algorithm, and our proposed algorithm are displayed
in Figures 5(a)–5(d), respectively. All the algorithm can
improve the value of SNR and MSSIM greatly, the value
of SNR obtained by our algorithm reaches 14.37 dB, while
those obtained by the TVGF model, the curvelet algorithm
and the TV model is just 13.28 dB, 13.33 dB, and 14.21 dB,
respectively. Similarly, the improvement of MSSIM obtained
by our algorithm is the largest among all the algorithms.
From this kind of cartoon image, our proposed algorithm
does a good job at restoring faint geometrical structures
of the image. In order to make better judgement on the
visual difference of different restored images of different
algorithms, we display the subimages which are cropped
from Figures 5(a)–5(d). As illustrated in Figures 6(a)–6(f),
the restored image by our proposed image (Figure 6(f)) is
more nature than any other restored images as shown in
Figures 6(c), 6(d), and 6(e). Figure 7 shows the difference
image between “Toys” image and restored “Toys” images
in Figure 6. From Figure 6, we can see that our algorithm’s
restored image has less staircase and curve-like distortion
comparing with other algorithm’s result.

In the second experiments, we take “Boat” as the test
image. The “Boat” is a kind of image which contains many
linear edges and curve singularities. The restored results are
depicted in Figure 8, and the difference images are shown
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Table 2: The SNR, MSSIM of the restored “Barbara” images by using four models. The numbers in the bracket under the “MSSIM” column
refer to the total iteration number of the algorithm.

Noise
standard

Noisy image Curvelet shrinkage method “TV” Model “TVGF” Model Proposed model

deviation
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM
SNR
(dB)

MSSIM

20 8.73 0.48 12.05 0.77 12.74
0.77

(2032)
11.39

0.72
(724)

13.15
0.81

(427)

25 6.79 0.40 11.42 0.74 11.83
0.72

(2634)
11.05

0.68
(836)

12.26
0.78

(567)

30 5.21 0.34 11.02 0.71 11.17
0.69

(3000)
10.69

0.64
(894)

11.64
0.75

(687)

35 3.91 0.30 10.72 0.70 10.63
0.65

(3000)
10.32

0.60
(936)

11.19
0.73

(783)

40 2.71 0.26 10.45 0.68 10.12
0.61

(3000)
9.93

0.56
(953)

10. 81
0.70

(928)
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Figure 16: Comparison of the MSSIM results of the different images which is corrupted by some Gaussian noise of standard deviation 20:
(a) “Lena”; (b) “Barbara”.

in Figure 9. As expected, our hybrid method is less prone to
the staircase effect and curve-like artifacts and takes benefits
from the curvelet transform for capturing efficiently the
geometrical content of image.

In the third experiments, we carry experiments on “Lena”
with different noise level and the standard derivation of
Gaussian noise is 20, 25, 30, 35, and 40. Figures 10(a)–
10(f) display the results for the noisy “Lena” image when
the standard deviation of noise is 40. In this case, the
value of SNR and MSSIM of the noisy image is 1.54 dB
and 0.15, the value of SNR obtained by our algorithm
reaches 14.36 dB, while that obtained by the TVGF model,
the curvelet algorithm, and the TV model is just 12.01 dB,
13.72 dB and 12.94 dB, respectively. As we know, the “Lena”
image is an international standard test image which not only

contains the strong vertical and curve edge but also have hair
texture. From the result of curvelet shrinkage (Figure 10(c)),
the hair texture and the strong vertical and curve edge
are restored very good; however some annoying curve-like
artifacts are generated. The TV algorithm can preserve the
edge, but it lose the hair texture; moreover, the staircase effect
is very obvious (Figure 10(d)). The TVGF algorithm can
reduce the staircase effect; however, the edges and textures in
“Lena” image look a bit blurred. Compared with the other
algorithms, our hybrid algorithm obtains a sharper image
with better hair detail, and the restored image is almost
free of artifacts. The values of MSSIM of four algorithms
also show that our algorithm has the best image perceptual
quality. From Table 1, we can find that our algorithm can
obtain the largest value of MSSIM. We just display two group
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Figure 17: Comparison of the MSSIM results of the different images which is corrupted by some Gaussian noise of standard deviation 25:
(a) “Lena”; (b) “Barbara”.
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Figure 18: Comparison of the MSSIM results of the different images which is corrupted by some Gaussian noise of standard deviation 35:
(a) “Lena”; (b) “Barbara”.

results (Figures 10 and 11) for the face part of “Lena” image
of various algorithms in the cases of Gaussian noise with
standard deviation σ = 40, respectively.

In the fourth experiments, we take “Barbara” as the test
image. The “Barbara” is a kind of image which contains
many texture details. The distinguished characteristic of the
Barbara image is that it has abundant textures. We display
two group results (Figures 12, 13, 14, and 15) for the face

part of “Barbara” image of various algorithms in the cases of
Gaussian noise with standard deviation σ = 20 and σ = 40,
respectively. From these experiments, the visual quality of
restored image of our algorithm is better than any other
algorithms. Of course, our hybrid algorithm can only restore
the regular texture partially, some tiny textures cannot be
restored, but the whole image looks more nature and more
harmonious.
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Figure 19: Comparison of the MSSIM results of the different images which is corrupted by some Gaussian noise of standard deviation 40:
(a) “Lena”; (b) “Barbara”.

In addition, we use the SNR and MSSIM index to
evaluate the quality of restored images of various algorithms
under different noise level. For fair comparison, all the results
are the images whose values of MSSIM reach maximum in
their iterative process, respectively. In order to systematically
evaluate the performance of the various algorithms from
different noise levels, the denoising performance results are
tabulated in Tables 1 and 2 for the “Lena” image and the
“Barbara” image, respectively. By inspection of these tables,
both the SNR improvement and the MSSIM improvement
by our model are larger than the other three models. It is
interesting to point out that the performance of the TVGF
algorithm is not good compared with three other algorithms.
This phenomenon has been discussed and analyzed by the
research of literature [28] and the reason is the blurring
caused by Gaussian kernel convolution. Of course, the
TVGF algorithm actually reduces the staircase effect to some
extent. Differing with Gaussian kernel convolution, our
proposed algorithm takes advantage of the anisotropic of
the curvelets; therefore there is no any edge blurring. The
MSSIM improvement shows that our algorithm has better
“subjective” or perceptual quality. Especially, the important
improvement becomes more salient as noise level increase.
Also we can see, both the SNR improvement and the
MSSIM improvement obtained by our algorithm become
more salient than those obtained by other algorithms for
more complex images with more textures, for instance, the
Barbara image. Figures 16, 17, 18, and 19 show the amplitude
of the MSSIM improvement during the iterative process of
the TV model, the TVGF model, and our proposed model.
Tables 1 and 2 also list the total iteration number of each
algorithm. For example, in Table 1, when the noise standard
deviation is 40, the “TV” model needs 3000 iteration steps

to reach the maximum MSSIM (0.71), the “TVGF” model
needs 1151 iteration steps to reach the maximum MSSIM
(0.61), the “TVGF” model needs 1151 iteration steps to reach
the maximum MSSIM (0.61), while our model can obtain
the good quality restored image with the value of MSSIM
being 0.82 using 1033 iteration steps. These experiments
show that our algorithm can more quickly reach the best
restored image with maximum MSSIM, and our algorithm
obtains the best performance comparing with the other
algorithms.

5. Conclusion

In this paper, a curvelet shrinkage fidelity-based total varia-
tion regularization is proposed for discontinuity-preserving
denoising. We propose a new gradient fidelity term, which is
designed to force the gradients of desired image to be close to
the curvelet approximation gradients. To improve the ability
of preserving the details of edges and texture, the spatial-
varying parameters are adaptively estimated in the iterative
process of the gradient descent flow algorithm. We carry out
many numerical experiments to compare the performance
of various algorithms. The SNR and MSSIM improvements
demonstrate that our proposed method has the best perfor-
mance than the TV algorithm, the curvelet shrinkage, and
the TVGF algorithm. Our future work will extend this new
gradient fidelity term to other PDE-based methods.
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