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The number of active users, their timing offsets, and their (possibly dispersive) channels with the access point are performance-
critical parameters for wireless code division multiple access (CDMA). Estimating them as accurately as possible using as short
as possible training sequences can markedly improve error performance as well as the capacity of CDMA systems. The fresh look
advocated here permeates benefits from recent advances in variable selection and compressive sampling approaches to multiuser
communications by casting estimation of these parameters as a sparse linear regression problem. Novel estimators are developed
by exploiting two forms of sparsity present: the first emerging from user (in)activity, and the second from the uncertainty on
user delays and channel taps. Simulated tests demonstrate a large gain in performance when sparsity-aware estimators of CDMA

parameters are compared to sparsity-agnostic standard least-squares-based alternatives.

1. Introduction

It is known that the capacity of code division multiple
access (CDMA) systems can be enhanced through multiuser
detection, which is capable of mitigating the multiaccess
interference. A key issue in the design of a multiuser
receiver is the development of high-performance parameter
estimation algorithms. These parameters include the power,
timing offset (possibly dispersive), channel response, and,
in some cases, the number of active users accessing the
network. For this reason, the problem of CDMA parameter
estimation has received considerable attention over the past
twenty years.

Maximum-likelihood (ML) and subspace-based app-
roaches have been developed to jointly estimate the timing
offsets of multiple users [1]. Single-user ML synchronization
schemes have been also developed in [2, 3]. Blind adaptive
demodulation algorithms that implicitly estimate timing
offsets have been also reported [4]. A blind channel estimator
based on the received data correlation has been introduced
in [5]; while in [6], assuming that reliable estimates of
the user delays are available, several algorithms have been
pursued for estimating the remaining parameters.

While ML estimation can be prohibitively complex,
subspace-based approaches require long observation records
and are thus applicable to slowly varying channels only.
Moreover, most CDMA-based wireless networks employ
long codes to guarantee that all users achieve “on the average”
comparable performance [7-9]. Long codes destroy the
cyclostationarity of CDMA waveforms that subspace-based
algorithms rely on. For systems employing long codes, a
least-squares (LS) estimator of the channel parameters has
been proposed in [10], where the users transmit a training
sequence and the receiver has perfect knowledge of the
number and identity of active users.

In this paper, the results of [10] are considerably
broadened through signal processing tools drawn from the
recently established theories of variable selection (VS) [11]
and compressive sampling (CS) [12, 13]. The common
theme underlying VS and CS in the presence of noise
is sparse linear regression, that is, estimation of a sparse
vector from noisy linear observations. Sparsity present in
communication systems has been exploited for single-user
channel estimation [14-17] and cognitive radio sensing [18];
some preliminary results in the CDMA context are reported
also in [19]. In this paper, it is first argued that in most



CDMA parameter estimation tasks the vector to be estimated
is sparse due to user inactivity and uncertainty on the users’
timing offsets and propagation channels. Subsequently, a
sparsity-aware algorithm is developed for estimating channel
parameters based on the least-absolute shrinkage and selection
operator (Lasso) [11]. The novel algorithm can operate
with surprisingly short training sequences. This implies
enhancement of bandwidth efficiency over the standard
LS-based approach. Moreover, the developed algorithm
offers considerable gains in error performance even when the
number of active users and their identities are unknown. This
scenario can emerge in future generation wireless networks
based on cognitive radios, where secondary unlicensed users
may be sporadically present over the licensed bands [20].

The rest of the paper is organized as follows. In Section 2,
the signal model for a CDMA system operating under very
general conditions is presented, and sparsity in the vector
to be estimated is demonstrated. In Section 3, the problem
of CDMA parameter estimation is stated, and a two-stage
procedure exploiting the intrinsic sparsity of CDMA signals
is developed. Numerical simulations testing the estimation
capabilities of the developed algorithm against traditional
approaches are presented in Section 4. Finally, concluding
remarks are drawn in Section 5.

Notation. In what follows, all random variables are defined
on a common probability space (Q, ¥,P), and E denotes
the expectation operator. R and C are the sets of real and
complex numbers, respectively. R{-} and J{-} denote real
and imaginary parts. R™" and C™" are the set of m X
n matrices with entries from R and C, respectively. (-)*,
()7, and ()" denote conjugate, transpose, and conjugate
transpose, respectively. Column vectors and matrices are
indicated through boldface lowercase and uppercase letters,
respectively. (x); is the ith entry of x € C"™1, and At is the
Moore-Penrose generalized inverse of A. ||x|l; := X1, Ixl

and [|x]|, := Z?zl Ix,-l2 are the £; and ¢, norms of x € C"™<1,
respectively, while ||x||, denotes its (pseudo) €y norm, that
is, the number of its nonzero entries. Finally, x denotes the
convolution product, while [-] and [ - | stand for the ceiling
and floor functions, respectively.

2. Signal Model

Consider the uplink of an asynchronous direct sequence
CDMA system comprising K users, not necessarily all
active. Each user experiences an unknown linear channel,
possibly frequency selective, but time-invariant during the
transmission of a packet. Each packet contains a preamble
of P known (training) symbols to be used at the receiver for
parameter estimation. Letting T denote the symbol period,
and s, (¢) the signature waveform of the kth user during the
pth signaling interval, the complex envelope of the received
continuous-time waveform can be written as

K-1P-1

F(t)i= > D br(p)Skp(t — Tk — pTs) * yenk(t) + W(t),
k=0 p=0
(1)
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where

(i) br(p) denotes the known pth training symbol trans-
mitted by the kth user;

(ii) 7 is the unknown kth user’s transmission delay (a.k.a.
timing offset);

(iii) Yehi(t) denotes the wumnknown channel impulse
response of the kth user’s link with the access point,
assumed invariant during the transmission of each
packet, and with delay spread bounded by Ag; user
inactivity is accounted for by allowing e (t) = 0 if
user k is idle;

(iv) w(t) stands for the zero-mean, complex, addi-
tive, white, Gaussian noise (AWGN) at the receive
antenna, with power spectral density M.

If N denotes the processing gain, T, := T/N the chip period,
and {ck,P(n)}IZ:_O1 the spreading sequence of the kth user, the
corresponding signature waveform is

N-1
Sp (1) 1= 8k D ciop ()Yt — nTe), (2)
n=0

where y«(t) is the chip waveform with support [0, A], and
& is the baseband energy of the kth user. The dependence
of ¢k p(n) on the symbol index p accounts for the possible
adoption of long aperiodic spreading sequences.

At the receiver side, r(t) is fed to a lowpass filter whose
impulse response Yix(f) is a unit-energy waveform with
support [0,A]. The output of this filter is subsequently
(over) sampled at rate M/T. to obtain the samples

(i) i= (7 %y ()

M
K-1P-1 N-1 iT
= k\p Cp\n)gk\ — —nl.—pls) +wl),
> D bilp) X cup(mge( 5 - nTe = pT) +w(i)
k=0 p=0 n=0

(3)

where w(i) := (W * Yr)(iTe/M) and gi(t) 1= Ekye(t) *
Yehk(t — Tk) * Yix(t). The samples corresponding to the
interval (pTs, (p + 1)Ts] can be concatenated to form the
NM X 1 complex vector:

r(p) = [r(pNM+1) - - r((p+ 1)NM)]". (4

Notice that all unknown quantities (user delays and
channel responses) in (3) have been lumped into the samples
of the functions {gk(t)}ngol. In addition, the support of each
gk(t) is always included in the interval [ 7y, Tk + A+ A +Ach ]
so that the number of its nonzero samples, call it Ly, is upper

bounded by
L A + A + AchJ
L= {7TC/M > L. 5)

With 7pax denoting the maximum value that the user delays
can assume, and letting

max+AX+ArX+Ac
Q::[T ¢ h]—l, (6)

T/M
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the nonzero samples of g (¢) are always contained in the Qx 1

vector:
wfo() a(@)] o

From the defnition of g (¢), it follows that g (7x) = gk(7x +
Atx‘f'Arx‘FAch) =0, andgk(o) = gk(Tmax+Atx+Arx+Ach) =0.
Observe that the position of the first nonzero entry of g
is di + 1, where dy := |TeM/T.] < dmax, and dmax =
I.TmaxM/TcJ-

Upon inspecting (3), it follows that the actual sam-
pled signature of the kth user is a linear combination of
the spreading sequence {ck,p(n)}fgol weighted through the
entries of gi. In order to exemplify this linear dependence,
rewrite the £th entry of r(p) as follows:

r(pNM +¢)

K-1N-1P-1

=33 Shelesmg SE - T+ (- )T

k=0 n=0 j=0

w(pNM +¢) (8)

where ¢ j[g/M] := ¢k j(g/M) if g = 0, M,...,(N — 1)M, and
zero otherwise. Since ¢t ;[(p — j)N + (€ — q)/M)] is zero if

p—j¢10,1,...,m}, (8) simplifies to
r(pNM +¢)
K-1Q m
(¢-4q) T,
= S35t v G2 a (%) ©
w(pNM +¢),

where 7 := [ (Q = M)/NM +1 - 1/NM| = [(Q — M)/NM]
represents the number of past interfering symbols. Thus,
upon defining the NM x Q matrices {Ci,} with (€,¢)th
entries

[Cp] ™™ = St - i)ck,pf[iN W A_f) ] (10)

=l
g=1--Q i=0

the received vector in (4) can be expressed as

K-1
r(p) = > Cipgr +w(p), (11)

k=0
where w(p) = [w(pNM + 1)---w((p + I)NM)]T is

a zero-mean circularly symmetric Gaussian vector with
[E[w,-(p)w]*(p)] = Nory, ((i = j)Te/M), and ry, denotes
the autocorrelation of the receive filter. All the unknowns
pertaining to the kth user are contained in g, often referred
to as the composite channel in the multiuser detection

parlance [10]. In particular, if user k is idle, then g is the
null vector; while if user k is active, then g contains a block
of at most L nonzero entries, whose position depends on 7,
and whose values depend on 7; and Y.

Finally, the observations {r(p)} collected during the
training phase can be stacked in a PNM X 1 vector:

_ T
r:= [rT(O) <P - 1)] =Cg+w (12)
with P := P+, w = [wl(0)--w/(P-1]", g :=
T T
(g - - - gk-1] ,and
Coo -+ Cx-10
C=| : c | (13)
CO,F—I ’ CKfl,ﬁfl

After prewhitening, one arrives at the linear regression
model:

y:=L'r=Sg+n, (14)

where L is the Cholesky factor of the noise covariance matrix,
S:=L7!C, and n := L~ 'w denotes the zero-mean AWGN.

3. CDMA Parameter Estimation

Based on the data y in (14) and knowledge of the matrix
S, the receiver has to decipher the active users and estimate
their composite channels {gi}f_,. These estimates are
instrumental for the subsequent multiuser detection phase.
Since the kth user delay and channel response have been
included in g, acquiring this composite channel amounts to
estimating the following:

(i) the user activity state, represented by the variables
{udiso € (0,1}
(ii) the user delays in terms of multiples of T,./M, that is,

dk € {O: 17---)dmax};
(iii) the channel delay spread, that is, the number of
nonzero entries of g, Ly € {1,...,L};

(iv) the channel amplitude profile g, which is contained
in the values of the nonzero entries of g.

The joint user activity detection and channel estimation
for all K users can be solved by maximizing the likelihood
FOy | {ubise s {didiso s {Lihico» {8k bio )- However, this
procedure incurs exponential complexity in the maximum
number of users K. Moreover, if user transmissions undergo
multipath propagation, an exhaustive search over all possible
subsets of active paths must be carried out for each value
of the delay spread; hence, the complexity is exponential
also in the multipath delay spread, L. The computational
complexity of the ML approach renders this procedure
generally infeasible.

For this reason, the problem of CDMA parameter
estimation is solved here in two stages.

(1) Estimate the whole vector g based on y, by minimiz-
ing a suitably chosen cost function.



(2) Given estimates {gk}kK;;, detect the active users and
estimate their channels and timing offsets based on a
single-user procedure.

While related two-stage approaches have been used in
the past (e.g., [10]), the contribution here is twofold: (i)
we exploit the intrinsic sparsity of the CDMA signal at
the first stage in order to improve system performance as
well as bandwidth efficiency; (i) we develop a number
of sparsity-embracing solutions to parameter estimation
problems tailored for CDMA systems. In the following
sections, these two stages are elaborated further.

3.1. First Stage: Estimation of Sparse Signals. Standard pilot-
assisted estimation in CDMA systems provides an LS esti-
mate of g [10], which amounts to solving

arg minl||y — Sx|[3. (15)

xeCkQ

If S has full column rank, the unique solution of (15) is
Sty. This approach, however, does not take into account
the structure of g in (14). In most cases of interest g is
sparse, meaning that the number of its nonzero entries is
much smaller than its dimension. In the present context,
this condition translates to [Igll, < KQ. With X, denoting
the set of active users, lIglly, = Xkex, lIgklly = 2kex, Lt
which reveals that two facts concur in the sparsity of g: the
intrinsic sparsity of the sampled signals gx and the possibility
of several users being idle.

3.1.1. Sparsity of gr. The uncertainty regarding the kth
user’s delay 74 and the corresponding channel response ¥ch k
forces the receiver to consider a large number of samples
of gk (t), most of which are actually zero. From (5) and (6),
the condition for sparsity translates to Ly < Q. This is
always guaranteed in asynchronous systems with a large 7
uncertainty so that Tmax > Ach + A + Arx. However, Ly < Q
holds true also if Ly < L. This condition occurs, for example,
in multipath channels when there are only a few paths or, in
general, when the measure of the support of ychx is much
smaller than Ag,.

3.1.2. User Inactivity. Recall that when user k is idle, vector g
is null. In fact, if the number of active users is on the average
much smaller than K, then g is sparse. This can be a typical
situation encountered in wireless cognitive radio networks,
where secondary users sporadically transmit over licensed
bands [20].

While sparsity due to user inactivity has been recently
taken into account for multiuser detection [21, 22], spar-
sity emerging from the uncertainty of timing offsets and
propagation channels has not been exploited for multiuser
parameter estimation. The ordinary LS estimate adopted in
[10] does not provide a sparse solution, and this may lead
to disappointing performance. This is especially true if short
training sequences are used. In fact, if PNM < KQ, the
matrix S becomes fat, and (15) does not admit a unique
solution. In this case, STy does not yield consistent estimates
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in the small-noise limit (i.e., as &, — 0). Motivated by these
facts, an estimator that takes into account the sparsity of g is
developed herein. Specifically, the estimate of g is chosen as
the solution of the following convex optimization problem:

g:=arg min{Hy—Sx||§+)L||x||1}. (16)
xeCKQ

The scaled ¢, norm, Allx];, is essentially a regularization
term controlling the degree of sparsity in the estimated vector
g. The convex problem in (16) can be solved via quadratic
programming for which a number of efficient solvers with
complexity comparable to LS are available [23-25].

The most widely applicable solver of (16) is the Lasso
[11]. Lasso’s original formulation deals with real variables,
which for complex variables suggests concatenating the real
and imaginary parts of g. The limitation of this approach is
that real and imaginary parts per entry are treated separately.
In the present context however, real and imaginary parts
should be treated as a “group” (in the sense of [25]) that
should be selected (or not) by the Lasso. This requirement
motivates employment of what is known as group-Lasso
[25]. In particular, the CDMA parameter estimator in (16)
is actually a group-Lasso estimator with regularization term

given by Allxll; = A SK2\IR{x);} P +13{(x);}1%, even if
in the sequel, with a slight abuse of terminology, it will be
referred to as Lasso for complex sparse vectors.

The choice of A affects the performance of the Lasso
estimator critically. Indeed, the larger the A, the more
coefficients are shrunk to zero. While asymptotically (as
P — o) optimal choices are available for the Lasso [26],
for finite sample sizes the value suggested in [13] is A =
2Ny In(KQ). Alternatively, the problem can be solved for
various A’s, and the best one can be selected via cross-
validation, or using a model selection criterion (see [23, 25]
for further details). As far as performance analysis of Lasso,
this is nontrivial especially for finite samples and represents
a topic of contemporary research. The so-termed restricted
isometry property (RIP) is popular in the field of CS [12]
and provides a sufficient condition for consistent estimation
of sparse vectors. However, checking the RIP for the problem
at hand is NP-hard, since the matrix S has complicated
structure, and is out of the scope of this work.

Finally, it is known that Lasso generally outperforms
greedy techniques, such as the matching pursuit (MP)
and orthogonal matching pursuit (OMP) alternatives [27,
28]. These select the nonzero components sequentially and
thus suffer from error propagation especially at relatively
low SNR, where decisions at early stages are prone to be
erroneous [13, 28, 29].

3.2. Second Stage: Parameter Estimation. The second stage
improves the rough estimate at the output of the first stage
and provides a decision as to the user activity. In order to
maintain an affordable computational complexity, a single-
user procedure is employed; namely, for each user k the
refined estimate of its composite channel, call it g, and the
decision on its activity state are taken based on gi only. Any
a priori information regarding the structure of gr can be
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included at this point, for example, the presence of a cluster
of length bounded by L or any other information arising
from the particular problem at hand. This stage is more
application dependent and will be specifically designed for
different parameter estimation problems. In any case, it is
impossible to find the probability distribution of the Lasso
estimator based on finite samples [30]. This is also the case
of the LS estimator in (15) due to multiaccess interference
[10]. For this reason, the design of the second stage will be
carried by resorting to suboptimal procedures.

3.3. Chip-Synchronous CDMA over AWGN Channels. A
notable simplification of the signal model developed in
Section 2 occurs in AWGN channels when chip-synchronism
is ensured by higher level network protocols. The following
assumptions are adopted:

(i) the user delays are integer multiples of T¢, that s, 7x =
dk Tc§

(ii) the channel impulse responses are yehx(t) = 8();

(iii) Yix * Yy and Yix * Yy are Nyquist waveforms, and
no oversampling is performed (M = 1);

(iv) the number of active users is known, and without loss
of generality (w.l.o.g.), equal to K.

In this case, y = r since there is no need for whitening;
Lr = 1, that is, there is only one nonzero entry in each g;
Q = dmax + 1 so that if dia > 1, the vector g is sparse and
the first stage suffices to recover an estimate g.

The second stage, on the other hand, has to provide
an estimate of the set of user delays {d}r_, starting from
{8k} 5-o . Observe that no channel estimation or user activity
detection is needed here. The proposed procedure consists in
selecting the candidate delay in order to maximize the energy
of the composite channel, that is,

, k=01,...,K—-1. (17)

i+1

&\k = arg max ’(@k)
i€{0,1,....dmax }

3.4. Asynchronous CDMA over Flat Fading Channels. A
slightly more complex scenario is considered here. The
following assumptions are made:

(i) the channel impulse responses are yeh i (t) = Axd(t);

(ii) the transmit and receive filters are rectangular wave-
forms over [0, T.] and no oversampling is performed
(M =1);

(iii) the number of active users is known, and w.l.o.g. set
equal to K.

In this case, y = r, and the Ly = 2 nonzero entries of gi
appear in two consecutive positions, namely,

ExAr(1 -6
(gk)dk+1 = %’

di+2

(86) 410 = @ (18)

where 8y := 1 — di T.. Further, Q = [Tna/T¢ ] + 1, so that if
Tmax > T, the vector g is sparse.

The second stage has to be designed to estimate the set of
user delays {73 }5_, starting from {gy}+_,. This problem can
be solved as in [10] to obtain

~ . 2 R 2
di = arg max {‘ (gk)i+1) + ‘ (gk)i+2‘ })

i€{0,1,...,dmax

Sk _ ‘ (gk)ijrz’ ’ (19)

(@) an |+ @040

‘lA’k =di T; + k.

3.5. Multipath Fading Channels and Known Number of Users.
An asynchronous system operating under the following
assumptions is considered here:

(i) the channel impulse responses are Ygi(t) =
ZX,V:lAW,k(S(t — Tkw), with W, A,k and 1,%
unknown;

(i) the number of active users is known, and w.l.o.g. set
equal to K.

Given the absence of information regarding path delays,
the following two cases are of interest.

3.5.1. Sparsity Due to Asynchronism. If Tmax > Ach+Ax+Arx
the vectors g are sparse and contain a cluster of at most L
nonzero entries; hence, an effective procedure is

L-1
~ R 2
di = arg max » ’ (8) ivest | > (20a)
i€{0,1,....dmax} £=0
R (&), ifieldi+1,. . di+L
(8), - { b o

0, otherwise,

where g denotes the refined estimate at the output of the
second stage.

3.5.2. Sparsity due to the Channel. 1f Acy, > W (Ax+Ar), the
vectors g are sparse (Ly < L), but they have no particular
structure. Therefore, the second stage cannot improve the
estimate of the first stage, and g is taken as an estimate of
the composite channel.

3.6. Dispersive Channels and Unknown Number of Users. No
assumption is made here and the system considered is the
general one of Section 2. Given the estimates {gx} 5, , user
k is declared to be active based on g, in which case g is
taken as an estimate of the composite channel. The second
stage performs binary hypothesis testing: user idle versus
active. Given the non-Bayesian setting, a simple yet effective
procedure is the following energy detector:

el {”’

<y, declare user k idle,

declare user k active with channel g,

(21)



where the threshold y is set to meet the required specifica-
tions in terms of false alarm probability (i.e., the probability
of declaring a user to be active when it is not). As in
the previous section, if sparsity comes mostly from user
asynchronism, the second stage runs the energy detector
starting from the refined estimates g, of the procedure in
(20Db).

4. Simulated Tests

The performance of the proposed estimation strategies is
assessed in this section through Monte Carlo simulations.
A CDMA system employing random (long) spreading codes
with rectangular chip-waveforms at both transmitter and
receiver (A = Ay = T:), M = 1, and N = 15 is simulated
using binary (randomly generated) training sequences. The
cases described in Sections 3.3 to 3.6 are considered next.

Test Case 1. The system model in Section 3.3, with dpax =
14, and K = 5, is considered first. Figure 1 shows the
probability of incorrect delay estimation for the kth user,

P, := [P’({c?k # di}), versus the signal-to-noise ratio SNR :=
&/ Ny (expressed in dB). Perfect power control is considered
among users (i.e., the interference-to-signal ratio, ISR :=
€;/&y, is equal to 0dB, for all j #k), and different values
of preamble lengths P are tested. The penalty parameter of
(16) has been set as A = /2N, In(KQ). The performance of
the proposed Lasso-based algorithm is compared with two
classical strategies: the LS-based algorithm (i.e., a two-stage
procedure employing the LS at the first stage [10]), and the
conventional sliding correlator [31], that is,

g _ H
di = arg max ’Sk+i+1y

, k=0,...,K—-1 (22)
i€{0,....dmax }

with s; denoting the jth column of S. From Figure 1 it can
be seen that both procedures are largely outperformed by the
Lasso-based algorithm. In Figure 2 a severe near-far scenario
is tested, at ISR = 10dB. As expected, the two-stage algo-
rithms are near-far resistant, while the conventional sliding
correlator, which is a single-user algorithm, is ineffective.
Moreover, the LS-based algorithm is outperformed by the
Lasso one, which exhibits a gain of two orders of magnitudes
at 10dB for P = 5.

Test Case 2. The system considered here is that of Section 3.4
with T,y = Ts and K = 5, and the procedures are compared
in terms of the mean-square error of the estimated user delay,
MSE := E[(7¢ — ‘?k)z]. Figure 3 shows the MSE versus SNR
for various P values at ISR = 0dB. Notice that the Lasso-
based algorithm outperforms the LS-based one exhibiting
gain as high as 10dB at MSE = 10! and P = 9. The same
trend is witnessed in Figure 4, where a near-far scenario with
ISR = 10 dB is tested.

Test Case 3. The system of Section 3.5 is considered here.
The channels have uniform power delay profile with W =
3 and complex, circularly symmetric, Gaussian amplitudes,
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SNR

—-©— Lasso
—— Conventional
- LS

FIGURE 1: Probability of incorrect delay estimation versus SNR in a
power-controlled scenario (chip-synchronous system with AWGN
and known K).

100 N=15, K=5, ISR=10dB

Pe

—-©— Lasso
—— Conventional
- LS

FIGURE 2: Probability of incorrect delay estimation versus SNR
in a near-far scenario (chip-synchronous system with AWGN and
known K).

while channel path delays are uniformly distributed in the
interval [0, 10T]. The user delays, on the other hand, have
been randomly picked from the interval [0,57;], which
amounts to assuming that coarse synchronization has been
achieved at the receiver side [10]. Since sparsity comes
mostly from the channel structure, the second stage has not
been implemented. The performance measure adopted is the
normalized mean-square error for the composite channel,

NMSE := E[llg - gll;]/[E[llgllg]. Figures 5 and 6 depict the
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N=15, K=5, ISR=0dB
10° - L E :

102
10!

100 ¢

MSE

1071

1072 ¢

1073

0 5 10 15 20
—o— Lasso

—— LS

FIGURE 3: Mean-square error of the users’ time delay versus SNR in
a power-controlled scenario (chip-synchronous system with AWGN
and known K).

N=15, K=5, ISR=10dB

10°
[sa}
w
=
1071
1072 ¢
1073 L
0 5 10 15 20
SNR
—o— Lasso
—— LS

FIGURE 4: Mean-square error of the users’ time delay versus SNR
in a near-far scenario (chip-synchronous system with AWGN and
known K).

NMSE versus the SNR for different training packet lengths
P and K = 5. Lasso, LS, and OMP solvers are simulated:
the Lasso parameter A is tuned as described in Section 3.1,
while the OMP algorithm stops as soon as the number of
nonzero entries of its estimate equals that of Lasso. It can
be seen that for P = 10, the LS estimator suffers a loss of
about 3 dB at NMSE = 10~* with respect to Lasso, and 2 dB
with respect to OMP. In the considered setting, Q = 16 and
m = 1, so that the matrix S in (14) is tall (PNM = 165
and KQ = 80), and SHS is full-rank with overwhelming
probability. In this case, LS is consistent in the small noise

P=10, N=15, K=5, ISR=0dB

NMSE

SNR

—-©— Lasso
—> LS
—=— OMP

FiGure 5: Normalized mean-square error of the composite channel
versus SNR for overdeterminate case (asynchronous system with
multipath fading channel and known K).

limit; nevertheless, both LS and OMP are outperformed
by the Lasso-based estimator. Figure 6 considers a scenario
wherein short training sequences are adopted, that is, P = 4.
This is an underdetermined case and S is fat (PNM = 75,
so that PNM < KQ). As expected, LS exhibits a floor, and
it is not consistent in the small-noise limit, while Lasso and
OMP are. Moreover, Lasso outperforms OMP by about 5 dB
at NMSE = 2 x 1073, This shows that the proposed sparsity-
aware procedure can considerably reduce the number of pilot
symbols without affecting the system performance; hence,
throughput can be increased without error penalty.

Test Case 4. The system is that of Section 3.6 with the
multipath fading channels as in Test Case 3. The number of
active users, whose identity is not known, is S = 5, while
the total number of candidate users is K = 10. Figure 7
depicts the receiver operating characteristic (ROC), that is,
the probability of detection, Pp := P (“user k is declared
active”|“user k is active”), versus the probability of false
alarm, Ppp := P (“user k is declared active”|“user k is
idle”). A training sequence of length P = 10 is used. It can
be seen that the Lasso-based procedure largely outperforms
both the OMP and the LS-based one, which turn out to be
ineffective with such a short training packet. In Figure 8, the
probability of missed detection Pyp := 1 — Pp versus SNR is
reported for Ppy = 1072, Again, the Lasso-based algorithm
exhibits a large gain with respect to LS and OMP. Finally,
Figure 9 shows the performance degradation of joint user
activity detection and channel estimation (DE) with respect
to the problem of channel estimation estimation only (E),
case in which the receiver has knowledge of the number and
identities of the users. The NMSE plotted versus the SNR
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Figure 6: Normalized mean-square error of the composite channel
versus SNR for underdeterminate case (asynchronous system with
multipath fading channel and known K).
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FIGURE 7: Receiver operating characteristics in a power-controlled
scenario with training sequence length P = 10 (asynchronous
system with multipath fading channel and unknown K).

confirms that the developed algorithm incurs minimal loss
in performance even when the number and identity of active
users are unknown.

5. Conclusions

The recently popular approaches to estimating sparse vectors
in linear regression problems have been exploited in this
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FIGURE 8: Probability of missed detection versus SNR (asyn-
chronous system with multipath fading channel and unknown K).
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FiGure 9: Normalized mean-square error of the composite channel
versus SNR (asynchronous system with multipath fading channel
and unknown K).

paper for estimating CDMA system parameters under very
general channel conditions. It has been established that
the parameter vectors of interest are often sparse, and
simple algorithms for parameter estimation and user activity
detection based on the Lasso algorithm have been developed.
Sparsity comes from the large uncertainty associated with
propagation parameters, which prompts the receiver to
consider many possible candidates. It turns out that sparsity-
aware algorithms largely outperform their sparsity-agnostic



EURASIP Journal on Advances in Signal Processing

counterparts and guarantee consistent estimates in the small-
noise limit for short pilot sequences where LS fails. From
this vantage point, exploiting sparsity reduces the number of
training symbols required for CDMA parameter acquisition.
Interestingly, the developed algorithms are computationally
efficient and remain applicable even when the user activity
levels are unknown, a scenario of potential interest in wireless
cognitive radio networks.
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