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For locating maritime vessels longer than 45 meters, such vessels are required to set up an Automatic Identification System (AIS)
used by vessel traffic services. However, when a boat is shutting down its AIS, there are no means to detect it in open sea. In this
paper, we use Electro-Optical (EO) imagers for noncooperative vessel detection when the AIS is not operational. As compared to
radar sensors, EO sensors have lower cost, lower payload, and better computational processing load. EO sensors are mounted on
LEO microsatellites. We propose a real-time statistical methodology to estimate sensor Receiver Operating Characteristic (ROC)
curves. It does not require the computation of the entire image received at the sensor. We then illustrate the use of this methodology
to design a simple simulator that can help sensor manufacturers in optimizing the design of EO sensors for maritime applications.

1. Introduction

Since a couple of years, the number of illegal acts for taking
control of maritime vessels has increased. For search-and-
rescue reasons, it is suitable to find efficient sensor systems
for detecting vessels. Vessel candidates for illegal acts are
often commercial vessels with great dimensions. Such vessels
(and all vessels with length greater than 45 m) are required
to set up an Automatic Identification System (AIS) used
by vessel traffic services for identifying and locating vessels.
However, when a ship is shutting down its AIS due to illegal
acts or material defects, there are no means to detect it in
open sea.

Spaceborne sensors are a valuable tool for noncooper-
ative ship detection when the AIS is not operational. Two
classes of spaceborne sensors exist: radar and electro-optical
(EO) sensors. As compared to radar sensors, EO sensors have
lower cost, lower payload, and better computational process-
ing load. To have a high revisiting time, a constellation of
LEO micro-satellites is used. Micro-satellites limit the sensor
payload to a few kilograms. Currently, EO sensors are then
the best candidate for spaceborne applications. To have day-
night capabilities, infrared (IR) sensors are used.

Optimum design of such sensors implies to be capable of
simulating the evolution of sensor performance as a function
of sensor or scene parameters before manufacturing the
sensor. Sensor performance is often expressed using Receiver
Operating Characteristic (ROC) curves representing the
evolution of the probability of detection with respect to the
probability of false alarms. So far, these curves are computed
using results of detection algorithms applied to the image
received by the sensor. This implies the simulation of these
images and the choice of detection algorithms. For our
application, since the payload is very limited, the Ground
Sampling Distance (GSD) is large (about 100 m). Hence,
ship detection cannot solely be pixel-based. This indeed
leads to an important rate of false alarms. One possible
solution is to detect wakes behind the ship. At large GSD, the
turbulent wake is the most visible. It appears bright in optical
images (Figure 1) and dark in long-wave IR (LWIR) images
(Figure 2). Computing the evolution of ROC curves with
sensor or scene parameters is then computationally intensive.

This paper proposes a methodology having real-time
capabilities for helping sensor manufacturers in optimizing
the design of new EO sensors for maritime (ship detection)
applications. This implies to be able to test, in real-time,
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Figure 1: Example panchromatic (optical) SPOT image of moving
ships. Source: [2]. Turbulent wake appears bright.

Figure 2: Example thermal infrared (LWIR) LANDSAT image of
moving ships. Turbulent wake appears dark. Colors correspond to
normalized radiance received by the sensor.

the effect of sensor or scene parameters on ROC curves. In
IR, near real-time simulators exist [1]. However, they were
designed for airborne applications, for which ship detection
is done using the contrast between ship and sea background
pixels. This cannot be used for spaceborne EO sensors with
large GSD. Hence, to our knowledge, there are no real-time
tools available for simulating performance of spaceborne EO
sensors with large GSD in a maritime environment.

Our approach is based on the one described in [3, 4],
where real-time capabilities are obtained by computing ROC
curves from a model of the probability density function
(pdf) of pixels contained in the image. This avoids simulating
the image received by the sensor. In [3, 4], this idea was
developed for land-cover scene modeling using hyperspectral
sensors. In a maritime environment, a very first attempt to
model sea pixels with a pdf was described in [5] for LWIR
airborne sensors. To our knowledge, such methodology has
not yet been considered for ship detection. This is the subject
of the present paper. Our real-time statistical methodology is
described in the case of a mid-wave IR (MWIR) sensor. The
result is a simple simulator that produces ROC curves in real-
time. The proposed statistical methodology can be applied
to other EO sensors and even to radar sensors, if appropriate
models for the pdfs are used. Such a tool can be very useful
for ship detection using Synthetic Aperture Radar (SAR),
for which the simulation of SAR images is time consuming
[6, 7].

We emphasize that our aim is not to provide a very
accurate, validated simulator. Hence, in this paper, perfor-
mance of the proposed tool is not deeply examined and
this tool is not validated using real data. This will be the
subject of further research. Our aim is only to propose a
real-time methodology for assessing EO sensor performance
and to illustrate this methodology by the design of a
simple simulator for ship detection using MWIR sensors.
Remember that this methodology is inspired from [3, 4].

Section 2 describes the wakes generated behind a moving
ship. Section 3 defines ROC curves. Section 4 presents mod-
els used for the sea surface and for the turbulent wake. Sec-
tions 5 and 6 explain the model of the signal received at the
sensor. Section 7 presents the real-time statistical simulator.
Section 8 studies its performance. Section 9 concludes.

2. Wakes behindMoving Ships

If a ship is moving, wakes are generated behind it. These
wakes are observed for any vessel speed and dimensions and
can persist for hours and grow several tens of kilometers
long, making it a feature which can easily be detected using
spaceborne sensors. It can also provide information on the
vessel’s heading, speed, and potentially its hull dimensions,
which makes it a very desirable feature for detection and
tracking purposes. Therefore, wake detection is often used
either in combination with or even instead of other ship
detection methods.

A ship produces two types of wakes [8]. The turbulent
wake, a zone of reduced sea surface roughness which appears
as a long bright (optical sensors) or dark (LWIR sensors)
streak behind the ship, bounded by a v-wake, and the Kelvin
wake, a system of ripples occurring inside a cone of 39
degrees originating at the ship’s bow. The Kelvin wake’s wave
spectrum can be analyzed for determining the ship’s speed
and heading, and its dimensions. Figure 3 shows a typical
wakes pattern.

2.1. Kelvin Wake. The Kelvin wake consists of two systems
of ripples, the transverse and divergent waves. These systems
[9] are bounded by two cusp-lines separated by an angle of 39
deg. On the cusp-line, a wave propagates with a wavelength
λ depending upon the ship speed V : λ = 4πV 2/

√
3g with g

being the gravity constant.

2.2. Turbulent Wake. The turbulent wake is a zone of high-
frequency low-amplitude waves behind the ship’s stern. It
behaves like a flat but rough surface, therefore contrasting
with its surroundings. Hence, the physical quantities of
interest are the width and the length of the wake. The
turbulent wake’s width W depends upon ship dimensions,
more specifically its beam (width) B, and its length L. We
have

W(r) ≈ w0

(r0L/B)1/α B
α−1r1/α, (1)

where r is the distance from the ship stern. Here r0 ≈ 4
and w0 ≈ 4 are derived from an empiric approximative
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formula for the turbulent wake width at four ship lengths.
Experimental data show that α ≈ 5 is a good approximation,
though α can vary between 4 and 5. In general, L/B = 10 is
a good approximation which varies very little for common
ship designs [9], resulting in further simplification: W(r) ≈
1.9B4/5r1/5.

The wake length is a more difficult problem and depends
upon sea state. The turbulent wake is caused by water
displacement due to the ship’s hull and propulsion system.
This water displacement has a kinetic energy decreasing
according to r−4/5 [10]. As long as this kinetic energy is
significantly larger than the energy of the top water layers,
the turbulent wake remains detectable. Typically, turbulent
wakes exist during a long period of time. Their length is
typically a few kilometers. Figure 4 shows example simulated
turbulent wake widths.

3. Definition of ROC Curves

ROC curves are an important signal processing tool for
assessing the performance of a sensor or an algorithm. They
rely on the definition of a probability density function (pdf)
for the signal and the noise [11].

3.1. Signal and Noise Pdfs. In our application, the target
signal is the turbulent wake radiance, and the noise signal
is the open-sea radiance. Each signal is characterized by
a pdf. We thus have two pdfs representing the statistical
distribution of the wake signal and of the open-sea signal.
They are, respectively, denoted pw(S) and ps(S), where S is
the level of the signal displayed by the sensor.

3.2. ROC Curves and Detection Algorithm. The detection
algorithm works as follows. The value of each pixel in the
image received at the sensor is a realization of either pw(S)
or of ps(S) (or a mix of both pdfs). The mean of each pdf is
denoted mw and ms, respectively. To perform the detection,
we apply a threshold Trh to the pixels in the signal image.
If mw > ms, all pixels greater than Trh are classified as target
pixels and other pixels as noise pixels. However, among target
pixels, some of them are noise pixels and thus correspond to
false alarms. Below, we describe how to evaluate the rate of
false alarms.

For a given Trh, we can define a probability of detection
pd(Trh) and a probability of false alarms pfa(Trh). If mw > ms,
pd(Trh) and pfa(Trh) are given by

pd(Trh) =
∫∞
Trh

pw(S)dS,

pfa(Trh) =
∫∞
Trh

ps(S)dS.

(2)

Hence, pfa(·) represents the probability that an open-
sea pixel is classified as a wake pixel and pd(·) represents
the probability that a wake pixel is effectively classified as a
wake pixel. pd(Trh) and pfa(Trh) are represented graphically
in Figure 5. Hence, for each Trh, we have one pd and one
pfa. ROC curves are obtained by plotting pd versus pfa for
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Figure 3: Different types of wakes appearing behind a moving
vessel.
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Figure 4: Width of the turbulent wake as a function of the distance
behind the ship for various ship dimensions.

all possible values of Trh. We can repeat the reasoning if
mw < ms. These curves serve as basis for discussing sensor
performance: for a given pfa, pd should be as high as possible.
Below, we describe a model for ps(S) and pw(S).

4. Sea and TurbulentWake Surface Models

Finding ps(S) and pw(S) implies to compute the signal
received at each pixel in the detector plane of the spaceborne
sensor. There are mainly two classes of pixels: open-sea and
wake pixels, respectively, containing open-sea and turbulent
wake radiances. We first describe how the geometrical
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Figure 5: Probability of detection and probability of false alarms.

models of the sea surface and of the turbulent wake surface
are obtained.

4.1. Open-Sea Surface Modeling. Our model is based on the
model presented in [12, 13]. In realistic sea surface models,
we consider three classes of waves: (1) capillarity waves with
small wavelength (λ < 5 cm) influenced by viscosity and
surface tension, (2) gravity waves that are wind-driven waves
with wavelength λ > 5 cm and smaller than a few meters, (3)
swells being waves with great wavelength, that is, λ is greater
than a few meters (these waves originate due to the presence
of wind. However, they remain active for a long time after
the wind has blown), (4) choppy waves appearing for high
wind speed and introducing nonlinearities in the sea surface
model (they are the starting point of breaking waves and of
the apparition of foam). We only consider gravity waves and
swells.

To obtain the sea surface model, we divide the sea surface
in small facets. Then, vertical displacements are applied to
these facets. These displacements are obtained by modeling
the sea surface as a superposition of linear plane waves [14].
A plane wave is given as

z(r, t) = Aej(ωt+k·r+φ), (3)

where A is the wave amplitude, t is time, r = (x, y) is the
position vector, φ is the phase, and k is the wave vector given
by k = k(cos θ, sin θ), where k = 2π/λ is the wave number
where λ is the wavelength. θ is the direction of propagation of
the plane wave. Gravity waves are modeled as a superposition
of a great number of plane waves. Each wave is characterized

by a value for A, k, and φ. The wave height zw(r, t) at location
r and time t is found by integrating the plane waves over the
entire space spanned by k. We thus have

zw(r, t) =
∫
k
A′(k, t)e jk·rdk, (4)

where

A′(k, t) = A(k)e j(ω(k)t+φ(k)). (5)

Hence, zw(r, t) is the inverse Fourier Transform (FT) of
A′(k, t). Modeling gravity waves is done by specifying a
model for A(k) and for φ(k). Modeling swells is done in
the same way. The only difference is the model for A(k)
and φ(k). For gravity waves, in the case where capillarity
waves can be neglected, we have the dispersion relationship
[12] ω2(k) = gk, where g is the gravity constant. φ(k)
is modeled as a random process (RP) that determines the
random character of wind-generated waves. Here, φ(k) is
modeled as a Gaussian RP with zero mean and unit variance.
The model of A(k) depends upon wind speed v and wind
direction θw. We can write A(k) as

A(k) =
√
P(k)cos2Δθ, (6)

where Δθ = θ − θw and P(k) is the power spectrum often
given by the Pierson-Moskowitz spectrum [14], that is,

P(k) = P(ω(k)) = αg2

ω5
e(−β(ω0/ω)4), (7)

where ω =
√
gk, α = 8.110−3, β = 0.74, and ω0 = g/v19.5,

where v19.5 is the wind speed at 19.5 m above the sea level.
There exist other spectra that are tailored to a particular sea
[14].

In practice, zw(r, t) in (4) is computed using the 2D
inverse FFT (IFFT). Indeed, by discretizing k = (kx, ky) as
km1m2

= (m1Δkx,m2Δky), where m1 ∈ [0,Nx] and m2 ∈
[0,Ny] and r = (rx, ry) as rn1n2

= (n1Δrx,n2Δry), where
n1 ∈ [0,Nx] and n2 ∈ [0,Ny], (4) becomes

zw
(
rn1n2

, t
)
=
∑

m1,m2

A
(
km1m2

, t
)
e j2π(m1n1/Nx+m2n2/Ny). (8)

The length of the patch where the IFFT is computed
is given by (Lx,Ly) = (NxΔrx,NyΔry). The periodicity
of the IFFT can be used to replicate the zw(·)’s in both
spatial directions. Hence, we can compute sea heights zw(r, t)
for extended surfaces at an acceptable computation cost.
Figure 6 shows examples of sea surface heights generated
with the previous model.

Only considering gravity waves and swells for modeling
sea surface is valid for low sea states. For high sea states
(typically > 5), breaking waves appear due to gravity. These
waves are not handled in this model. The presence of
breaking waves only modifies the model for ps(S); the
principles of the method remain unchanged.



EURASIP Journal on Advances in Signal Processing 5

200

150

100

50

0
y

(m
)

0 50 100 150 200

x (m)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Se
a

h
ei

gh
ts

(m
)

(a)

200

150

100

50

0

y
(m

)

0 50 100 150 200

x (m)

−3.2

−2.4

−1.6

−0.8

0

0.8

1.6

2.4

3.2

Se
a

h
ei

gh
ts

(m
)

(b)

Figure 6: Examples simulated color-coded sea heights for a wind speed of 11 m/s: (a) gravity waves and (b) gravity waves and swells. x-axis
and y-axis are labeled in meters. Color indicates sea heights (in meters). Sea height zero is the mean sea level.

4.2. Turbulent Wake Surface Model. A turbulent wake is
modeled as a very rough flat surface [9, 10]. Hence, we model
this wake as a flat sea. This flat sea is divided into microfacets
(to simulate turbulences), the orientation of these micro-
facets being uniformly distributed between 0 and π/2 to
simulate surface roughness.

In Section 5, we see that sea water emissivity (resp.,
reflectivity) goes down (resp., up) as the angle of arrival of
the optical beam on a sea facet increases. Hence, wakes can
be distinguished from open-sea thanks to a change in the
emissivity (or reflectivity) between wake and open-sea pixels.
For optical sensors, the wake appears bright (Figure 1) due
to a higher value (higher reflectivity) of the sun glint for
wake than for open-sea pixels. For LWIR sensors, the wake
appears dark due to a reduction in the emissivity of the sea
surface in the wake compared to its value for open-sea pixels.
For MWIR sensors, there is a competition between reflection
(sun glint and sky irradiance) on sea facets and self-emission
of sea facets. This is discussed further below.

5. Radiance Received at the Sensor

Below, we present a model for computing the radiance
received at the entry of the sensor. This model can be applied
to open-sea and wake pixels.

5.1. Radiance at the Sea Surface (One Sea Facet). We first
describe the method for computing the radiance leaving one
sea facet n. The radiance Rn(λ)[W/m2 · srμm] leaving n
for wavelength λ is computed using the following equation
[12, 13, 15]:

Rn(λ) = En
sea(λ) + En

sky(λ) + En
diff(λ) + En

glint(λ). (9)

We describe below a real-time model for each term in (9).
Figure 7 defines useful variables relative to n.

θs

θn

θs,n

βs,n
v(θ,φ)

nn s

Facet n

Sensor vector

Figure 7: Useful variables for a sea facet n.

5.1.1. Emitted Radiance. In (9), En
sea represents the radiance

emitted by n due to its nonzero temperature. It is computed
using Planck’s law [16], that is,

En
sea(λ) = Vnεsea(λ)Mbb(λ,Tsea), (10)

where εsea(λ) is the open sea water emissivity at λ, Tsea is
the absolute open sea surface temperature, and Mbb(·) is the
blackbody radiance [16]. Vn = 1 if s · nn > 0, zero otherwise.
The variation of En

sea with n is mainly due to the variation
of εsea(λ) with the elevation angle βs,n of the optical beam
s that goes to the sensor. Neglecting the dependence upon
wavelength, we have [17]

εsea
(
λ,βs,n

) = 0.98
(

1− (1− cosβs,n
)5
)
. (11)

For wake pixels, εwake(λ) is the mean of εsea(λ,βs,n) for
βs,n ∈ [0,π/2]. Hence, εwake(λ) = 0.87. Hence, for wake
facets, εwake < εsea for most values of βs,n.

5.1.2. Sky Radiance. In (9), En
sky is the irradiance produced

by the sky. It is present at any time. There are two models.
The first model En

sky as a blackbody at sky temperature Tsky

(depending upon weather parameters) [18, 19], that is,

En
sky(λ) = Fnρsea

(
λ,βs,n

)
Mbb

(
λ,Tsky

)
, (12)
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where ρsea(λ,βs,n) = 1− εsea(λ,βs,n) is the sea reflectivity and
Fn is a visibility factor representing the portion of the sky
hemisphere seen by n. This model is realistic under clear-
sky conditions. The second model uses MODTRAN [20].
However, it is computationally intensive. To have a real-time
model, we use the blackbody model.

5.1.3. Solar Irradiance. The solar extraterrestrial radiation
not back-scattered to space reaches the ground in two ways.
The radiation reaching the ground directly is the beam
irradiance. The scattered radiation reaching the ground is
the diffuse irradiance. Below, we assume clear-sky condi-
tions. (For images containing clouds, we assume that cloud
masking algorithms [21, 22] have been applied prior to ship
detection.) The beam irradiance incident on a surface of 1 m2

on the earth’s ground is

En
b,sol(λ) = En,n

b,sol(λ)v
(
θ,φ

) · nn = En,n
b,sol(λ) cos θs,n, (13)

where

En,n
b,sol(λ) = αVnc(λ)Msol(λ), (14)

where α is a proportionality constant and c(λ) is obtained
from MODTRAN and accounts for propagation through
the atmosphere. Msol(λ) is the spectral radiance of the sun
computed either using a blackbody at Tsun = 5760 K or using
MODTRAN (more accurate). In (9), En

glint(λ) corresponds to
the reflected beam solar irradiance, that is, the solar glint.
Assuming that n is a Lambertian (diffuse) reflector (diffuse
solar glint), we have

En
glint(λ) = ρsea

(
λ,βs,n

)
En
b,sol(λ). (15)

En
diff is the diffuse irradiance reflected by n. Since we con-

sider clear-sky conditions, we neglect En
diff since it is a small

fraction of En
b,sol. To reduce computation time, En,n

b,sol at all
zenith angles are precomputed and the value corresponding
to a given zenith angle is obtained by interpolation of the
pre-computed En,n

b,sol’s.

5.2. Radiance at Sea Level (One Pixel). The radiance Rp(λ)
leaving an open-sea pixel corresponding to the IFOV of the
sensor is

Rp(λ) = Sh
∑
n

Rn(λ)An
[
W/ srμm

]
, (16)

where An is the area of n and Sh is a shadowing coefficient
smaller than one if the satellite is not at zenith. Indeed, in
this case, some sea facets are shadowed by other sea facets.
Modeling of Sh implies to resort to ray-tracing algorithms
(highly time-consuming). Here, we use a simplified, but
realistic expression [12], that is,

Sh(ν) = 2
1 + erf(ν) + (1/ν

√
π)e−ν2 , (17)

where erf(·) is the error function, ν ≡ tan θ/σ , where θ is the
satellite look angle and σ is the RMS slope of the facets [23],
that is, σ2 = 0.003 + 0.00512v2

12.5, where v12.5 is the average
wind speed at 12.5 m above sea level.

5.3. Radiance at the Spaceborne Sensor. To obtain the radi-
ance Rs,i arriving at the entrance of the spaceborne sensor,
we multiply Rp by the solid angle of the sensor (using the
radius rp of the entrance pupil and the satellite height Hs).
We obtain

Rs,i(λ) =
πr2

p

H2
s
Rp(λ)c(λ) + Lpath(λ)

[
W/μm

]
, (18)

where Lpath represents the radiance received on the path
between the sea surface and the sensor and c(λ) is the atmo-
spheric transmittance. For MWIR sensors, Lpath represents
the radiance emitted by the atmosphere on the path between
n and the sensor. It can then be modeled as the integral of
a blackbody with height-dependent temperature. We then
approximate Lpath using a blackbody at a temperature being
the mean of the air temperature along the path to the sensor.

6. Signal Displayed by the Sensor

We describe the model for converting Rs,i(λ) to the signal
displayed at each pixel of the sensor.

6.1. Model for the Displayed Signal (No Noise). Rs,i(λ) is
transferred by the sensor optics to the detector focal plane
where the image is formed. The spectral irradiance at the
entry of a detector located on the optical axis is related to
Rs,i(λ) by the camera equation [15]

Rs(λ) = πτo(λ)
4N2

Rs,i(λ)
[
W/μm

]
, (19)

where τo(λ) is the optical system transmittance (often 90%
and nearly flat), N is the f -number. Then, the detector
converts collected photons in an electrical current [A]
(photo-electric effect). The efficiency of this transformation
is aqe ∈ [0, 1]. Next, Rs(λ) is spectrally filtered by the spectral
response Sb(λ). The resulting signal Rb is the integration of
Rs(λ) over the spectral interval [λ1, λ2] corresponding to the
bandpass of the detector. To increase the SNR, the signal is
temporally integrated over a time interval (integration time)
specified by Iτ . Hence,

Rb = Iτaqe

∫ λ2

λ1

Sb(λ)Rs(λ)dλ · [C]. (20)

Here, we assume that τo(λ) = τo and Sb(λ) = 1 for all λ ∈
[λ1, λ2]. Rb is expressed in Coulomb (C). Dividing Rb by the
electrical charge e− of an electron, we get the number Nb of
electrons collected by the detector, that is, Nb = Rb/e−.

If the imaged scene is a point source, the image produced
at the detector is a blurred point due to diffraction. The
resulting image is called the Point Spread Function (PSF)
PSF(x, y). For any other imaged scene, the signal Rbl(x, y)
at each pixel (x, y) on the detector plane is given by a
convolution of Rb(x, y) with PSF(x, y), that is,

Rbl(x, y
) =

∫
α

∫
β
Rb
(
α,β

)
PSF

(
x − α, y − β

)
dαdβ. (21)
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For real systems, the PSF also includes nonideal effects.
With each effect, a PSF is associated. The global PSF is
the convolution of all PSFs. Typical nonidealities are the
following. First, the optics induce blurring by the optical
PSF as explained above. The image formed by the optics
may move during the integration time; this introduces image
motion PSF (also called smearing PSF). High-frequency
(resp., low frequency) vibrations of the satellite also imply
a degradation of the signal. We then associate to these
vibrations a jitter (resp., pointing) PSF. The detector also
adds additional blurring due to the detector PSF. Finally, the
detected signal is further degraded by the electronics PSF.

Computation of (21) is computationally intensive. One
alternative is to compute the FT of the PSFs. The convolution
becomes a product. The FT of a PSF is called a Modulation
Transfer Function (MTF). Hence,

Rbl(x, y
) = F −1

(
MTF(u, v)F

(
Rb
(
x, y

)))
, (22)

where F ( f (x)) (resp., F −1( f (x))) is the FT (resp., inverse
FT) of f (x). In practice, Rbl(x, y) is a discrete function
since the number of detectors in the detector plane is finite.
Rbl[i, j] represents the current received at detector located at
position (i, j). Similarly,Nbl[i, j] = Rbl[i, j]/e− is the number
of electrons collected at (i, j).

6.2. Inclusion of Noise. So far, the proposed model for Rbl

does not include noise present in the detector. In EO sensors,
the most important noise sources are the following: (1)
the photon (shot) noise associated with the nonequilibrium
conditions in a potential energy barrier of a photovoltaic
detector through which a dc current flows; (2) the thermal
(Johnson) noise associated to fluctuations in the voltage
current caused by the thermal motion of charge carriers in
resistive materials, (3) the multiplexer (read out) noise.

Each noise is modeled as a random process (RP) with
zero mean and variance σ2

pn (photon noise), σ2
tn (thermal

noise), or σ2
mn (multiplexer noise). Models for these variances

can be found in [24]. Each noise is expressed in number of
electrons. The total detector noise variance σ2

n is then the sum
of σ2

pn, σ2
tn, and σ2

mn, so that

σn =
√
σ2

pn + σ2
tn + σ2

mn. (23)

There exist two other noise sources (the quantization
noise and bit errors) [3]. However, they are not considered
here. Notice that these noises only modify the value of σn; the
reasoning remains unchanged. The signal Sbl[i, j] displayed
by the sensor at detector [i, j] is then

Sbl[i, j] = Nbl[i, j] + Nn
[
i, j
]
, (24)

where Nn[i, j] is a realization of the zero-mean Gaussian RP
with variance σ2

n .

7. Real-Time Simulator

Evaluating sensor performance implies first to simulate
Sbl[i, j] for all detectors in the detector plane. This is

computationally intensive due to the inclusion of the PSF
(or MTF). Hence, evaluating sensor performance using this
approach is not possible in real-time. Below, we propose an
efficient, real-time strategy.

First, observe that, for an image in the open-sea, we have
three classes of pixels: (1) pixels only composed of open-sea
radiance, (2) pixels only composed of wake radiance, and (3)
mixed pixels composed partially of open-sea radiance and of
wake radiance. For each class of pixels, we propose below an
RP for the received signal. Hence, instead of simulating the
entire image, we only have to find a model for the pdf of the
three classes of pixels. Indeed, the entire image is found by
considering realizations of these three RPs. To summarize,
we propose to reduce the computation of the entire image to
the computation of three pdfs, one for each class of pixels.
ROC curves are then obtained as discussed in Section 3.

7.1. Probability Density Function for Rb. We first consider the
pdf of an open-sea pixel. Then, we consider a wake pixel and
finally, a mixed pixel.

7.1.1. Open-Sea Pdf. The signal Rb corresponding to an
open-sea pixel is denoted Rb

s and is given by (20) using
the geometric model of Section 4.1. Rb

s mainly depends on
satellite position ss, sun location v(θ,φ), and wind speed v.
Consider that ss, v(θ,φ), and v are fixed. Consider a great
open-sea area divided in small planar facets for which we
compute sea heights (see Section 4). We then compute the
received Rb

s for each facet, and we plot the corresponding
histogram. This gives an idea of the pdf of Rb

s for open-
sea pixels. Results are shown for various sea states (various
wind speeds) in Figure 8 for MWIR sensors. Figure 8 shows
normalized Rb

s ’s, denoted as R̃b
s , that is, R̃b

s ∈ [0, 1], obtained
as

R̃b
s =

Rb
s − Rb

s,min

Rb
s,max − Rb

s,min

, (25)

where Rb
s,min and Rb

s,max are, respectively, the minimum and
the maximum values of Rb

s for all sea facets.
Histograms of R̃b

s all have the shape of a beta statistical
distribution. The pdf pβ(r) of this distribution has two free
parameters θ1 and θ2 and is given by

pβ
(
R̃b
s , θ1, θ2

)
= 1

B(θ1, θ2)

(
R̃b
s

)θ1−1(
1− R̃b

s

)θ2−1
, (26)

where B(θ1, θ2) = Γ(θ1)Γ(θ2)/Γ(θ1 + θ2), where Γ is the
gamma function. To find the pβ(R̃b

s , θ1, θ2) that best fits the

R̃b
s ’s, we estimate θ1 and θ2 using the mean mr and the

variance σ2
r of the R̃b

s ’s. We have [25]

θ̂1,s = mr

(
mr(1−mr)

σ2
r

− 1

)
, (27)

θ̂2,s = (1−mr)

(
mr(1−mr)

σ2
r

− 1

)
. (28)
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Figure 8: Histogram of R̃b
s ’s and corresponding beta distributions.
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Hence, the pdf ps,b(Rb
s ) of the Rb

s ’s is pβ(R̃b
s , θ1, θ2), where R̃b

s

is replaced by Rb
s using (25) and θ1 and θ2 are, respectively,

replaced by θ̂1,s and θ̂2,s, that is,

ps,b
(
Rb
s

)
= pβ

(
Rb
s − Rb

s,min

Rb
s,max − Rb

s,min

, θ̂1,s, θ̂2,s

)
. (29)

The reason why the open-sea Rb
s ’s can be modeled as a beta

distribution is currently not well understood.

7.1.2. Turbulent Wake Pdf. We consider a model for the
pdf pw,b of the signal Rb

w corresponding to a wake pixel
given by (20) with the geometrical model of Section 4.2.
We consider that ss, v(θ,φ), and v are fixed. In Section 4,
we saw that Rb

w corresponds to the radiance of a flat
sea with important roughness. This roughness is modeled
by dividing the wake pixel in microfacets with arbitrary
orientation. (For computing Rb

w, we consider that the wake
surface temperature Tw is equal to Tsea. However, in practice,
Tw < Tsea[26]. Modeling this temperature difference is
outside the scope of this paper.) The simplest model for
pw,b thus considers a uniform pdf for the emissivity leading
to a uniform distribution of Rb

w. However, this is not
realistic since having microfacets with arbitrary orientation
is more probable than having microfacets with horizontal
orientation. One solution is to use a beta distribution with
high probability density near the signal corresponding to
microfacets with orientation uniformly distributed between
0 and π/2 (denoted as Rb

wu) and a very small probability
density near the signal corresponding to a flat sea (denoted
as Rb

flat). If Rb
flat > Rb

wu, we have

pw,b

(
Rb
w

)
= pβ

(
Rb
w − Rb

wu

Rb
flat − Rb

wu

, θ1,w, θ2,w

)
, (30)

where θ1,w and θ2,w are such that pβ(ε) � 1 and pβ(1−ε) � 0,
with ε 	 1. Simulations show that θ1,w = 1 and θ2,w = 20
lead to a meaningful pdf. Figure 9 shows pw,b.

7.1.3. Mixed Pdf. Some pixels, called mixed pixels and
located at the edge of the wake, are composed of a portion
of wake and a portion of open-sea (Figure 10). The signal Rb

m

corresponding to a mixed pixel is then

Rb
m = αRb

w + (1− α)Rb
s , (31)

where α is the portion of wake signal in the pixel. We then
have to find a model for the pdf pm,b of Rb

m. Computing the
analytical expression of the pdf of a linear combination of
different beta distributions is challenging. In Section 7.2.3,
we propose a method for computing this pdf. We use this
method here with weights α and 1 − α. The resulting pdf is
then a beta distribution (see Section 7.2.3) given by

pm,b

(
Rb
m

)
= pβ

(
Rb
m − Rb

m,min

Rb
m,max − Rb

m,min

, θ̂1,m, θ̂2,m

)
, (32)

where Rb
m,min and Rb

m,max are, respectively, the minimum and
the maximum values of Rb

m, obtained using the minimum
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w : beta distribution with θ1,w = 1 and θ2,w = 20.
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Figure 10: Mixed pixels: (a) Edge and (b) overlapping mixed pixels.

and the maximum values of Rb
s and Rb

w. Coefficients θ̂1,m and

θ̂2,m are obtained as explained in Section 7.2.3. An example
of mixed pixel pdf is given in Figure 11.

7.2. Statistical Model for Rbl. Below, we describe the model
for the pdf pbl of Rbl for a mixed pixel. The approach is
similar for open-sea and wake pixels. Finding a model for
pm,bl(Rbl

m) implies to include the effect of the PSF. We can
either compute the convolution of the PSF with the image
pixels or perform the FT of the image and multiply the result-
ing image by the MTF. Both methods are computationally
intensive: they require the computation of the entire image.
Below, we propose an efficient method to include the effect
of the PSF without computing the entire image.

Moreover, to simulate the effect of changing the PSF (or
MTF) of one particular nonideality on sensor performance,
we should first be able to easily change the shape of the PSF
(or MTF) and second to update ROC curves in real-time.
Hence, we propose to represent each PSF (or MTF) with
one scalar value: the MTF at Nyquist. This allows to rapidly
update sensor performance.
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7.2.1. MTF at Nyquist. If a sensor is looking at a scene, each
detector of the sensor senses a pixel of size equal to the
GSD. For a line of detectors, the values received at these
detectors correspond to the sampling of a continuous signal
corresponding to the radiance produced by all patches on
the ground line corresponding to the detector line. Hence,
the maximum frequency of the signal that can be sensed
is f = 1/2GSD. Signals with higher frequencies produce
aliasing. Hence, the MTF MTFN at Nyquist frequency fN =
2 f = 1/GSD plays an important role in evaluating sensor
performance. fN is often expressed using the detector size d
to be independent upon the GSD. Hence, MTFN = 1/d. The
MTF can then be characterized by one scalar value, that is,
MTFN .

7.2.2. Model for the MTF. Each MTF is then described by
its MTFN . For each nonideality ni, we have a value of
MTFN , denoted MTFN ,i. The global MTFN is the product of
the MTFN ,i’s. Sensor designers provide two MTF functions:
the along-track and the across-track MTF. Both MTF are
combined to give the 2D MTF. We thus have two MTFN ,
that is, the along-track MTFN (MTFN ,al) and the across-track
MTFN (MTFN ,ac). We make the reasonable assumption that
the 2D MTF is Gaussian [15]. This allows to compute the
inverse FT analytically, saving computation time. Hence,

MTFG(u, v) =
(
e−π

2u2/a
)(

e−π
2v2/b

)
, (33)

where u and v are normalized frequency variables (with
respect to d) and a and b are determined using MTFN ,al

and MTFN ,ac. Estimates â and b̂ of a and b are â =
−π2/ ln(MTFN ,al) and b̂ = −π2/ ln(MTFN ,ac). PSFG(x, y) is
the inverse FT of MTFG(u, v), which is also a Gaussian, that
is,

PSFG
(
x, y

) =
(√

a

π
e−b̂y

2
)⎛
⎝
√

b

π
e−âx

2

⎞
⎠, (34)

where x and y are normalized detector locations (with
respect to d). PSFG(x, y) is used to compute Rbl

m in (21).

7.2.3. Model for Rbl
m. Consider a detector (i, j). Hence,

discretizing integrals in (21), we obtain

Rbl
m

[
i, j
] = ∑

k∈K

∑
l∈L

Rb[k, l]PSFG
(
i− k, j − l

)
, (35)

where K and L are the sets of pixel indexes centered on (i, j)
and for which PSFG has a nonnegligible value. With typical
values of MTFN , the sizes ofK andL are about 3 to 4. Hence,
Rbl
m is evaluated by summing signals of about 9 to 16 pixels,

which is very efficient. Now, we describe a model for the pdf
pm,bl of Rbl

m. Rbl
m in (35) is a weighted sum of RPs. Indeed, each

Rb in (35) is the signal corresponding either to an open-sea
pixel or to a wake pixel or to a mixed pixel that all are RPs.
Hence, we can compute mean mbl[i, j] and variance σ2

bl[i, j]
of Rbl

m[i, j]. We have

mbl
[
i, j
] = ∑

k∈K

∑
l∈L

mb[k, l]PSFG
(
i− k, j − l

)
, (36)

where mb[k, l] is the mean of Rb[k, l]. For σ2
bl[i, j], we have

σ2
bl

[
i, j
] = ∑

k∈K

∑
l∈L

σ2
b [k, l]PSF2

G

(
i− k, j − l

)
, (37)

where σ2
b [k, l] is the variance of Rb[k, l]. Using mbl[i, j] and

σ2
bl[i, j], we can model pm,bl as a beta distribution with

parameters θ̂1,bl and θ̂2,bl, respectively, given by (27) and (28),
where mr and σ2

r are, respectively, replaced by mbl[i, j] and
σ2

bl[i, j]. Hence, pm,bl is

pm,bl

(
Rbl
m

)
= pβ

(
Rbl
m − Rbl

m,min

Rbl
m,max − Rbl

m,min

, θ̂1,bl, θ̂2,bl

)
, (38)

whereRbl
m,min andRbl

m,max are the minimum and the maximum
values of Rbl

m, obtained using the minimum and maximum
values of each Rb[k, l] with k ∈K and l ∈ L.

Figure 12 compares (a) ps,b and pm,b (Figure 12(a)) ps,bl
and pm,bl (Figure 12(b)). We first conclude that ps,bl and pm,bl

are close to a Gaussian distribution. This is a consequence of
the Central Limit Theorem. Second, the separation between
ps,bl and pm,bl is smaller than the one between ps,b and pm,b

indicating that the MTF degrades detection performance.

7.3. Statistical Model for Signal Sbl. We propose a model for
the pdf of Sbl for the three classes of pixels. Since the method
is similar for these three classes, we only consider a mixed
pixel, that is, Sbl

m. Sbl
m for detector [i, j] is given by (24) where

Nbl
m is modeled as a beta distribution with parameters θ̂1,bl

and θ̂2,bl and where Nn is modeled as a zero-mean Gaussian
RP with variance σ2

n . The pdf pm,s(S) of the RP Sbl
m is then the

sum of a beta distribution and a Gaussian pdf. The mean ms

and the variance σ2
s of Sbl

m are, respectively, given by (36) and
(37), that is,

ms = mbl,

σ2
s = σ2

bl + σ2
n ,

(39)



EURASIP Journal on Advances in Signal Processing 11

wherembl and σ2
bl are the mean and the variance of Nbl

m . Using
ms and σ2

s , we can model pm,s(S) as a beta distribution with

parameters θ̂1 and θ̂2, respectively, given by (27) and (28),
where mr and σ2

r are, respectively, replaced by ms and σ2
s .

Hence, pm,s(S) is

pm,s(S) = pβ

(
S− Sm,min

Sm,max − Sm,min
, θ̂1, θ̂2

)
, (40)

where Sm,min � Nbl
m,min and Sm,max � Nbl

m,max.

7.4. Line Detection Algorithms. Since we consider low pay-
load sensors, the spatial resolution is small. Hence, the IR
ship-only signature is spread between a small number of
pixels. Using pixel-based ship detection algorithms thus gives
high pfa. A ship pixel is indeed easily confused with open-
sea pixels with sun glint or open-sea pixels corresponding
to swells or cloud pixels. (For ship detection, we assume
that cloud masking algorithms have been applied prior to
detection [21, 22].) We then have to use more than one
pixel for ship detection. Below, we investigate how to detect
ships using their turbulent wake. Indeed, this wake can
persist a few kilometers away from the ship, making their
detection with low-resolution sensors possible. The wake
appears either as a curved or a straight line (Figures 1 and
2). Curve tracing and curve detection algorithms can then be
used to detect and separate wakes [27, 28], reducing pfa.

Since we want to develop a real-time methodology
for evaluating sensor performance, computing the entire
image and the corresponding curve detection algorithms is
time consuming. Below, we propose a statistical, real-time
approach. We describe the algorithm principles in the case
of a straight line. The methodology is easily generalized to
curved wakes. Consider a ship moving in a given direction
and the corresponding wake. A line is then visible in the
image. Consider the application of a line-detection algorithm
to the center pixel of the ship. There are an infinite number of
lines passing through this pixel. These lines generate a curve
in the line-space. Each point on this curve is weighted by the
percentage of the length of the line in the original image that
effectively crosses a line in the original image. Hence, this
curve exhibits a maximum when the line is confounded with
the wake.

Instead of thresholding the contrast between two pixels,
we threshold the contrast between two lines of pixels; the
first line is the wake (or a mix between the wake and an
open-sea line) and the second line is an open-sea line. Hence,
if we are able to compute the pdf pL,N

s of the signal of a line
of N open-sea pixels and the pdf pL,N

w of the signal of a line
of N wake (or mixed) pixels, we can compute ROC curves
after the application of line-detection algorithms. Below, we
explain how to compute the pdf pL,N

m (S) of the signal of a
line of N mixed pixels. The same method is used to compute
pL,N
s (S) and pL,N

w (S).
Consider N mixed pixels. Each pixel is an RP described

with the same pdf pm,s(S). One realization of the RP of
the line is obtained by performing the mean between N
realizations of the RP with pdf pm,s(S). Hence, using (36) and
(37), the mean mL,N and the variance σ2

L,N of the line RP are
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Figure 12: Comparison between (a) ps,b and pm,b and (b) ps,bl and
pm,bl for sea state 5 and α = 0.4. Simulation corresponds to sunlight
dominating (bright) wake.
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m for sea state 5 and N = 10. Simulation
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given by mL,N = mm,s and σ2
L,N = σ2

m,s/N , where mm,s and σ2
m,s

are, respectively, the mean and the variance of pm,s(S). Using

(27) and (28), we, respectively, obtain estimates θ̂1,L and θ̂2,L

of the parameters θ1 and θ2 of the resulting beta distribution.
Hence,

pL,N
m (S) = pβ

(
S− Sm,min

Sm,max − Sm,min
, θ̂1,L, θ̂2,L

)
. (41)

Figure 13 shows pL,N
s and pL,N

m for N = 10. We first con-
clude that pL,N

s and pL,N
m are close to a Gaussian distribution.
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Table 1: Value of all parameters for the MWIR scenario.

MWIR sensor Value

GSD (m) 100

# pixels 1024× 1024

pixel size (μm) 15

FOV (◦) 9.8× 9.8

Swath (km) 102× 102

Integration time (ms) 10

Focal length (mm) 90

Entrance pupil (mm) 30

Transmittance τo 0.6

Average QE 0.75

This is a consequence of the Central Limit Theorem. Second,
the separation between pL,N

s and pL,N
m is greater than the one

between ps,bl and pm,bl (see Figure 12(b)) illustrating that the
line-detection algorithm enhances detection performance.

8. Performances

In this section, we illustrate the use of the presented
simulator to assess sensor performance using ROC curves.
The set of simulations is chosen as broad as possible in order
to show that this simulator can be used in realistic scenarios.
Remember that our aim is not to present validation results
of the simulator. We consider the scenario of Table 1 with the
MTFN ’s and the noise variances of Table 2.

We first illustrate ROC curves for three cases: (a) no
MTF (Figure 14(a)), (b) MTF included (Figures 14(b) and
14(c)) line detection + MTF (Figure 14(c)). We see the
degradation of performance due to the inclusion of the MTF.
The ROC curve for line detection shows the important gain
obtained with such algorithms. In practice, performance is
more degraded due to the presence of nondiffuse sun glint
that increases pfa.

Second, Figures 15(a) and 15(b), respectively, show the
evolution of sensor performance for different wake widths
and different satellite look angles. This illustrates the fact that
sensor performance degrades as wake width decreases and as
satellite looks at the sea with an angle closer to the horizontal
direction. We assume that the sensor FOV is small enough
so that each pixel sees the sensor with the same angle. These
results were obtained in real-time.

Next, we consider the difference between day and night
conditions. During the night, sun glint is absent. Figure 16(a)
compares sea, wake, and mixed pixels pdfs. For MWIR
sensors, there is a competition between reflections on the sea
surface (reflection of the sun and the sky irradiances) and
self-emission of the sea surface facets [15]. During the day,
due to the presence of sun glint, reflections dominate over
self-emission and then the wake appears bright (the wake pdf
is located at the right of the open-sea pdf). During the night,
the absence of sun glint reduces the importance of reflections
and self-emission dominates. Then, the wake appears dark
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MTF included, and (c) MTF and line detection algorithm included.
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Figure 15: Evolution of sensor performance with (a) wake width
and (b) satellite look angle (sat 0 = Nadir, sat 1 = 0.47 rad, sat 2 =
0.93 rad, and sat 3 = 1.4 rad from Nadir). Sea state is 5. Wake length
is 2 km.

(the wake pdf is now located at the left of the open-sea
pdf). Figure 16(b) compares detection performance during
day (“−” curve) and night (“−.” curve). Night detection
performances are better. Indeed, it is well known that sun
glint introduces false alarms.

Finally, we briefly examine performance obtained with
the simulator when false alarms are present. We consider the
presence of swells as a candidate for false alarms. Figure 17

P
df

va
lu

es

2220000 2380000 1800000 2300000

Signal values (eV)

Sea

Mixed

Wake

Signal values (eV)

P
df

va
lu

es

SeaMixedWake

(a)

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
de

te
ct

io
n

10−5 10−4 10−3 10−2

Probability of false alarms

Night

Day

(b)

Figure 16: Sensor performance day versus night: (a) Wake, sea, and
mixed pixel pdfs during the day (left) and the night (right) and (b)
ROC curves before line detection. Sea state is 5. Wake length is 1 km.

Table 2: MTF budget at Nyquist and noise variances.

(a)

MTF at Nyquist Value

Optical MTF 0.4

Detector MTF 0.64

Smearing MTF 0.82

Jitter MTF 0.9

Pointing MTF 0.9

Across-track MTF 0.21

Along-track MTF 0.17

(b)

Noise (eV) Value

Photon 2007

Thermal 1107

Read out 420

compares ROC curves when the sea model contains gravity
waves (“−” curve) and when both gravity waves and swells
are present (“−.” curve). As expected, performances with
swells are degraded.



14 EURASIP Journal on Advances in Signal Processing

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

lit
y

of
de

te
ct

io
n

10−5 10−4 10−3 10−2 10−1 100

Probability of false alarms

Gravity waves

Gravity waves + swells

Figure 17: Sensor performance when the sea surface model
includes (a) gravity waves and (b) gravity waves and swells after line
detection. Sea state is 5. Wake length is 1 km.

9. Conclusions

This paper was devoted to the design of a real-time method-
ology for assessing detection performance of spaceborne
sensors. Real-time capabilities are obtained by representing
pixels in the images with random processes with given
probability density functions. It was described in the case of
mid-wave infrared (MWIR) sensors. However, its principles
are applicable to any electro-optical sensor and even to radar
sensors, provided that adequate models for the random pro-
cesses are inserted into the model. Using this methodology to
study sensor performance was then studied for a particular
scenario.
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