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Mismatch problem has been one of important issues of matched field processing for underwater source detection. Experimental
use of MFP has shown that robust range and depth localization is difficult to achieve. In many cases this is due to uncertainty in the
environmental inputs required by acoustic propagation models. The paper presents that EMD (Empirical mode decomposition)
processing underwater acoustic signals is motivated because it is well suited for removing specific unwanted signal components that
may vary spectrally. And the Karhunen-Loève expansion is applied on sample covariance matrix to gain a relatively uncorrupted
signal. The EMD denoising scheme is combined with Karhunen-Loève expansion to improve underwater target localization
performance of matched field processing (MFP). The robustness and effectiveness of the proposed method is tested by the
benchmark cases numerical simulation when there had large environmental parameter uncertainties of the acoustic waveguide.

1. Introduction

Matched field processing has been extensively explored for
use in detecting and localizing underwater sources. MFP uses
ocean propagation models to account for multipath when
generating replica vectors [1–3]. Typically, matched field
source localization involves fitting measured narrowband
vertical array outputs with versions of the field, predicted by
a full wave deterministic normal mode model, for a set of
hypothesized source ranges and depths [4]. If accurate envi-
ronmental information is available, sources can be localized
in range, depth, and bearing. Under practical circumstances,
ocean environmental parameters such as sound speed profile,
water depth, and bottom density, may have significant
spatial and temporal variability. But a major difficulty facing
this approach is that the localization process is extremely
sensitive to errors in the assumed propagation model and
array calibration. Accurately modeling multipath can also
yield mismatch reduction and detection gains as compared
to direct-path beamformers. Because of the limitation of

inaccurate measurement as well as all kinds of noises and
perturbs in underwater environment, it is inevitable for
us to receive the desirable signal with noise and have the
uncertainties in modeling real ocean environment [2]. As a
result it would be better to find a new robust matched field
processor based on denoising scheme.

MFP exploits the complex multipath structure to gen-
erate the signal replica or the so-called steering vector. The
steering vector is the spatial point source response of the
medium (Green’s function), thus depending on not only the
source location but also the environmental parameters. It is
very common that the assumed environmental parameters
differ from the true ones, and thus sensitivity to mismatch is
the most important liability with matched-field methods [1].

To overcome the mismatch problem, many researchers
have proposed some robust algorithms, and sector-focused
processing was applied to the test data cases devised
for the MFP. Sector-focused processor located the source
with robustness similar to the replica correlator processor,
but with the higher resolution characteristic of Minimum
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variance distortionless response (MVDR) [3]. A broadband
MAP estimator for robust MFP termed the wideband
optimum uncertain field processor (OUFP) was presented
in [4]. A contrast-maximized optimization scheme was
introduced to the MFP in order to reduce the sidelobe level
of ambiguity surfaces [5]. The Karhunen-Loève expansion,
also called feature extraction method, has been proposed
with an improvement of robustness on environmental
mismatch. It is one of robust MFP algorithm, which is based
on the eigenvector estimation [6]. The MFP results were
presented in real ocean experimental data using Karhunen-
Loève expansion and MVDR with white noise constrain
[7]. The coherent white noise constraint processor has also
been shown through simulation to perform better than the
conventional and MVDR estimators at low SNR [8].

The last two decades have seen tremendous activity in
the development of new mathematical and computational
tools based on multiscale ideas (wavelet). Then Ding and
Gong had also proposed multiresolution processing method
for source detection and localization. It improves the MFP
ambiguity surface performance with analysis of shallow
water trial data [9]. Based on wavelet transform and feature
extraction scheme, a robust MFP was proposed by G. Gong
and X. Gong [10]. The main drawback of this method is
that a mother wavelet has to be defined a priori. But in the
end, it would seem that the wavelet family is specifically
related to the analyzed dataset because certain authors
have systematically chosen different wavelet families for
underwater signal analyses.

Recently, a new data-driven technique, referred to as
empirical mode decomposition (EMD), has been introduced
by Huang et al. [11] for analyzing data from nonstationary
and nonlinear processes. The EMD has received more
attention in terms of applications and interpretations [12].

The major advantage of the EMD is that the basis
functions are derived from the signal itself. Hence, the
analysis is adaptive in contrast to the traditional methods
where the basis functions are fixed. The EMD is based
on the sequential extraction of energy associated with
various intrinsic time scales of the signal, starting from
finer temporal scales (high-frequency modes) to coarser
ones (low-frequency modes). The total sum of the intrinsic
mode functions (IMFs) matches the signal very well and,
therefore, ensures completeness [11]. To the nonlinear
and nonstationary signals analysis, the EMD method gave
promising results and has advantages when compared with
the wavelet transform [12].

Flandrin et al. have proposed the signal-filtering method
based on EMD to process the fractional Gaussian noise [12].
Boudraa and Cexus proposed the consecutive mean square
error (CMSE) criteria to differentiate IMFs of main signal
component and IMFs of noise, that does not require any
knowledge of y(t), and use the main IMFs to reconstruct
signal and performed denoising functions [13].

To represent underwater target echo involving broad-
band noise, our main work in this paper is the application of
EMD scheme to deal with underwater acoustic signals. Then
based on Karhunen-Loève expansion, robust matched field
processor was constructed. The robustness and effectiveness

of the suggested algorithm has been illustrated through the
numerical simulation of MFP benchmark shallow water data
[14].

2. Underwater Acoustic Signals
Denoising Scheme Based on EMD

2.1. The Empirical Mode Decomposition. Traditional data
analysis methods, like Fourier and wavelet-based method,
require some predefined basis functions to represent a signal.
The EMD relies on a fully data-driven mechanism that
does not require any a priori known basis. It is especially
well suited for nonlinear and nonstationary signals, such as
underwater acoustic signals.

The EMD consists of the decomposition of the original
signal in successive modes. The decomposition does not
require specific vectors: the signal is decomposed on itself.
Obtaining a mode from the original signal is called the sifting
process. The decomposition of the signal s is written as

s(n) =
M∑

i=1

ci(n) + TM(n) (1)

with ci being the ith mode of the signal. c is also called
intrinsic mode functions (IMF), and TM is the residue.

The result of the EMD produces M IMFs and a residue
signal. The lower-order IMFs capture fast oscillation modes
while higher-order IMFs typically represent slow oscillation
modes. If we interpret the EMD as a time-scale analysis
method, lower-order IMFs and higher-order IMFs corre-
spond to the fine and coarse scales, respectively.

The decomposition following the sifting process is
complete; that is, the sum of all IMFs is exactly equal
to the original signal. These IMFs are deduced from the
signal’s extrema. Each IMF has to verify the following two
conditions: (1) the number of maxima and minima has to be
the same or having a difference±1, and (2) the envelope from
the minima and the envelope from the maxima must have
a null mean. In the end, the residue has no more than two
extrema. Because the number of the signal extrema is finite, it
is important to note that the number of IMF is consequently
finite, regardless of the features of the signal to be analyzed.

Selecting certain IMF is equivalent to filtering the signal.
And the filtered signal is the result of the sum of the selected
IMF [12]. The highband and lowband filtered signal will be,
respectively, defined as

sh f ,k(n) =
k∑

i=1

ci(n) , sb f ,k(n) =
M+1∑

i=k
ci(n), (2)

if we note cM+1[n] = TM[n].

2.2. EMD Denoising Scheme. Noise is always present in
recorded underwater acoustic signals and is contingent
upon meteorological conditions, underwater noise from
human activities, signal propagation, echoes, and electronic
characteristics of the material for recording. The EMD does
not use any predetermined filter or wavelet function and it is
a fully data-driven method.
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The EMD involves the decomposition of a given signal
into a series of IMFs, through the sifting process, each with
distinct time scale. The EMD method can decompose any
complicated signal into its IMFs which reflect the intrinsic
and reality information of the signal. The performance of
the denoising methods is evaluated from the CMSE: EMD
has the equivalent filter bank structure with binary wavelet
[12]. The signal is decomposed as (1) . Each IMF stands
for certain frequency band signal information, such as (2)
, and small scale IMF stands for high-frequency component,
means spiking signal and noise. Large-scale IMF stands for
low-frequency band signal.

The EMD method is employed for decomposing the
input signal into IMFs (IMF1, . . . ,IMFN , where N is the
number of IMFs). These IMFs are soft-thresholded, yielding
tIMF1, . . . , tIMFN , which are thresholded versions of the
original components. The filtered signal is obtained as a
linear summation of thresholded IMFs.

A smooth version of the input data can be obtained by
thresholding the IMFs before signal reconstruction: EMD-
soft [13]. Donoho and Johnstone have proposed a universal
threshold for removing added Gaussian noise given by τj
[15]:

τj = σj
√

2 log(L), σj =
MAD j

0.6745
, (3)

where σj is the noise level of the jth IMF, and L stands for
the length of IMF. The MAD j represents the absolute median
deviation of the jth IMF and is defined by

MAD j = Median
{∣∣∣IMF j(t)−Median

{
IMF j(t)

}∣∣∣
}
. (4)

Instead of using a global thresholding, level-dependent
thresholding uses a set of thresholds, one for each IMF
(scale level). The soft-thresholding method shrinks the IMF
samples towards zero as follows:

cj(t) =

⎧
⎪⎨
⎪⎩

IMF j(t)− τj if
∣∣∣IMF j(t)

∣∣∣ ≥ τj ,

0 if
∣∣∣IMF j(t)

∣∣∣ < τj .
(5)

2.3. MFP Based on K-L Expansion after Denoising Scheme.
Karhunen-Loève expansion method was applied to estimate
eigenvector by Seong and Byun to build robust MFP in
[6]. They applied empirical orthogonal function in matched
field processing area and used it to estimate the eigenvectors
that constitute the field in an ocean acoustic waveguide. For
received field data P, snapshot averaged sampling covariance
matrix, R, can be decomposed as follows:

R =
snapshot∑

i=1

PPH =
N∑

i=1

λririH . (6)

We used eigenvector decomposition of snapshot-
averaged sampling covariance matrix in order to construct
the signal vector P, and then received signal vector which is
averaged over snapshots is represented as [7]

P =
N∑

i=1

√
λiri. (7)

In (7) , where λ is the simulated snapshot ri (1 ≤ i ≤ N)
number, ri are the eigenvectors of the covariance matrix
of received signal, and superscript H denotes complex
conjugate transpose.

Seong and Byun have proved that the eigenvector with
relatively large eigenvalues can be said to be the main features
of the pressure field generated by a source located at the
assumed replica position. Then eigenvalue decomposition
was applied to R and gains the eigenvector corresponding to
the largest eigenvalue.

As mentioned in [2, 16], this eigenvector can be used
to represent the desirably received signal. For the real
data situation where multisnapshots are given, if the EMD
denoising for each snapshot ri (1 ≤ i ≤ N) can be performed
before R is determined, a better data processing ability may
be obtained.

Conveniently, the eigenvector r corresponding to max-
imum eigenvalue represents the desirably received signal.
To achieve the radiated signal from the sources EMD is
performed with respect to r and the reduced noise r̂ of
desirably received signal is defined as

r̂ = r− r′, (8)

where r′ is the reconstructed signal of r obtained from
EMD denoising scheme. It is known that most replicas
obtained from possible candidate environment positions
contain model errors because of inaccurate environment
parameters, therefore replica vector p also is considered to
consist of noise and uncorrupted signal, and the reduced
noise p̂ of replica signal is defined as

p̂ = p− p′, (9)

where p′ is the reconstructed signal of p after EMD
denoising.

The new MFP processor is constructed by EMD denois-
ing scheme and Karhunen-Loève expansion, which is pre-
sented as

EMD-MFP =
(
r′Hp′

)N/2 ·
(
r̂H p̂

)
. (10)

where · denotes inner product. This processor can be
illuminated that if the signal factors r′ and p′ are perfectly
matched as well as noise factors r̂ and p̂ are perfectly
matched, r and p are perfectly matched so that the source
location that produces the best match between the measured
and predicted fields corresponds to the true source position.
In addition, the exponent N/2 is used to control sidelobe
level. Therefore the EMD-MFP estimates of underwater
object in range r and depth z are obtained by solving the
optimization problem:

{
r̃, z̃
} = arg max

{(r,z)∈D}

(
r′Hp′

)N/2 ·
(
r̂H p̂

)
, (11)

where D denotes the sources of all the candidate positions.

3. Numerical Simulation

To validate EMD-MFP robustness and effectiveness further-
more, simulation results are discussed under conditions of
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MFP benchmark cases in [17], which supply a quantitative
numerical simulation comparison of MFP performance with
various schemes. The normal-mode propagation model
KRAKEN was used in this study [16]. The selected cases
of different kinds of mismatch situations are called briefly
COLNOISE, SSPMIS, and GENLMIS. In benchmark cases,
underwater source frequency is 250 Hz in shallow water
environment, whose signals are received on a vertical array
of 20 receivers spanning the water column. The first case
adds colored noise, the second case introduces uncertain
ocean sound speed profile (SSP) data plus white noise,
and the third has both colored noise and uncertainty in
virtually every environmental parameters. For the colored
noise case (COLNOISE) we use a noise model that is most
appropriate for treating surface noise due to breaking waves.
The noise sources are then modeled as a uniform distribution
of monopoles located at a small distance below the surface.
The noise field is then calculated using a normal mode model
to propagate the monopole sources to the receiving array.
The detailed discussion is provided in [17].

The precise environment is described in [17] and the
actual parameters are intended to be realistic. Figure 1(a)
is the true environment parameters of ocean waveguide.
Figure 1(b) is the environmental information provided
for SSP mismatch case (SSPMIS) and true environment
for SSPMIS (c(0) = 1499.4 m/s c(D−) = 1481.6 m/s).
Figure 1(c) is the Ocean waveguide for general mismatch
case (GENLMIS). True environment is c(0) = 1499.9 m/s,
c(D−) = 1478.7 m/s c(D+) = 1574 m/s, c(200) = 1694 m/s,
α = 0.19 dB/λ, ρ = 1.79.

3.1. COLNOISE Case. The Bartlett processor (linear MFP)
is typically the cross-correlation between data and model
predictions for that data resulting in a scalar output indi-
cating the agreement between data and model. Its ambiguity
surfaces typically are incoherently averaged across frequency
when performing matched field processing on a broadband
source. It assumes that the true source location at each
frequency remains fixed, while the sidelobes will appear at
different locations at different frequencies and thus will be
suppressed by the average.

Replicas of the field were computed for 50 m increments
in range from 100 to 10000 m, and for 2 m increments in
depth from 1 to 100 m. These replicas were matched with the
simulated covariance data using the different beamformers.
For the COLNOISE case the localization performance is
very good for 40 dB SNR case and therefore results are only
presented for the lower two SNR values.

Then, we compared the underwater target localization
performance of this processor with Bartlett processor to get
the source location in the low SNR case. From Figures 2(a)
and 2(b), the EMD-MFP and Bartlett processor localization
results are all able to accurately localize target too, when SNR
is 10 dB. The true source location range is r = 9100 m, and
depth is z = 66 m. It is clear that EMD-MFP owns robust
sidelobe suppression ability. For very low −5 dB SNR case,
the location results of Bartlett and EMD-MFP are in Figures
3(a) and 3(b), and the true location range equals 9700 m,
and depth is z = 58 m. The Bartlett processor cannot locate
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Figure 1: Environmental information provided for true environ-
mental parameters (a), SSPMIS (b), and GENLMIS (c).

the source. Its sidelobes even own the same level with main
lobe. Though the EMD-MFP located target correctly, it also
has higher sidelobe than the localization results under SNR
which is 10 dB condition. Naturally, the sidelobe levels tend
to increase as the SNR decreases.

3.2. SSIPMIS Case. The SSPMIS represents a low level of
environmental mismatch. In addition, white noise was added
to the data vectors. As seen in Figure 1(a), the only source
of mismatch is in the sound speed within the water column
where both its gradient and mean level were randomized.
Figure 4 shows the results of EMD-MFP for SSIPMIS. The
10 random samples over the environmental parameter space
were used, where they are assumed as uniformly distributed
over the possible interval. Under SSIPMIS (true source
position r = 9300 m, z = 78 m) condition, for −5 dB low
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Figure 2: Bartlett ambiguity surface for COLNOISE with SNR of (a) and EMD-MFP ambiguity surface (b) for COLNOISE (SNR = 10 dB).

0

0.2

0.4

0.6

0.8

1

0

50

100

5000
6000

7000
8000

9000
10000

Range (m)
Depth (m)

N
n

or
m

al
is

ed
p

ow
er

(a)

0

0.2

0.4

0.6

0.8

1

0

50

100

5000
6000

7000
8000

9000
10000

Range (m)
Depth (m)

N
n

or
m

al
is

ed
po

w
er

(b)

Figure 3: Bartlett ambiguity surface (a) and EMD-MFP ambiguity surface (b) for COLNOISE (−5 dB SNR case).
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Figure 4: The EMD-MFP ambiguity surface (a) 10 dB SNR case and (b) −5 dB SNR case for SSIPMIS.
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Figure 5: Ambiguity surface for GENLMIS using EMD-MFP
localization computationally test case: (a) (SNR = 10 dB) and (b)
(SNR = −5 dB).

SNR case, location results are in Figure 4(a), r = 9300 m, and
z = 78 m. Though the location is correct, the sidelobe level is
high. When SNR = 10 dB (true position r = 9300 m, z =
78 m), the simulation results are presented in Figure 4(b).
Simulation localization results are correct, but there also exist
some high sidelobes in ambiguity surface.

3.3. GENLMIS Case. The general mismatch (GENLMIS)
case was intended to include many problems typical of real
world scenarios. It combines both mismatch and colored
noise. In particular, both ocean and sediment sound speeds
were randomized, the sediment attenuation and density were
randomized, and the depth of the ocean/sediment interface
was randomized. For GENLMIS conditions, simulation
results indicate that EMD-MFP accurately localizes the
source, but the sidelobe level increases with decreasing the
same compared with the COLNOISE case. When SNR is
−5 dB, we compute the target location results of the case. In
Figure 5, true target source position is r = 6200 m, z = 92 m,
the EMD-MFP localization results r = 6200 m, and depth
z = 92 m are correct. For −5 dB low SNR case, EMD-MFP is
also able to localize true source.

However, we saw that strong differences were evident in
ambiguity surface. Noticeable difference between different
SNRs is shown in Figure 5. It reveals that EMD-MFP
locates the true source position under the very low −5 dB
SNR condition. The eigenvalues of sampling covariance
matrix spread out and so signal P has relatively large noise
components as well as source signal components. After
the proposed scheme processing, the total performance of
processor is satisfied under GENLMIS condition.

4. Conclusion

The eigenvector of sample covariance matrix corresponding
to the maximum eigenvalue is seen as the desirably received
signal; however this desirably received signal is still con-
sidered to contain the signal from the radiated source and
noise, so EMD denoising method is performed to denoise
the underwater acoustic signals.

Simulation which is similar to the environmental param-
eters presented in the MFP benchmark workshop was carried
out, and the results showed that the proposed method
owns robustness source detection performance and effective
sidelobe suppression in spite of severe environmental mis-
matches. These results are encouraging since they imply that
detailed environmental knowledge may not be a prerequisite
for source localization with MFP. In GENLMIS mismatch
environment, after EMD denoising, we selected the largest
dominant eigenvector generated by perturbing environment
to replace replica field vector in MFP that can provide robust
localization performance. For relatively low-level signal,
source detection was performed but peak-to-noise field ratio
was low. Especially, in the test cases of slight environmental
mismatches, it localized the true source location with low
sidelobes.
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