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The eigenvalues decomposition based on the S-method is employed to extract the specific time-frequency characteristics of speech
signals. This approach is used to create a flexible speech watermark, shaped according to the time-frequency characteristics of the
host signal. Also, the Hermite projection method is applied for characterization of speech regions. Namely, time-frequency regions
that contain voiced components are selected for watermarking. The watermark detection is performed in the time-frequency
domain as well. The theory is tested on several examples.

1. Introduction

Digital watermarking has been developed to provide efficient
solutions for ownership protection, copyright protection,
and authentication of digital multimedia data by embedding
a secret signal called the watermark into the cover media.
Depending on the applications, two watermarking scenarios
are available: robust and fragile. The robust watermarking
assumes that the watermark should be resistant to various
signal processing techniques called attacks. At the same
time, the watermark should be imperceptible. In order
to meet these requirements, a number of watermarking
techniques have been proposed, many of which are related
to speech and audio signals [1–11]. One of the earliest and
simplest techniques is based on the LSB coding [1–4]. The
watermark embedding is done by altering the individual
audio samples represented by 16 bits per sample. The human
auditory system is sensitive to the noise introduced by
LSB replacement, which limits the number of LSBs that
can be imperceptibly modified. The main disadvantage of
these methods is their low robustness [1]. In a number
of watermarking algorithms, the spread-spectrum technique
has been employed [5–7]. The spread spectrum sequence can
be embedded in the time domain, FFT coefficients, cepstral
coefficients, and so forth. The embedding is performed in

a way to provide robustness to common attacks (noise,
compression, etc.). Furthermore, several algorithms use the
phase of audio signal for watermarking, such are the phase
coding and phase modulation approaches [8, 9], assuring
good imperceptibility. Namely, imperceptible phase modi-
fications are exploited by the controlled phase alternation
of the host signal. However, the fact that they are nonblind
watermarking methods (the presence of the original signal is
required for watermark detection) limits the number of their
applications.

Most of existing watermarking techniques are based
on either the time domain or the frequency domain. In
both cases, the changes in the signal may decrease the
subjective quality, since the time-frequency characteristics
of the watermark do not correspond to the time-frequency
characteristics of the host signal. This may cause water-
mark audibility because it will be present in the time-
frequency regions where speech components do not exist.
In order to adjust the location and the strength of the
watermark to the time-varying spectral content of the
host signal, a time-frequency domain-based approach is
proposed in this paper. The watermark, shaped in accor-
dance with the formants in the time-frequency domain,
will be more imperceptible and more robust at the same
time.
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The time-frequency distributions have been used to char-
acterize the time-varying spectral content of nonstationary
signals [12–16]. As the most commonly used, the Wigner
distribution can provide an ideal representation for linear
frequency-modulated monocomponent signals [12, 15]. For
multicomponents signals, the S-method, that is, a cross-
terms-free Wigner distribution, can be used [16]. The S-
method can be also used to separate the signal components.
Note that the signal components separation could be of
interest in many applications. In particular, in watermarking
it allows creating the watermark that is shaped by using
an arbitrary combination of the signal components. The
eigenvalues-based S-method decomposition is applied to
separate the signal components [17, 18].

In order to provide suitable compromise between imper-
ceptibility and robustness, the watermark should be shaped
according to the time-frequency components of speech sig-
nal, as proposed in [19, 20]. Therein, the speech components
selection is performed by using the time-frequency support
function with a certain energy threshold. However, the
threshold is chosen empirically and it does not provide
sufficient flexibility. Namely, it includes all components
with the energy between the maximum and the threshold
level.

Therefore, in this paper, the eigenvalue decomposition
method is employed to create a time-frequency mask as an
arbitrary combination of speech components (formants).
Only the components from voiced time-frequency regions
are considered [19]. The Hermite projection method-based
procedure for regions characterization is applied[21, 22].
The speech regions are reconstructed within the time-
frequency plane by using a certain number of Hermite
expansion coefficients. The mean square error between the
original and reconstructed region is used to characterize
dynamics of regions. It allows distinguishing between voiced,
unvoiced, and noisy regions. Finally, the watermark embed-
ding and detection are performed in the time-frequency
domain. The robustness of the proposed procedure is proved
under various common attacks.

The considered watermarking approach can be useful
in numerous applications assuming speech signals. These
applications include, but are not limited to, the intellectual
property rights, such as proof of ownership, speaker verifi-
cation systems, VoIP, and mobile applications such as cell-
phone tracking. Recently, an interesting application of speech
watermarking has appeared in air traffic control [11]. The
air traffic control relies on voice communication between
the aircraft pilot and air traffic control operators. Thus,
the embedded digital information can be used for aircraft
identification.

The paper is organized as follows. A theoretical back-
ground on the time-frequency analysis is given in Section 2.
Section 3 describes the speech regions characterization pro-
cedure. In Section 4, the formants selection based on the
eigenvalues decomposition is proposed. The time-frequency-
based watermarking procedure is presented in Section 5.
The performance of the proposed procedure is tested on
examples in Section 6. Concluding remarks are given in
Section 7.

2. Theoretical Background—Time-Frequency
Analysis

The simplest time-frequency distribution is the spectrogram.
It is defined as a square module of the short-time Fourier
transform (STFT) [15]:

SPEC(t,ω) = |STFT(t,ω)|2 =
∣
∣
∣
∣

∫∞

−∞
x(t + τ)w(τ)e− jωτdτ

∣
∣
∣
∣

2

,

(1)

where x(t) is a signal while w(t) is a window function.
The time-frequency resolution in spectrogram depends

on the window function w(t) (window shape and window
width). Namely, if the signal phase is not linear, it cannot
simultaneously provide a good time and frequency resolu-
tion. Various quadratic distributions have been introduced
to improve the spectrogram resolution. Among them, the
most commonly used, [1, 14, 15], is the Wigner distribution,
defined as follows:

WD(t,ω) =
∫∞

−∞
x
(

t +
τ

2

)

x∗
(

t − τ

2

)

e− jωτdτ. (2)

However, for multicomponent signals the Wigner dis-
tribution produces a large amount of cross-terms. The S-
method has been introduced to reduce or remove the cross-
terms while keeping the autoterms concentration as in the
Wigner distribution [16]:

SM(t,ω) =
∫∞

−∞
P(θ)STFT(t,ω + θ)STFT∗(t,ω− θ)dθ.

(3)

A finite frequency domain window is denoted as P(θ). Note
that, for P(θ) = 2πδ(θ) and P(θ) = 1, the spectrogram and
the pseudo-Wigner distribution are obtained, respectively.
By taking the rectangular frequency domain window, the
discrete form of the S-method can be written as follows:

SM(n, k) =
L
∑

l=−L
P(l)STFT(n, k + l)STFT∗(n, k − l)

= |STFT(n, k)|2

+ 2Real
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⎫

⎬

⎭
,

(4)

where n and k are discrete time and frequency samples. If
the minimal distance between autoterms is greater than the
window width (2L + 1), the cross-terms will be completely
removed. Also, if the autoterms width is equal to (2L + 1),
the S-method produces the same autoterms concentration
as the Wigner distribution. Moreover, since the convergence
within P(l) is fast, in many practical applications a good
concentration can be achieved by setting L = 3.

The advantages of time-frequency representations have
also been used to provide an efficient time-varying filtering.
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The output of the time-varying filter is defined as follows
[23]:

Hx(t) = 1
2π

∫∞

−∞
LH(t,ω)STFTx(t,ω)dω, (5)

where LH(t,ω)is a space-varying transfer function (i.e.,
support function) which is defined as Weyl symbol mapping
of the impulse response into the time-frequency domain.
Assuming that the signal components are located within the
time-frequency region R f , the support function LH(t,ω) can
be defined as follows:

LH(t,ω) =
⎧

⎨

⎩

1, for (t,ω) ∈ Rf ,

0, for (t,ω) /∈Rf .
(6)

Although it was initially introduced for signal denoising,
the concept of nonstationary filtering can be used to
retrieve the signal with specific characteristics from the time-
frequency domain.

Therefore, the time-frequency analysis can provide com-
plete information about the time-varying spectral compo-
nents, even when their number is significant as in the
case of speech signals. Namely, these components appear
in the time-frequency plane as recognizable time-varying
structures that could be used to characterize different speech
regions (voiced, unvoiced, noisy, etc.), as proposed in the
sequel. Furthermore, the extraction of individual speech
components from the time-frequency domain could be
useful in many applications assuming speech signals. This
is generally a highly demanding task due to the number of
speech components. As an effective solution, a method based
on the eigenvalues decomposition and the speech signal
time-frequency representation is presented in Section 4.

3. Speech Regions Characterization by
Using the Fast Hermite ProjectionMethod of
Time-Frequency Representation

3.1. Fast Hermite Projection Method. The fast Hermite pro-
jection method has been introduced for image expansion
into a Fourier series by using an orthonormal system of
Hermite functions [21, 22]. Namely, the Hermite functions
provide better computational localization in both the spa-
tial and the transform domain, in comparison with the
trigonometric functions. The Hermite projection method
has been mainly used in image processing applications, such
as image filtering, and texture analysis. Here, we provide a
brief overview of the method.

The ith order Hermite function is defined as follows:

ψi(x) = (−1)iex
2/2

√

2ii!
√
π
·
di
(

e−x2
)

dxi
. (7)

Generally, the Hermite projection method for two-
dimensional signal f (x,y) can be defined as follows:

F
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) =
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∞
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)

, (8)

where ψij(x, y)are the two-dimensional Hermite functions
while ci j =

∫∞
−∞
∫∞
−∞ f (x, y)ψij(x, y)dx dy are the Hermite

coefficients.
In our case, the two-dimensional function f (x,y) is a

time-frequency representation of a speech region, which will
be represented by a certain number of Hermite coefficients
ci j . Note that the number of coefficients ci j depends on
the number of the employed Hermite functions. The more
functions is used, the less error is introduced in the
reconstructed version F(x,y).

However, for the sake of simplicity, the expansion can
be performed even along one dimension only. Thus, the
decomposition into N Hermite functions can be defined as
follows:

Fy(x) =
N−1
∑

i=0

ciψi(x), (9)

where Fy(x) = F(x, y) holds for a fixed y while the
coefficients of the Hermite expansion are obtained as follows:

ci =
∫∞

−∞
fy(x)ψi(x)dx. (10)

Accordingly, the functions fy(x) correspond to the rows
of the time-frequency representation.

The Hermite coefficients could also be defined by using
the Hermite polynomials as follows:

ci = 1
√
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√
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2
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f (x)ex
2
)

Hi(x)dx, (11)
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Hi(x) = (−1)iex
2 d

i
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)

dxi
, (12)

is the Hermite polynomial. Thus, the calculation of the
Hermite coefficients could be approximated by the Gauss-
Hermite quadrature:

ci = 1
√

2ii!
√
π

M
∑

m=1

Am

(

f (xm)e(x2
m/2)
)

Hi(xm), (13)

where xm are zeros of Hermite polynomials while Am =
2M−1M!

√
π/(M2H2

M−1(xm)) are associated weights.
By using Hermite functions instead of Hermite polyno-

mials, the following simplified expression is obtained:

ci(x) ≈ 1
M

M
∑

m=1

μiM−1(xm) f (xm). (14)

The constants μiM−1(xm)are obtained by

μiM−1(xm) = ψi(xm)
(

ψM−1(xm)
)2 . (15)
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Figure 1: Illustration of various regions within the speech signal.

3.2. Speech Regions Characterization by Using the Concept of
Hermite ProjectionMethod. According to (8) or its simplified
form (9), the time-frequency representation of a speech
region as a two-dimensional function can be expanded
into a certain number of Hermite functions. Thus, we may
assume that f (x, y) = D(t,ω) and F(x, y) = Dr(t,ω),
where D denotes the original time-frequency region and
Dr is the region reconstructed from the Hermite expansion
coefficients. The difference between D and Dr will depend on
the number of Hermite functions used for the expansion, as
well as on the complexity of the considered region.

The S-method is used for time-frequency representation
of speech signals. By observing time-frequency character-
istics, a significant difference between noise, pauses, and
speech can be noted. Moreover, the voiced and unvoiced
speech parts are significantly different. The voiced parts are
characterized by higher energy and complex structure.

Let us consider different regions of speech signal having
different structure complexity. The fast Hermite projection
method is applied to these regions. By using a small number
of Hermite functions, a certain error will be intentionally
produced. The regions with simpler structures will have
smaller errors, and vise versa. The mean square errors are
calculated as follows:

MSE(i) = 1
d1d2

∑

t

∑

ω

(

Di(t,ω)−Dr
i (t,ω)

)

, (16)

where Di(t,ω) and Dr
i (t,ω) denote the original and the

reconstructed ith region from SM(t,ω) while d1 and d2

are dimensions of the regions. Thus, the region Dr
i (t,ω),

containing either noise or unvoiced sounds, will produce
a significantly lower MSE than the region Dr

i (t,ω) with
complex voiced structures. The dimensions d1 and d2 are the
same for all regions. They are chosen experimentally such
that the region includes most of the sound components.

Table 1: MSEs for some of the tested speech regions.

No. Region description MSE

1 Noise 3∗10−4

2 Noise 3∗10−5

3 Noise 1∗10−4

4 Noise 1∗10−6

5 Noise 4∗10−7

6 Noise 6∗10−7

7 Noise 5∗10−4

8 Voiced 9971

9 Voiced 2265

10 Voiced 5917

11 Voiced 16587

12 Voiced 5245

13 Unvoiced 55

14 Voiced 4466

15 Voiced 3242

16 Unvoiced 606

17 Voiced 19016

18 Voiced 23733

19 Voiced 7398

20 Unvoiced 0.018

21 Unvoiced 1.25

22 Unvoiced 0.007

23 Unvoiced 0.049

24 Unvoiced 4.38

An illustration of various regions within a speech signal
is given in Figure 1. The MSEs are presented in Table 1
(ten Hermite functions have been used). It can be observed
that the noisy regions (without speech components) have
MSEs below 10−3 while the regions containing complex
formant structures have a large value of MSE (generally, it is
significantly above 103). The MSEs for the unvoiced regions
are between the two cases.

Therefore, based on the numerous experiments, the
voiced regions with emphatic formants are determined by
MSE > 2 ∗ 103. These regions have a rich formants
structure and they will be appropriate for watermarking. A
set of arbitrary selected formants could be used to shape
the watermark. It will provide a flexibility to create the
watermark with very specific time-frequency characteristics.
The combination of time-frequency components could be an
additional secret key to increase robustness and security of
this procedure.

4. Eigenvalue Decomposition Based on
the Time-Frequency Distribution

The S-method produces a representation that is equal to or
very close approximates the sum of the Wigner distribu-
tions calculated for each signal component separately. This
property is used to introduce the eigenvalue decomposition
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method. Let us start from the discrete form of the Wigner
distribution

WD(n, k) =
N/2
∑

m=−N/2
x(n + m)x∗(n−m)e− j(2π/N+1)2mk,

(17)

where m is a discrete lag coordinate. Consequently, the
inverse of the Wigner distribution can be written as follows:

x(n1)x∗(n2)

= 1
N + 1

N/2
∑

k=−N/2
WD

(
n1 + n2

2
, k
)

e j(2π/N+1)k(n1−n2),

(18)

where n1 = n + m and n2 = n − m. Furthermore, for
a multicomponent signal, x(n) = ∑M

i=1 xi(n), (18) can be
written as follows [17, 18]:

M
∑

i=1

xi(n1)x∗i (n2)

= 1
N + 1

N/2
∑

k=−N/2

M
∑

i=1

WDi

(
n1 + n2

2
, k
)

× e j(2π/N+1)k(n1−n2).

(19)

Having in mind that the S-method is SM(n, k) =
∑M

i=1 WDi(n, k), the previous equation can be written as
follows:

M
∑

i=1

xi(n1)x∗i (n2)

= 1
N + 1

N/2
∑

k=−N/2
SM
(
n1 + n2

2
, k
)

e j(2π/N+1)k(n1−n2).

(20)

By introducing the following notation:

RSM(n1,n2) = 1
N + 1

N/2
∑

k=−N/2
SM
(
n1 + n2

2
, k
)

e j(2π/N+1)k(n1−n2),

(21)

we have

RSM(n1,n2) =
M
∑

i=1

xi(n1)x∗i (n2). (22)

The eigenvalue decomposition of the matrix RSM is defined
as follows [17, 18]:

RSM =
N+1
∑

i=1

λivi(n)v∗i (n), (23)

where λi are eigenvalues and vi(n) are eigenvectors of RSM .
Furthermore, λi = Efi , i = 1, . . . ,M (Efi is the energy of the
ith component), and λi = 0 for i =M + 1, . . . ,N , that is,

λi =
M
∑

l=1

Efl δ(i− l), (24)

where δ(i) denotes the Kronecker symbol.

As it will be explained in the sequel, the autocorrelation
matrix RSM(n1,n2) is calculated according to (21) for each
time-frequency region SM(n, k)(obtained by using the S-
method). Then, the eigenvalue decomposition is applied
to RSM according to (23), resulting in eigenvalues and
eigenvectors. Each of these components is characterized by
a certain location in the time-frequency plane.

Once separated, they could be further combined in
various ways to provide an arbitrary time-frequency map
used as a support function in watermark modelling.

4.1. Selection of Speech Formants Suitable for Watermarking.
After the regions have been selected, the formants that will
be used for watermark modeling need to be determined. This
can be realized by considering the formants whose energy
is above a certain floor value, as it is done in [19]. Namely,
the energy floor was defined as a portion of the maximum
energy value of the S-method within the selected region.
Therein, it has been assumed that the significant components
have approximately the same energy. However, this may not
always be the case as the number of selected components
could vary between different regions. Consequently, it may
lead to a variable amount of watermark within different
regions. Thus, in order to overcome these difficulties, the
eigenvalue decomposition method is employed for speech
formants selection.

For each selected region within the S-method SMD(t,ω),
the autocorrelation matrix RSMD is calculated according to
(21). The eigenvalues and eigenvectors are obtained by using
the eigenvalues decomposition of RSMD . The eigenvectors are
equal to the signal components up to the phase and ampli-
tude constants. Furthermore, the number of components of
interest can be limited to K. Each of these components can
be reconstructed as fi(n) = √

λivi(n). Thus, a signal that
contains K components of the original speech is obtained as:

f Krec(n) =
K
∑

i=1

√

λivi(n). (25)

The S-method of the signal f Krec(n) will be denoted as
SM f Krec (t,ω). Note that it represents a time-frequency map
that is used for watermark modelling.

The original S-method, the S-method of reconstructed
signal, as well as the corresponding eigenvalues are shown
in Figure 2. The reconstructed formants that will be used
in watermarking procedure and their support function are
zoomed in Figure 3. The formants separated by the proposed
eigenvalues decomposition are shown in Figure 4 (although
K = 20 is used, only ten formants are related to the positive
frequency axes).

5. Time-Frequency-Based Speech
Watermarking Procedure

5.1. Watermark Modelling and Embedding. The time-
frequency representation of the formants selected from
SM f Krec (t,ω) is used as a time-frequency mask to shape
the watermark. This time-frequency representation is
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Figure 2: An illustration of the formants reconstruction by using
the eigenvalues decomposition method.

an arbitrary combination of decomposed formants. The pro-
cedure for watermark modelling can be described through
the following steps:

(1) consider a random sequence s,

(2) calculate the STFT of the sequence s denoted as
STFTs(t,ω),

(3) the support function LH(t,ω) is defined by using
SM f Krec (t,ω) as follows:

LH(t,ω) =
⎧

⎪⎨

⎪⎩

1, for
∣
∣
∣SM f Krec (t,ω)

∣
∣
∣ > λ,

0, otherwise,
(26)

where λ could be set to zero or, for a sharpen mask,
to a small positive value,

(a) (b)

Figure 3: The reconstructed region of formants and the corre-
sponding support function.

(4) finally, the watermark is obtained at the output of the
time-varying filter as follows [19]:

wat(t) =
∑

ω

LH(t,ω)STFTs(t,ω). (27)

The signal is watermarked according to

xw(t) =
∑

ω

(STFTx(t,ω) + LH(t,ω)STFTs(t,ω)), (28)

where STFTx(t,ω) is the STFT of the host signal within the
selected region.

5.2. Watermark Detection. Following the similar concept
as in the embedding process, the watermark detection is
performed, within the time-frequency domain, by using the
standard correlation detector [19]

Det(wat) =
∑

t

∑

ω

SMxw (t,ω)SMwat(t,ω), (29)

where SMxw (t,ω) and SMwat(t,ω) are the S-method of the
watermarked signal and watermark, respectively.

The watermark detection is tested by using a set of wrong
keys (trials), created in the same way as the watermark.
Hence, the successful detection is provided if

Det(wat) > Det
(

wrong
)

, (30)

that is, if

∑

t

∑

ω

SMxw (t,ω)SMwat(t,ω)

>
∑

t

∑

ω

SMxw (t,ω)SMwrong(t,ω)
(31)

holds for any wrong trial.
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Figure 4: The formants components isolated by using the eigenvalues decomposition method.

Note that the S-method is used in the detection pro-
cedure. The detection performance is improved due to the
higher components concentration. Additionally, for larger
values of L (in the S-method), the cross-terms appear
and they are included in detection, as well [19]. Namely,
the cross-terms also contain the watermark, and hence
they contribute to the watermark detection. The detection
performance is tested by using the following measure of
detection quality [24, 25]:

R = Dwr −Dww
√

σ2
wr + σ2

ww

, (32)

where D and σ2 represent the mean value and the standard
deviation of the detector responses, while the subscripts wr

and ww indicate the right and wrong keys (trials), respec-
tively. The corresponding probability of error is calculated as
follows:

Perr = 1
4

erfc
(
R

2

)

− 1
4

erfc
(

−R

2

)

+
1
2
. (33)

6. Examples

Example 1. In this example, we will demonstrate the advan-
tages of the proposed formants selection procedure over the

threshold-based procedure given in [19]. Namely, two cases
are observed.

(1) Formants whose energy is above a threshold ξ are
selected for watermarking. The threshold is deter-
mined as a portion of the S-method’s maximum
value ξ = λ10λlog10(max |SM|) (max |SM|is the max-
imum energy value of the S-method within the
observed region), [19]. Thus, the threshold is adapted
to the maximum energy within the region.

(2) The eigenvalues-based decomposition is used to
create an arbitrary composed time-frequency map.

In the first case, the number of selected formants depends
on the threshold value. An illustration of formants selected
by using two different thresholds ξ1 and ξ2 (ξ1 > ξ2) is given
in Figure 5(a). Note that a higher threshold ξ1 (calculated for
λ1 = 0.85) selects only the strongest low-frequency formants
(Figure 5(a) left). On the other hand, a lower threshold ξ2

(for λ2 = 0.3) yields more components (Figure 5(a) right).
However, it is difficult to control their number. Also, the
amount of signal energy is varying through different time-
frequency regions. Thus, an optimal threshold should be
determined for each region. This is a demanding task and
it could cause difficulties in practical applications. Namely, if
the threshold selects too many components, the watermark
may produce perceptual changes. Otherwise, if there are



8 EURASIP Journal on Advances in Signal Processing

(a)

(b)

Figure 5: (a) The components selected by two different thresholds
ξ1 and ξ2 (ξ1 > ξ2) within the same region. (b) The components
selected within two different regions when the threshold is 0.6 ·
100.6log10(max |SM|).

not enough components, it could be difficult to detect the
watermark. An illustration of two different regions, obtained
by using the threshold ξ with λ = 0.6, is given in Figure 5(b).
Although the threshold is calculated for both regions in
the same way 0.6 · 100.6log10(max |SM|), the number of selected
components is significantly different. The components in
the first region (Figure 5(b)left) are approximately at the
same energy level. Thus, a significant number of them will
be selected with this threshold. However, in the second
region (Figure 5(b) right), the energy varies for different
components and the given threshold selects just a few
strongest components.

On the other hand, the eigenvalues decomposition
method provides a flexible choice of the components
number. Furthermore, it is possible to arbitrarily com-
bine the components that belong to the low-, middle- or
high-frequency regions. Consequently, an arbitrary time-
frequency mask can be composed as a combination of signal
components. It will be used for watermark modelling. Some
illustrative examples are shown in Figure 6. Each component
is available separately and we can freely choose the number
and positions of the components that we intend to use within
the time-frequency mask. For instance, when observing
the region in Figure 5(a) (right), we can combine a few
strong low-frequency components with a few high-frequency

Figure 6: Illustrations of components selections provided by the
proposed method.

components, as shown in Figure 6 (upper row, left), which
could be difficult to achieve by using the threshold-based
approach.

Example 2. The speech signal with maximal frequency 4 kHz
is considered. A voiced time-frequency region is used for
watermark modelling and embedding. The procedure is
implemented in Matlab 7. The STFT is calculated using the
rectangular window with 1024 samples, and then, it is used
to obtain the signal S-method. Since the speech components
are very close to each other in the time-frequency domain,
the S-method is calculated with the parameter L = 3 to avoid
the presence of cross-terms. After calculating the inverse
transform (the IFFT routine is applied to the S-method),
the eigenvalues and eigenvectors are obtained by using the
Matlab built-in function (eigs). Twenty eigenvectors are
selected, weighted by the corresponding eigenvalues, and
merged into a signal with desired components. Furthermore,
the S-method is calculated for the obtained signal providing
the support function LH for watermark shaping. Here, the
Hanning window with 512 samples is used for the STFT
calculation while in the S-method L = 3. The watermark
is created as a pseudorandom sequence, whose length is
determined by the length of the voiced speech region
(approximately 1300 samples). The STFT of the watermark
is also calculated by using the Hanning window with 512
samples. It is then multiplied by the function LH to shape
its time-frequency characteristics. For each of the right keys
(watermarks), a set of 50 wrong trials is created following
the same modelling procedure as for the right keys. The
correlation detector based on the S-method coefficients is
applied with L = 32.

The proposed approach preserves favourable properties
of the time-frequency-based watermarking procedure [19],
which outperforms some existing techniques. An illustration
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Figure 7: The normalized detector responses for a set of right keys
and wrong trials (for the proposed approach).

of normalized detector responses for right keys (red line) and
wrong trials (blue line) is shown in Figure 7. Furthermore,
the robustness is tested against several types of attacks, all
being commonly used in existing procedures [5, 8, 10].
Namely, in the existing algorithms, the usual amount of
attacks is time scaling up to 4%, wow up to 0.5% or 0.7%,
echo 50 ms or 100 ms [5], and so forth, providing the
probability of error of order 10−6. We have applied the same
types of attacks, but with higher strength, showing that the
proposed approach provides robustness even in this case.
The proposed procedure is tested on: mp3 compression with
constant bit rate (128 Kbps), mp3 compression with variable
bit rate (40−50 Kbps), delay (180 ms), Echo (200 ms), pitch
scaling (5%), wow (delay 20%), flutter, and amplitude
normalization. The measures of detection quality and cor-
responding probabilities of error are calculated according to
(32). The results are given in Table 2. Note that the proposed
method provides very low probabilities of error, mostly of
order 10−7, even in the presence of stronger attacks. Also,
the robustness to pitch scaling has been improved when
compared to the results reported in [19].

As expected, the detection results are similar as in [19]
where the threshold is well adapted to the energy within the
considered speech region. However, in the previous example,
it is shown that the optimal threshold selection for one
region does not have to be optimal for the other ones.
Thus, it can include only a few formants (Figure 5(b) right).
Consequently, the detection performance decreases, due to
the smaller number of components available for correlation
in the time-frequency domain. The procedure performance
can vary significantly for different regions, since it is not
easy to adjust thresholds separately for each of them. In this
example, a single threshold is used. The detection results
obtained for the region where the threshold is not optimal are
shown in Figure 8. The measures of detection quality have
decreased, as shown in Table 3. From this point of view, the
flexibility of components selection provided by the proposed
approach assures more reliable results.

0 500 1000

0

0.5

1
Right keys

Wrong trials

Figure 8: The normalized detector responses for a set of right keys
and wrong trials; the threshold is not optimal for the considered
region.

Table 2: The measures of detection quality for the proposed
approach under various attacks.

Attack R Perr

No attack 8 10−9

Mp3 constant 7.2 10−7

Mp3 variable 6.8 10−7

Delay 7 10−7

Echo 6.9 10−7

Pitch scaling 6.4 10−6

Wow 6.2 10−6

Bright flutter 6.8 10−7

Amplitude normalization 6.2 10−6

Table 3: The measures of detection quality.

Attack R

No attack 4.3

Mp3 constant 4.1

Mp3 variable 3.9

Delay 4

Echo 4

Pitch scaling 3.9

Wow 1.8

Bright flutter 3.8

Amplitude normalization 4.1

The proposed procedure is secure in the following sense:
the watermark is shaped and added directly to the formants
in the time-frequency domain, and thus, it is hard to
remove it without the key, which is assumed to be private
(hidden). Namely, supposing that the quality of voiced data
is important for the application, any attempt to remove the
watermark will produce significant quality degradation. In
order to achieve higher degree of security, the watermarking
can be combined with the cryptography [26]. For example,



10 EURASIP Journal on Advances in Signal Processing

the cryptography can be used to prove the presence of a
specific watermark in a digital object without compromising
the watermark security.

7. Conclusion

The paper proposes an improved formants selection method
for speech watermarking purposes. Namely, the eigenvalues
decomposition based on the S-method is used to select
different formants within the time-frequency regions of
speech signal. Unlike the threshold-based selection, the pro-
posed method allows for an arbitrary choice of components
number and their positions in the time-frequency plane.
This method results in better performance when compared
to the method based on a single threshold. An additional
improvement is achieved by adapting the Hermite projection
method for characterization of speech regions. This has led
to an efficient selection of voiced regions with formants
suitable for watermarking. Finally, the watermarking pro-
cedure based on the proposed approach provides greater
flexibility in implementation and it is characterised by
reliable detection results.
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