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The problem of jointly optimizing the source precoder, relay transceiver, and destination equalizer has been considered in this
paper for a multiple-input-multiple-output (MIMO) amplify-and-forward (AF) relay channel, where the channel estimates of
all links are assumed to be imperfect. The considered joint optimization problem is nonconvex and does not offer closed-form
solutions. However, it has been shown that the optimization of one variable when others are fixed is a convex optimization
problem which can be efficiently solved using interior-point algorithms. In this context, an iterative technique with the guaranteed
convergence has been proposed for the AF MIMO relay channel that includes the direct link. It has been also shown that, for the
double-hop relay case without the receive-side antenna correlations in each hop, the global optimality can be confirmed since the
structures of the source precoder, relay transceiver, and destination equalizer have closed forms and the remaining joint power
allocation can be solved using Geometric Programming (GP) technique under high signal-to-noise ratio (SNR) approximation.
In the latter case, the performance of the iterative technique and the GP method has been compared with simulations to ensure
that the iterative approach gives reasonably good solutions with an acceptable complexity. Moreover, simulation results verify the
robustness of the proposed design when compared to the nonrobust design that assumes estimated channels as actual channels.

1. Introduction

The application of relays for cooperative communications
has received a lot of interest in recent years. It is well known
that the channel impairments such as shadowing, multipath
fading, distance-dependent path losses, and interference
often degrade the link quality between the source and
destination in a wireless network. If the link quality degrades
severely, relays can be employed between the source and
destination nodes for assisting the transmission of data
from the source to destination [1]. In the literature, various
types of cooperative communications such as amplify-and-
forward (AF), decode-and-forward [1], coded-cooperation
[2], and compress-and-forward [3] have been presented. In
[4], the outage and ergodic capacities have been analyzed
for a three-node network where one of the nodes relays the
messages of another node towards the third one. Among
several cooperation schemes [1–4], the AF scheme is more

attractive due to its simplicity since the relay simply forwards
the signal and does not decode it. Recently, space-time
coding strategies have been developed for relay networks
[5]. In [6], the authors study distributed beamforming
for a cooperative network which consists of a transmitter,
a receiver, and an arbitrary number of relay nodes. The
common things among aforementioned works are that the
transmitter, receiver, and the relays are all single-antenna
nodes and the channel state information (CSI) (either
instantaneous or second-order statistics of the channel) is
assumed to be error-free.

The performance of cooperative communications can
be further enhanced by employing multiple-input-multiple-
output (MIMO) relays [7]. The optimal designs of AF
MIMO relays have been investigated in [8, 9] for point-
to-point and in [10, 11] for point-to-multipoint commu-
nications assuming that the available CSI is perfect. The
robust design of MIMO relay for multipoint-to-multipoint
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communications has been solved in [12], where the sources
and destinations are single antenna nodes. The optimal
design of multiple AF MIMO relays in a point-to-point
communication scenario has been considered in [13, 14]
to minimize the mean-square error (MSE) and satisfy the
quality of service (QoS) requirements. These works also
assume perfect knowledge of CSI. Recently, the joint robust
design of AF MIMO relay and destination equalizer has been
investigated in [15] for a double-hop (without direct link)
MIMO relay channel. To the best source of our knowledge,
the joint optimization of the source precoder, MIMO relay,
and the destination equalizer has not been considered in
the literature for the case where the CSI is imperfect and
the direct link is included. Although the path attenuation
for the direct link is much larger than that for the link via
relay, due to the fading of the wireless channels, there can be
still a significant number of instantaneous channels during
which the direct link is better than the relay link. As a result,
we consider the direct link in our analysis and exploit the
benefit provided by the relay channel in terms of diversity.
Moreover, in practice, channel estimation is required to
obtain the CSI, where the estimation errors are inevitable due
to various factors such as the limited length of the training
sequences and the time-varying nature of wireless channels.
The performance degradation due to such estimation errors
can be mitigated by using robust designs that take into
account the possible estimation errors. As a result, robust
methods are highly desired for practical applications. The
robust techniques can be divided mainly into worst-case
and stochastic approaches [16]. The worst-case approach
[17, 18] considers that the errors belong to a predefined
uncertainty region, where the objective is to optimize the
worst system performance for any error in this region. The
stochastic approach guarantees a certain system performance
averaged over channel realizations [19]. The latter approach
has been used in [20] to minimize the power of the transmit
beamformer while satisfying the QoS requirements for all
users. In the sequel, we use stochastic approach for the robust
design.

In this paper, we deal with the joint robust design of
source precoder, relay transceiver, and destination equalizer
for an AF MIMO relay system where the CSI is considered to
be imperfect at all nodes. A stochastic approach is employed
in which the objective is to minimize the average sum mean-
square error ( If the channel estimation is perfect at the
receiver, the minimum mean-square error (MMSE) matrix X
can be related to the rate using the relation r = − log det(X).
However, if the receiver does not have perfect estimation of
the channel, the relation between the rate and MMSE matrix
is not straightforward. Consequently, for our current system
model where both the estimates of source-relay and relay-
destination channels are imperfect, deriving rate expression
and solving the optimization problem based on that expres-
sion are still an open issue.) under the source and relay power
constraints. The considered joint optimization is nonconvex
and also does not lead to closed-form solutions. However,
it has been shown that the optimization of one parameter
when others are fixed is a quadratic convex-optimization
problem that can be easily solved within the framework of

convex optimization techniques. We first propose an iterative
approach both for the MIMO relay channels with and with-
out the direct link. Although the iterative method guarantees
fast convergence for the case with the direct link, the global
optimality cannot be proven since the joint optimization
problem is nonconvex. As a result, in the second part of
this paper, we limit the joint optimization problem for
the case without the direct link in which the source-relay
and relay-destination MIMO channels have only transmit-
side antenna correlations. In the latter case, it is shown
that structures of the optimal source precoder and relay
transceiver have closed forms, where the remaining joint
power allocation problem can be approximately formulated
into a Geometric Programming (GP) problem. With the help
of computer simulations, we compare the solutions of the
iterative technique and the GP approach under high signal-
to-noise ratio (SNR) approximation for the case without the
direct link. This comparison is helpful to conclude that the
iterative approach gives reasonably good solutions with an
acceptable complexity.

The remainder of this paper is organized as follows.
The system model for MIMO relay channel is presented in
Section 2. In Section 3, the iterative approach is described for
jointly optimizing the source precoder, relay transceiver, and
destination equalizer for the MIMO relay channel with the
direct link. The closed-form solutions and the approximate
GP problem formulation are provided in Section 4 for the
MIMO relay channel without the direct link where single-
side antenna correlations have been considered for source-
relay and relay-destination channels. In Section 5, simulation
results are presented to show the performance of the
proposed robust and nonrobust methods, and in Section 6,
conclusions are drawn.

Notations . Upper (lower) bold face letters will be used for
matrices (vectors); (·)∗, (·)T , (·)H , E{·}, In, and ‖ · ‖ denote
conjugate, transpose, Hermitian transpose, mathematical
expectation, n × n identity matrix, and Frobenius norm,
respectively. tr(·), vec(·), CM×M ,

⊗
denote the matrix

trace operator, vectorization operator, space of M × M
matrices with complex entries, and the Kronecker product,
respectively.

2. SystemModel

We consider a cooperative communication system that
consists of a source, a relay, and a destination which are
all multiantenna nodes. The block diagram is shown in
Figure 1. Notice that the direct link between the source and
destination is taken into account, so that the diversity order
of the cooperative system can be maintained. The source has
M antennas, the relay has NR receiving antennas and NT

transmitting antennas, and the destination has ND antennas.
The relay protocol consists of two timeslots. In the first
timeslot, the source sends a symbol vector to the destination
and relay. The relay linearly processes the source symbol
vector and sends it to the destination in the second timeslot.
The source remains idle during the second timeslot. At the
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Figure 1: Cooperative MIMO relay channel.

end of two time slots, the destination linearly combines
the symbol vectors received from the source and relay [1].
It is assumed that the estimates of the source-relay, relay-
destination, and source-destination channels are available
instead of their exact knowledge. The MIMO channels are
considered to be spatially correlated block-fading frequency-
flat Rayleigh channels. The signal received by the relay is
given by

yr = H1Fs + nr, (1)

where s ∈ CNS×1 is the complex source signal of length NS,
F ∈ CM×NS is the precoder that maps the NS × 1 symbol
vector into M source antennas, H1 ∈ CNR×M is the MIMO
channel between the source and relay, and nr ∈ CNR×1 is the
additive Gaussian noise vector at the relay. We also assume
that the elements of s are statistically independent with the
zero-mean and unit variance, that is, E{ssH} = INS . The
precoder F at the source operates under the power constraint
PS = tr(FFH) ≤ Pmax

S , where Pmax
S is the maximum power

of the source. We consider nr ∼ NC(0, σ2
r INR ), that is, the

entries of nr are zero-mean circularly symmetric complex
Gaussian (ZMCSCG) with the variance σ2

r . In order to ensure
that the symbol s can be recovered at the destination, it is
assumed that ND, NR, and NT are greater than or equal to NS.
The signal received by the destination in first timeslot can be
expressed as follows:

yd,1 = H0Fs + nd,1, (2)

where H0 ∈ CND×M is the MIMO channel between the
source and destination and nd,1 ∈ CND×1 is the additive
Gaussian noise vector at the destination and follows nd,1 ∼
NC(0, σ2

d IND ). The MIMO relay processes the signal yr using
the linear operator Z ∈ CNT×NR and forwards the following
signal to the destination in the second timeslot:

yo = ZH1Fs + Znr, (3)

where the relay transceiver Z operates under the power
constraint PR = E{yH

o yo} ≤ Pmax
R with total relay power of

Pmax
R . The signal received by the destination in the second

timeslot is

yd,2 = H2ZH1Fs + H2Znr + nd,2, (4)

where H2 ∈ CND×NT is the MIMO channel between the
relay and destination and nd,2 is the additive noise described

as nd,2 ∼ NC(0, σ2
d IND ). The double-sided spatially corre-

lated source-relay, relay-destination and source-destination are
modelled according to Kronecker model as follows:

H1 = Σ1/2
1 Hw

1 Ψ
1/2
1 ,

H2 = Σ1/2
2 Hw

2 Ψ
1/2
2 ,

H0 = Σ1/2
0 Hw

0 Ψ
1/2
0 ,

(5)

where Σ1 ∈ CNR×NR , Σ2 ∈ CND×ND , and Σ0 ∈ CND×ND are the
receive-side spatial correlation matrices, and Ψ1 ∈ CM×M ,
Ψ2 ∈ CNT×NT , and Ψ0 ∈ CM×M are the transmit-side corre-
lation matrices for the channels H1, H2, and H0, respectively.
The elements of Hw

1 , Hw
2 , and Hw

0 are ZMCSCG random
variables with the unit variance. Note that the transmit and
receive spatial correlation matrices are positive semidefinite
matrices and are a function of the antenna spacing, average
direction of arrival/departure of the wavefronts at/from the
transmitter/receiver, and the corresponding angular spread
(see [21] and the references therein). The spatial correlation
matrices represent the second-order statistics of the channels
which vary slowly and can be precisely estimated. However,
estimation of the fast fading parts Hw

1 , Hw
2 , and Hw

0 of the
spatially correlated MIMO channels can lead to a significant
amount of estimation error. For the linear minimum mean-
square error (MMSE) estimation, we can write the following
error model [22]:

Hw
1 = Ĥw

1 + Ew
1 ,

Hw
2 = Ĥw

2 + Ew
2 ,

Hw
0 = Ĥw

0 + Ew
0 ,

(6)

where Ĥw
1 , Ĥw

2 , and Ĥw
0 are the estimated CSI, and Ew

1 , Ew
2 , and

Ew
0 are the corresponding channel estimation errors whose

elements are ZMCCSG random variables with the variances
σ2
e,1, σ2

e,2, and σ2
e,0, respectively. Substituting (6) into (5), the

error modelling for the actual channels H1, H2, and H0 can
be simply given by

H1 = Σ1/2
1 Ĥw

1 Ψ
1/2
1 + Σ1/2

1 Ew
1 Ψ

1/2
1 � Ĥ1 + E1,

H2 = Σ1/2
2 Ĥw

2 Ψ
1/2
2 + Σ1/2

2 Ew
2 Ψ

1/2
2 � Ĥ2 + E2,

H0 = Σ1/2
0 Ĥw

0 Ψ
1/2
0 + Σ1/2

0 Ew
0 Ψ

1/2
0 � Ĥ0 + E0,

(7)
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which shows that the errors E1, E2, and E0 are also double-
sided correlated like the MIMO channels. The destination
recovers the source signal s by linearly combining the signals
yd,1 (2) and yd,2 (4) of two time slots as follows:

ŝ = W1yd,1 + W2yd,2, (8)

where W1, W2 ∈ CNS×ND denote the linear operators for the
signals received from the direct and relay links, respectively.
The MSE between s and ŝ can be defined as follows:

M(F, Z, W1, W2) = E
{

(ŝ− s)(ŝ− s)H
}

(9)

where the MSE matrix depends on F, Z, W1 and W2 and the
mathematical expectation is only taken with respect to noise
and signal realizations. Considering that nr, nd,1, nd,2 and s
are statistically independent and applying (2) and (4) into
(8), we can write (9) as follows:

M(F, Z, W1, W2) = W1

⎡

⎢
⎣H0FFHHH

0︸ ︷︷ ︸
I

+ σ2
nd

IND

⎤

⎥
⎦WH

1

− (W1H0 + W2H2ZH1)F− (W1H0F)H

− (W2H2ZH1F)H

+
(

W1H0FFHHH
1 ZHHH

2 WH
2

)H

+

⎛

⎜
⎝W1H0FFHHH

1 ZHHH
2︸ ︷︷ ︸

II

WH
2

⎞

⎟
⎠

+ W2

⎡

⎢
⎣H2ZH1F(H2ZH1F)H
︸ ︷︷ ︸

III

+σ2
nr

H2Z(H2Z)H
︸ ︷︷ ︸

IV

+ σ2
nd

IND

⎤

⎥
⎦WH

2 + INS .

(10)

For the given channel estimates Ĥ1, Ĥ2, and Ĥ0, the MSE
matrix of (10) is random due to the random errors E1,
E2, and E0. Since the exact errors are not known and only
the covariance matrices of these errors are known, we need
to derive the average MSE matrix. This can be done by
averaging the MSE matrix (10) over the independent errors
E1, E2, and E0. Hence, we can write

EE0{I} = Ĥ0FFHĤH
0 + EE0

{
E0FFHEH

0

}

= Ĥ0FFHĤH
0 + tr

(
FFHΨ0

)
Σ̃0,

(11)

where Σ̃0 = σ2
e,0Σ0, and we have applied (7) and used the facts

that E0 is zero-mean and EX{XAXH} = tr(A)σ2
x I for X ∼

NC(0, σ2
x I). Similarly, since E0, E1, and E2 are independent,

we can easily show that

EE0,E1,E2{II}

= EE0,E1,E2

{(
Ĥ0 + E0

)
FFH

(
Ĥ1 + E1

)H
ZH

(
Ĥ2 + E2

)H
}

= Ĥ0FFHĤH
1 ZHĤH

2 .
(12)

Furthermore, we can write

EE1,E2{III} = EE2

{
H2ZEE1

{
H1FFHHH

1

}
ZHHH

2

}
, (13)

where the inner expectation is

EE1

{
H1FFHHH

1

}
= EE1

{(
Ĥ1 + E1

)H
FFH

(
Ĥ1 + E1

)}

= Ĥ1FFHĤH
1 + tr

(
FFHΨ1

)
Σ̃1

︸ ︷︷ ︸
A

(14)

and Σ̃1 = σ2
e,1Σ1. Substituting the result of (14) into (13), we

have

EE1,E2{III} = EE2

{
H2ZAZHHH

2

}

= Ĥ2ZAZHĤH
2 + tr

(
ZAZHΨ2

)
Σ̃2,

(15)

where Σ̃2 = σ2
e,2Σ2. Applying similar steps, we can also get

EE2{IV} = Ĥ2ZZHĤH
2 + tr

(
ZZHΨ2

)
Σ̃2. (16)

Using the results of (11) to (16), the average MSE matrix can
be written as follows:

M(F, Z, W1, W2) = EE1,E2,E0{M(F, Z, W1, W2)}

= W1

⎡

⎢
⎢
⎢
⎣

Ĥ0FFHĤH
0 + tr

(
FFHΨ0

)
Σ̃0 + σ2

nd
IND

︸ ︷︷ ︸
Am

⎤

⎥
⎥
⎥
⎦

WH
1

+ W1Ĥ0FFHĤH
1 ZHĤH

2︸ ︷︷ ︸
Bm

WH
2

+
(

W1Ĥ0FFHĤH
1 ZHĤH

2 WH
2

)H

+ W2

⎡

⎢
⎢
⎢
⎣

Ĥ2ZÃZHĤH
2 + tr

(
ZÃZHΨ2

)
Σ̃2 + σ2

nd
IND

︸ ︷︷ ︸
Cm

⎤

⎥
⎥
⎥
⎦

WH
2

−

⎛

⎜
⎝W1Ĥ0F + W2Ĥ2ZĤ1F

︸ ︷︷ ︸
Dm

⎞

⎟
⎠

−
(

W1Ĥ0F + W2Ĥ2ZĤ1F
)H

+ INS ,

(17)
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where Ã = A + σ2
nr

INR . The instantaneous relay power can be
obtained as follows:

PR = tr
(

E
{

yoyH
o

})
= tr

(
ZH1FFHHH

1 ZH
)

+ σ2
nr

tr
(

ZZH
)

,

(18)

where expectation is taken w.r.t. noise and signal realizations.
After including the estimation error E1 in (18), the relay
power averaged over E1 can be expressed with the help of
(14) as follows:

PR = tr
(

ZÃZH
)
. (19)

3. Joint Optimization: Iterative Approach

The objective of joint optimization is to minimize the sum of
the average MSE (17) under power constraints of the source
and relay. This optimization problem can be expressed as
follows:

min
F,Z,W1,W2

f mse = tr
(

M(F, Z, W1, W2)
)

s.t. tr
(

FFH
)
≤ Pmax

S ,

tr
(

ZÃZH
)
≤ Pmax

R .

(20)

The constraints of the optimization problem (20) do not
depend on W1 and W2. As a result, the optimal W1 and W2

can be easily obtained in terms of F and Z. Unfortunately,
after substituting such optimal W1 and W2 into the objective
function of (20), the resulting objective function in terms of
F and Z appears to be a nontractable nonconvex problem.
This fact will be later shown in this section. The joint
optimization problem (20) is a nonconvex problem and does
not offer closed-form solutions. However, it can be easily
observed that the considered problem is a convex problem
over one optimization variable when others are fixed. Hence,
we propose to solve this optimization problem using iterative
technique, where each optimization variable is updated at
a time considering others as fixed. The iterative algorithm
may be implemented as follows. The destination estimates
the source-destination and relay-destination channels and the
relay estimates the source-relay channel, separately with the
help of training sequence. The relay sends the estimated
source-relay channel to the destination where the iterative
algorithm is executed. The destination feedbacks optimally
designed F and Z to the source and relay, respectively. The
channel is considered to remain constant within a block but
vary from one block to another, where the block consists of
training signal and useful data ( Notice that the adaptation
of the source precoder and relay transceiver matrices in fast
fading scenario can be impractical if the design is based on
instantaneous channels [23]. Therefore, robust designs based
on channel covariance information [20] can be appropriate
for such a scenario. ) .

Remark 1. It is worthwhile to mention here that the mini-
mization of the sum of the source and relay powers under
the MSE constraint can also be solved by using the iterative
framework that we are proposing in the sequel. Moreover,

the quality of fairness approach such as minimizing the sum
of the source and relay powers while fulfilling the SNR/MSE
requirements of each symbol stream can also be handled by
the proposed iterative method. For conciseness, the latter two
methods are not considered in this paper.

After solving the first-order partial derivative of the
objective function of (20) w.r.t to W1, we get

W1 =
[

FHĤH
0 −W2BH

m

]
A−1
m . (21)

Substituting (21) into the objective of (20), the latter can be
expressed in terms of W2, Z, and F as follows:

tr
(

M(F, Z, W2)
) = tr

(
W2

(
Cm − BmA−1

m Bm
)

WH
2

−W2Dm −DH
mWH

2

)
+ NS

+ tr
(

W2BH
mA−1

m Ĥ0F + FHĤH
0 A−1

m

×
(

BmWH
2 − Ĥ0F

))
.

(22)

Now, solving the derivative of (22) w.r.t to W2, we get the
optimal W2 as follows:

W2 =
(

DH
m − FHĤH

0 A−1
m Bm

)(
Cm − BH

mA−1
m Bm

)−1
. (23)

The optimal W1 can be obtained by substituting W2 from
(23) into (21). Using the results of (21) and (23) and then
resubstituting Am, Bm, and Cm, (22) can be written in terms
of F and Z as follows:

tr
(

M(F, Z)
) = tr(G)− tr

(

Ĥ2ZĤ1FGG
(

Ĥ2ZĤ1F
)H

×
[

Ĥ2ZĤ1FG
(

Ĥ2ZĤ1F
)H

+ Γ
]−1

)

,

(24)

where

G = INS−FHĤH
0

⎡

⎢
⎢
⎢
⎣

Ĥ0FFHĤH
0 +tr

(
FFHΨ0

)
Σ̃0 +σ2

nd
IND

︸ ︷︷ ︸
ΣN

⎤

⎥
⎥
⎥
⎦

−1

Ĥ0F

=

⎡

⎢
⎢
⎣FHĤH

0 Σ
−1
N Ĥ0F

︸ ︷︷ ︸
Γt

+ INS

⎤

⎥
⎥
⎦

−1

,

Γ = Ĥ2Z
(
Σ̃1 tr

(
FFHΨ1

)
+ σ2

nr
IND

)
ZHĤH

2

+ tr
(

ZÃZHΨ2

)
Σ̃2 + σ2

nd
IND .

(25)

It is interesting to observe that G is the MMSE matrix
of the direct link, where the sum MMSE is simply given
by f mmse,DL = tr(G). The second equality for G in (25)

is obtained by using the fact that XH(XXH + I)
−1

X =
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I − (XHX + I)
−1

. Applying the same fact and after some
manipulations, we get

tr
(

M(F, Z)
)

= tr

⎛

⎜
⎝G

⎡

⎢
⎣INS + GH/2FHĤH

1 ZHĤH
2 Γ

−1Ĥ2ZĤ1F
︸ ︷︷ ︸

Y

G1/2

⎤

⎥
⎦

−1⎞

⎟
⎠

= tr
([

G−1 + Y
]−1

)
,

(26)

where second equality is obtained after simple steps using the
fact that G is a positive definite square matrix. Notice that
Y is only related to the MMSE of the double-hop channel,
where the sum MMSE is f mmse,DH = tr (INS + Y)−1. With
these observations, we can formulate the following lemma:

Lemma 1. The sum MMSE of the MIMO relay system with
the direct link is upper bounded by the sumMMSE of the direct
link and source-relay-destination link.

Proof. This Lemma can be easily proven by using the
properties of the positive (semi) definite matrices. Since G−1

is positive definite and Y and Γt are positive semidefinite, we
can show that

G−1 + Y � G−1 −→ (
G−1 + Y

)−1 	 G −→ tr
((

G−1 + Y
)−1

)

≤ tr(G) � f mmse,DL,

(27)

G−1 + Y = Γt + INS + Y � INS + Y −→ (
Γt +

(
INS + Y

))−1

	 (
INS + Y

)−1 −→

tr
((

G−1 + Y
)−1

)
≤ tr

((
INS + Y

)−1
)

� f mmse,DH.

(28)

The results of (27) and (28) prove the Lemma.

It can be seen that the minimization of (26) under source
and relay power constraints is a nontractable problem. We
have noticed that even in the case of the nonrobust design,
such an objective is difficult to handle. This difficulty has
motivated us to use the iterative optimization based on the
MSE function (17) for which W1 and W2 have been already
determined in terms of Z and F (see (21) and (23)). In the
following, we show the optimizations over Z and F when
other variables are fixed.

(1) Optimization over Z. With some straightforward manip-
ulations of (17) and using the fact that tr(XXH) = ‖X‖ 2,

the average sum MSE (objective function of (20)) can be
alternatively expressed as follows:

f mse =
∥
∥
∥
(

W1Ĥ0 + W2Ĥ2ZĤ1

)
F− INS

∥
∥
∥

2

+ tr
(

FFHΨ1

)
tr
(

BZΣ̃1ZH
)

+ σ2
nr

tr
(

ZHBZ
)

+ tr
(

ZÃZHΨ2

)
tr
(

W2Σ̃2WH
2

)

+ σ2
nd

tr
(

W1WH
1 + W2WH

2

)

+ tr
(

W1Σ̃0WH
1

)
tr
(

FFHΨ0

)
,

(29)

where B = ĤH
2 WH

2 W2Ĥ2. Applying the following results
[24]:

vec(XWY) =
(

YT
&

X
)

vec(W),

tr
(

XHYXW
)
= vec (X)H

(
WT

&
Y
)

vec(X)
(30)

and denoting zL � vec(Z) ∈ CNTNR×1, we can write

f mse =
∥
∥
∥
∥vec

(
W1Ĥ0F

)
+
((

Ĥ1F
)T &

W2Ĥ2

)

zL−vec
(

INS

)
∥
∥
∥
∥

2

+ zHL DzL + s3 + s4,
(31)

where

D = s1

(

Σ̃
T

1

&
B
)

+ σ2
nr

(
INR

&
B
)

+ s2

(
ÃT

&
Ψ2

)
,

s1 � tr
(

FFHΨ1

)
, s0 � tr

(
FFHΨ0

)
,

s2 � tr
(

W2Σ̃2WH
2

)
, s3 � σ2

nd
tr
(

W2WH
2

)
,

s4 � σ2
nd

tr
(

W1WH
1

)
+ tr

(
W1Σ̃0WH

1

)
s0.

(32)

The optimization problem w.r.t. Z can be thus written as
follows:

P1 : min
zL

f mse s. t.

PR =
∥
∥
∥
∥

[
ÃT ⊗ INT

]1/2
zL

∥
∥
∥
∥

2

≤ Pmax
R .

(33)

Noting that zHL DzL = ‖D1/2zL‖2
, the optimization problem

(33) can be written as follows:

P1 : min
zL,t1,t2

t2
1 + t2

2 s.t.

∥
∥
∥
∥vec

(
W1Ĥ0F

)
+
((

Ĥ1F
)T &

W2Ĥ2

)

×zL − vec
(

INS

)
∥
∥
∥
∥ ≤ t1,

∥
∥
∥D1/2zL

∥
∥
∥ ≤ t2,

∥
∥
∥
∥

[
ÃT

&
INT

]1/2
zL

∥
∥
∥
∥ ≤

√
Pmax

R .

(34)
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Using the notation t � [t1, t2]T , the fact that t2
1 + t2

2 = tT t and
introducing an auxiliary variable t̃ ≥ 0, the problem (34) can
be formulated as the following standard convex optimization
problem:

P1 : min
zL,t̃,t

t̃ s. t.

[
I2 t
tT t̃

]

� 0,

∥
∥
∥vec

(
W1Ĥ0F

)
+
((

Ĥ1F
)T ⊗W2Ĥ2

)

zL

− vec
(

INS

)∥
∥ ≤ aT t,

∥
∥
∥D1/2zL

∥
∥
∥ ≤ bT t,

∥
∥
∥
∥

[
ÃT ⊗ INT

]1/2
zL

∥
∥
∥
∥ ≤

√
Pmax

R ,

(35)

where aT = [1, 0], bT = [0, 1], and the quadratic inequality
constraint tT t ≤ t̃ is converted to a linear matrix inequality
constraint (LMI) using Schur-Complement theorem [16].

Remark 2. Notice that when other variables are fixed, Z can
be optimized by solving the Karush-Kuhn-Tucker (KKT)
conditions, where the Lagrangian multiplier that arises due
to the relay power constraint can be obtained by using the
bisection algorithm like in [15]. However, in order to make
the proposed iterative approach applicable for other related
problems briefly discussed in the beginning of this section
and also for the optimization over F in the sequel, we propose
to formulate our optimization problem in the convex form
P1, which has been proven to be computationally efficient
and flexible to accommodate even a large number of convex
constraints [16].

(2) Optimization over F. First, we define the following scalars
that do not depend on F:

s5 � tr
(

BZΣ̃1ZH
)

, s6 � tr
(

BZZH
)

,

s7 � tr
(

ZZHΨ2

)
, s8 � tr

(
ZΣ̃1ZHΨ2

)
.

(36)

After some simple steps and again using the fact that
tr(XXH) = ‖X‖2 in (17), the average sum MSE (20) can also
be expressed as follows:

f mse =
∥
∥
∥
(

W1Ĥ0 + W2Ĥ2ZĤ1

)
F− INS

∥
∥
∥

2

+ s̃2 tr
(

FFHΨ0

)
+ σ2

nr
s6 + s3

× s2 tr
(

FHEF
)

+ (s5 + s2s8) tr
(

FFHΨ1

)

+ s2s7σ
2
nr

+ σ2
nd

tr
(

W1WH
1

)
,

(37)

where s̃2 = tr(W1Σ̃0WH
1 ) and E = ĤH

1 ZHΨ2ZĤ1. Noting that
vec(XY) = (I ⊗ X) vec(Y) [24] and applying (30), we can
write

f mse =
∥
∥
∥
(

I
&(

W1Ĥ0 + W2Ĥ2ZĤ1

))
fL − vec

(
INS

)∥∥
∥

2

+ s2s7σ
2
nr

+ σ2
nr
s6

+ fHL
[
s2

(
INS

&
E
)

+ s̃2

(
INS

&
Ψ0

)
+ (s5 + s2s8)

×
(

INS

&
Ψ1

)]
fL + s3 + σ2

nd
tr
(

W1WH
1

)
,

(38)

where fL = vec(F) ∈ CMNS×1. The relay power in terms of fL

can be expressed as follows:

PR = s9 + fHL
[
s10

(
INS

&
Ψ1

)
+
(

INS

&
Q
)]

fL, (39)

where we have used s9 � σ2
nr

tr(ZZH), s10 � tr(ZΣ̃1ZH), and

Q � ĤH
1 ZHZĤ1. The optimization problem w.r.t. F can be

now formulated as follows:

P2 : min
fL

f mse s. t.

‖fL‖2 ≤ Pmax
S ,

s9 +
∥
∥
∥
∥

[
INS

&
(s10Ψ1 + Q)

]1/2
fL

∥
∥
∥
∥

2

≤ Pmax
R .

(40)

Finally, like in the case of the optimization over Z, we can
transform (40) into the following convex problem:

P2 : min
fL,t,t̃

t̃ s. t.

[
I2 t
tT t̃

]

� 0,

∥
∥
∥
(

INS

&(
W1Ĥ0 + W2Ĥ2ZĤ1

))
fL − vec

(
INS

)∥∥
∥

≤ aT t,
∥
∥
∥S1/2fL

∥
∥
∥ ≤ bT t,

‖fL‖ ≤
√
Pmax

S ,
∥
∥
∥
∥

[
INS

&
(s10Ψ1 + Q)

]1/2
fL

∥
∥
∥
∥ ≤

√
Pmax

R − s9,

(41)

where S = [s2(INS

⊗
E)+s̃2(INS

⊗
Ψ0)+(s5+s2s8)(INS

⊗
Ψ1)]

and the LMI is equivalent to the quadratic inequality
constraint like in the case of P1. Note that the opti-
mization problems P1 and P2 can also be solved first by
reformulating them as quadratic matrix programming [25]
problems and then applying the semidefinite programming
(SDP) relaxation technique. However, since our problems
are already convex and second-order cone programming
(SOCP) formulation is possible, applying SDP relaxation
only increases the computational complexity as we know
that the SDP has higher computational burden than the
SOCP [26]. The iterative optimization technique can be now
summarized as follows:
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Algorithm 1. The iterative algorithm for joint optimization
of W1, W2, Z and F.

(1) Initialize the algorithm with Z0 and F0 such that the
source and relay power constraints are satisfied.

(a) repeat

(b) Update Wi
2 using (23).

(c) Update Wi
1 using (21) and (23).

(d) Update Zi by solving the convex problem P1.

(e) Update Fi by solving the convex problem P2.

(f) i = i + 1;

(2) until both | f mse,i − f mse,i+1| is smaller than a thresh-
old ε, where the index i denotes the ith iteration.

Remark 3. In the case of the relay channel without the direct
link, the optimization problem over destination equalizer,
Z and F can be iteratively solved by omitting all terms
containing Ĥ0 and W1 in (23), P1, and P2.

Remark 4. If the channel estimates are perfect, (21), (23),
P1, and P2 can be changed to shorter forms by using the
fact that σ2

e,1 = σ2
e,2 = σ2

e,0 = 0. The resulting equations and
optimization problems correspond to the perfect CSI case.

3.1. Computational Complexity. The computational com-
plexity of Algorithm 1 mainly depends on the work loads of
the convex optimization problems P1 and P2 which consist
of second-order cone (SOC) as well as SDP constraints. An
enormous amount of effort will be required to compute the
exact computational complexity of P1 and P2, and thus their
exact complexity analysis is beyond the scope of this paper.
However, using the results of [26], we determine the worst-
case computational complexity of P1 and P2. In P1, there
are 3 SOC constraints where the first SOC constraint has
a dimension (also the size of the cone) with 2N2

S + 1 real
variables and the remaining two SOC constraints have the
same size of 2NTNR + 1. The SOC constraints in P1 consist
of 2NTNR + 2 real optimization variables. The only one SDP
constraint of P1 has a size of 3 with 3 real optimization
variables. Therefore, according to [26], the computational
load of P1 per iteration is O((2NTNR + 2)2(2N2

S + 4NTNR +
3) + 81). The number of iterations required can be upper
bounded by O(2

√
3). Hence, the overall worst-case complex-

ity of P1 is O(2
√

3((2NTNR + 2)2(2N2
S + 4NTNR + 3) + 81)).

Similarly, we can compute the worst-case computational
load for P2. The first SOC constraint in P2 has a size of
2N2

S + 1 while the other SOC constraints are of the same
size of 2MNS + 1. The SOC constraints consist of 2MNS +
2 real optimization variables. Like in the case of P1, the
single SDP constraint is of size 3 with 3 real optimization
variables. Thus (see also [26]), we find that P2 has a work
load of O((2MNS + 2)2(2N2

S + 6MNS + 4) + 81) per iteration,
where the required number of iterations is upper bounded
by O(

√
3 + 2). As a result, the worst-case complexity of

P2 is O((
√

3 + 2)((2MNS + 2)2(2N2
S + 6MNS + 4) + 81)).

Notice that in practice the interior-point algorithms used for

solving P1 and P2 behave much better than predicted by the
aforementioned worst-case analysis [27].

3.2. Convergence Analysis. It can be shown that the proposed
iterative method converges. It has been already discussed
that the optimization problem is convex w.r.t. each variable
when the others are fixed. For the given F and Z, the
solutions given by (21) and (23) correspond to the MMSE
receiver. As a result, we have tr(M(Fi, Zi, Wi+1

1 , Wi+1
2 )) ≤

tr(M(Fi, Zi, Wi
1, Wi

2)). Similarly, for the given W1, W2, and
F, the optimization problem (20) is convex w.r.t. Z and,
thus, the problem P1 provides optimal solution for Z which
means that tr(M(Fi, Zi+1, Wi

1, Wi
2)) ≤ tr(M(Fi, Zi, Wi

1, Wi
2)).

Finally, for the given W1, W2, and Z, problem (20) is
convex w.r.t. F and, hence, the problem P2 gives optimal
solution for F thereby confirming tr(M(Fi+1, Zi, Wi

1, Wi
2)) ≤

tr(M(Fi, Zi, Wi
1, Wi

2)). Therefore, it can be found that with
each update of W1, W2, F, and Z, the objective function
decreases and the iterative method converges. It will be
later shown via numerical results that the iterative algorithm
gives satisfactory performance with acceptable convergence
speed. However, the global optimality of the solutions of the
iterative method for the relay channel with the direct link
cannot be guaranteed as the joint problem is nonconvex.
In the next section, the joint optimization problem will
be restricted to a double-hop MIMO relay, where receive
antenna correlations are assumed to be negligible for each
hop. In this case, the optimization problem turns to the
joint power allocation, for which the global optimality can
be guaranteed under high-SNR approximation.

4. Joint Power Allocation with
GP:Without Direct Link

Due to severe shadowing, hotspots, and so forth, the
destination may be out of the coverage area of the source.
In such a scenario, it is reasonable to consider that the direct
link between the source and destination does not exist. In
the latter case of the relay channel without the direct link, the
sum MSE can be expressed in terms of F and Z (see also (28))
as follows:

f mmse = f mmse,DH

= tr
(

INS + FHĤH
1 ZHĤH

2 Γ
−1Ĥ2ZĤ1F

)−1
.

(42)

The objective is to minimize the average sum MSE (42)
under the constraints of source and relay powers. Thus, the
optimization problem is

min
Z,F

tr(MMSE(Z, F)) s.t. tr
(

FFH
)
≤ Pmax

S ,

tr
(

ZÃZH
)
≤ Pmax

R ,

(43)

where the MMSE matrix is MMSE(Z, F) = [INS +

FHĤH
1 ZHĤH

2 Γ
−1Ĥ2ZĤ1F]

−1
. Let λ(MMSE(Z, F)) be the vec-

tor of eigenvalues and d(MMSE(Z, F)) be the vector of the
diagonal elements of MMSE(Z, F) in decreasing order. In
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this case, d is said to be majorized by λ, and the Schur-
concave function can be defined as f (λ(MMSE(Z, F))) ≤
f (d(MMSE(Z, F))), where f (x) stands for the function of x.
It is clear that the minimum of this function is obtained if
the diagonal elements of MMSE(Z, F) become its eigenvalues
[8]. This can occur when MMSE(Z, F) is a diagonal matrix
with its elements in decreasing order. Let the singular value
decompositions of Ĥ1 and Ĥ2 be

Ĥ1 = U1Λ
1/2
1 VH

1 , Ĥ2 = U2Λ
1/2
2 VH

2 , (44)

where the diagonal elements of Λ1 and Λ2 are considered
to be in the decreasing order. If these elements are not in
decreasing order, some permutation matrices can be applied
to make the diagonal elements of Λ1 and Λ2 in the decreasing
order [8]. This means that, in (44), the permutation matrices
are implicitly included. The closed-form expressions for the
optimal Z and F are difficult to obtain in general. However,
for the double-hop channels without receive-side antenna
correlations, that is, when Σ1 = INR and Σ2 = IND , the
optimal Z and F that diagonalize the MMSE matrix can be
given by

Z = V2Λ
1/2
Z UH

1 , F = V1Λ
1/2
F , (45)

where ΛZ and ΛF are the diagonal matrices with the elements
in decreasing order. Substituting (44) and (45) into the
MMSE matrix and after some straightforward steps, we get

f mmse = tr
(
ΛT/2

F ΛT/2
1 ΛT/2

Z ΛT/2
2 Γ−1

D

×
(
ΛT/2

F ΛT/2
1 ΛT/2

Z ΛT/2
2

)T
+ INS

)−1

,
(46)

where

ΓD =
(
σ2
e,1 tr

(
B̃Λ1/2

F ΛT/2
F

)
+ σ2

nr

)
Λ1/2

2 Λ1/2
Z ΛT/2

Z ΛT/2
2

+ tr
(

C̃Λ1/2
Z Λ1/2

1 Λ1/2
F ΛT/2

F ΛT/2
1 ΛT/2

Z

)
σ2
e,2IND + σ2

e,2·

tr
(

C̃Λ1/2
Z ΛT/2

Z

)[
σ2
e,1 tr

(
B̃Λ1/2

F ΛT/2
F

)
+ σ2

nr

]
IND + σ2

nd
IND .

(47)

In (47), we use B̃ = VH
1 Ψ1V1 and C̃ = VH

2 Ψ2V2. Similarly,
the source and relay powers become

PS = tr
(
Λ1/2

F ΛT/2
F

)
,

PR = tr
(
Λ1/2

Z Λ1/2
1 Λ1/2

F ΛT/2
F ΛT/2

1 ΛT/2
Z

)

+ tr
(
Λ1/2

Z ΛT/2
Z

)[
σ2
e,1 tr

(
B̃Λ1/2

F ΛT/2
F

)
+ σ2

nr

]
.

(48)

Let q = min(M,NS) and v = min(NT,NR), and {
√

λ
j
F}

q

j=1

and let {
√
λkZ}

v

k=1
be the nonzero diagonal elements of Λ1/2

F

and Λ1/2
Z , respectively, in the decreasing order. For brevity,

we also define

d �
(
σ2

e,1 tr
(

B̃Λ1/2
F ΛT/2

F

)
+ σ2

nr

)
�
⎛

⎝σ2
e,1

q∑

i=1

B̃i,iλ
i
F + σ2

nr

⎞

⎠

e � tr
(

C̃Λ1/2
Z Λ1/2

1 Λ1/2
F ΛT/2

F ΛT/2
1 ΛT/2

Z

)
σ2
e,2 � σ2

e,2

p∑

i=1

C̃i,iλ
i
Zλ

i
Fλ

i
1.

f � σ2
e,2 tr

(
C̃Λ1/2

Z ΛT/2
Z

)[
σ2
e,1 tr

(
B̃Λ1/2

F ΛT/2
F

)
+ σ2

nr

]

� σ2
e,2

v∑

i=1

C̃i,iλ
i
Z

⎡

⎣
q∑

i=1

B̃i,iλ
i
Fσ

2
e,1 + σ2

nr

⎤

⎦,

(49)

where B̃i,i and C̃i,i are the ith diagonal elements of B̃ and C̃,
respectively, and p = min(NT,NR,M,NS). Since B̃ and C̃ are
positive semidefinite, we have B̃i,i ≥ 0 and C̃i,i ≥ 0 for all i.
Using (47) and (49), the sum MMSE can be finally expressed
as follows:

f mmse =
R∑

r=1

1

1 +
(
λrFλ

r
Zλ

r
1λ

r
2

)
/
(
dλrZλ

r
2 + e + f + σ2

nd

)

�
R∑

r=1

1
1 + SNRr

,

(50)

where SNRr = λrFλ
r
Zλ

r
1λ

r
2/(dλ

r
Zλ

r
2 + e + f + σ2

nd
) is the SNR

of each data stream provided that NS is also smaller than
or equal to M and R = min(NT,NR,M,NS, and ND). It
is interesting to note that when the channel estimates are
perfect, that is, when σ2

e,1 = σ2
e,2 = 0, the sum MMSE of (50)

reduces to the objective function of [28]. Applying (48), the
joint power allocation problem can be formulated as follows:

min{
λ
j
F

}q

j=1
,{λkZ}vk=1

f mmse s.t.
q∑

j=1

λ
j
F ≤ Pmax

S

p∑

m=1

λmZ λ
m
F λ

m
1 + d

v∑

k=1

λkZ ≤ Pmax
R ,

(51)

which is a nonlinear and nonconvex problem. Since this
problem is nonconvex, the global optimal solution is difficult
to obtain. Considering the fact that the global optimal
solutions of the problems similar to the nonrobust version of
(51) can be obtained only with very high computational cost
(see [29, 30]), the authors of [31] use an iterative waterfilling
technique to solve the nonrobust form of (51). However, we
have noticed that it is hard to solve (51) using the waterfilling
method of [31]. The major difficulty arises from the fact
that the first-order partial derivatives of the corresponding
Lagrangian function w.r.t. λr

F for the fixed {λr
Z}Rr=1 and w.r.t.

λr
Z for the given {λr

F}Rr=1 do not lead to equations that are
decoupled in λr

F and λr
Z, respectively. It is easier to see that

this difficulty appears due to the reason that d, e, and f
in (51) consist of not only λrF and λrZ but also λkF and
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λkZ, for all k ∈ {1, . . . ,R}. Furthermore, although iterative
waterfilling method is computationally efficient, it does not
guarantee the global optimal solution. In the following, we
use an alternative approach based on GP technique. Note
that the optimization problem (51) is not a GP problem
but a signomial programming (SP) problem [16] which can
be iteratively solved as a GP problem after approximating
the required posynomial terms by monomial terms. It is
known that the SPs do not guarantee global optimality and
the computational cost is high. Thus, using the high-SNR
approximation, (51) can be solved as a GP whose global
optimality can be confirmed. In this regard, we have

f mmse ≤
R∑

r=1

dλrZλ
r
2 + e + f + σ2

nd

λrFλ
r
Zλ

r
1λ

r
2

. (52)

Using the upper bound (52), the power optimization prob-
lem can be expressed as follows:

min{
λ
j
F

}q

j=1
,{λkZ}vk=1

R∑

r=1

tr s.t.

dλrZλ
r
2 + e + f + σ2

nd
≤ trλ

r
Fλ

r
Zλ

r
1λ

r
2, ∀r

q∑

j=1

λ
j
F ≤ Pmax

S ,

p∑

m=1

λmZ λ
m
F λ

m
1 + d

v∑

k=1

λkZ ≤ Pmax
R ,

(53)

which is a GP problem that can be solved efficiently to
guarantee the global optimality.

Remark 5. Notice that the joint power allocation problem
is nonconvex even for the case without channel estimation
errors [32]. In such a nonrobust design, it has been shown
in [28] that the lower and upper bounds can be established
for the MSE for each data stream. Unfortunately, this is not
the case for the proposed robust design due to the fact that
the terms e, f , and d are again functions of λkZ, for all k =
1, . . . , v and λ

j
F, for all j = 1, . . . , q. It is also worthwhile to

note that several optimization problems which can be solved
using the GP method and still provide solutions close to the
optimal solution of the sum MSE minimization problem are;
(a) maximization of the minimum of the SNRs of the data
streams and (b) maximization of the geometric mean of the
SNRs of the data streams, both under the source and relay
power constraints.

5. Numerical Results and Discussions

In this section, the performance of the proposed methods
will be investigated. The proposed robust designs are also
compared with the nonrobust case, where the channel
estimation errors are not taken into account. Notice that
the nonrobust design corresponds to the so called naı̈ve
design, where the optimization problems of interest are

solved assuming that there are no errors in channel estimates
(see also Remark 4) although in reality the estimates are
erroneous. For all numerical simulations, we take NS = 3,
M = 4, NR = 3, NT = 4, and ND = 3. The spatial
covariance matrices for source-relay, relay-destination, and
source-destination channels are modelled according to the
widely used exponential correlation model. In our examples,
we take

Σ1 = Σ2 = Σ0 =

⎡

⎢
⎢
⎢
⎣

1 β β2

β 1 β

β2 β 1

⎤

⎥
⎥
⎥
⎦

,

Ψ1 = Ψ2 = Ψ0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α α2 α3

α 1 α α2

α2 α 1 α

α3 α2 α 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(54)

In all cases, the optimization problems P1, P2, and (53) are
solved using the CVX software [33]. The SNRs for source-
relay, source-destination, and relay-destination channels are
defined as SNRsr = Pmax

S /σ2
nr

, SNRsd = Pmax
S /σ2

nd
, and

SNRrd = Pmax
R /σ2

nd
, respectively. Throughout all examples,

we take Pmax
S = Pmax

R = 0 dBw and vary the values of σ2
nr

and σ2
nd

to change SNRsr, SNRsd, and SNRrd. The estimated
channels are generated according to (7), so that the elements
of actual channels H1, H2, and H0 have the variance of 1.
For all results, we compute the average MSE by taking 200
realizations of the estimated channels.

The convergence behaviour of the proposed iterative
method as a function of iteration index is illustrated in
Figure 2 for the relay channel with the direct link. The
parameters in this figure are set as α = 0.2, β = 0.1,
σ2
e,1 = σ2

e,2 = 0.01, and σ2
e,0 = 0.03. We take three sets

of SNRs as SNRsr = SNRsd = SNRrd = 10 dB, SNRsr =
SNRsd = SNRrd = 20 dB and SNRsr = 10 dB, and SNRsd =
SNRrd = 0 dB. It can be seen from this figure that the iterative
method converges in about 15 iterations. The convergence is
faster for the lower values of the SNR. The effect of different
initializations on the convergence behaviours of the iterative
method is also displayed in Figure 2. The convergence speed
for the cases where F and Z are initialized to randomly
generated matrices of ZMCSCG random variables is similar
to the cases where F and Z are initialized to the matrices
proportional to identity (i.e., F ∝ I and Z ∝ I). Moreover,
it can be noticed from Figure 2 that different initializations
lead to the similar solutions. In Figure 3, the performance of
the iterative method as a function of the iteration index is
illustrated for the relay channel without the direct link. We
take α = 0.3, β = 0, and σ2

e,1 = σ2
e,2 = 0.01 in this figure.

As a reference, the performance of the GP problem which
gives optimal solution under high-SNR assumption is also
displayed in Figure 3. It can be noticed from Figure 3 that
the difference between the solutions of the iterative method
and GP method is negligible after 10–15 iterations.

The performance of the proposed iterative method for
the MIMO relay channel with the direct link is shown in
Figure 4 for different values of σ2

e . The performance of the
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Figure 2: Convergence behaviour of the iterative approach for
different initializations with the direct link (α = 0.2, β = 0.1,
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e,2 = 0.01, σ2
e,0 = 0.03, and Pmax
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Figure 3: Convergence performance of the iterative approach and
the GP power allocation method for the case without the direct link
(α = 0.3, β = 0, σ2
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S = Pmax
R = 0 dB).

nonrobust method which considers the estimated channels
as actual channels and the performance of the robust method
without a source precoder [15] (the case with F ∝ cI where c
is the positive scaling factor chosen for satisfying the source
power constraint) are also displayed in this figure. We keep
α = 0.4, β = 0.6, and SNRsr = 30 dB and change SNRsd

10−2

10−1

100

Su
m

M
SE

0 5 10 15 20 25 30
SNRrd = SNRsd (dB)

Prop.robust σ2
e = 0.005

Non-robust σ2
e = 0.005

Robust with F ∞ I, σ2
e = 0.005

Prop.robust σ2
e = 0.008

Non-robust σ2
e = 0.008

Robust with F ∞ I, σ2
e = 0.008

Figure 4: Sum MSE as a function of SNR (SNRrd = SNRsd) for the
relay channel with the direct link (α = 0.6, β = 0.4, σ2

e,1 = σ2
e,2 =

σ2
e,0 = σ2

e , and Pmax
S = Pmax

R = 0 dB).

and SNRrd from 0 to 30 dB. The threshold ε for stopping
the iterative process is set to 1e − 4. It can be noticed from
this figure that in all cases, the MSE decreases when the SNR
increases and when the variance of the channel estimation
error σ2

e decreases. Furthermore, the proposed robust design
outperforms both the nonrobust method and the robust
method with F ∝ cI [15]. In Figure 5, the performance
between the proposed iterative method and the GP power
allocation method for the relay channel without the direct
link is compared. This figure displays the sum MSE as a
function of the correlation coefficient α for different values
of SNRsd and SNRrd. We keep β = 0, σ2

e = 0.01 and ε =
1e − 4 for Figure 5. It can be observed from this figure that
the proposed robust methods significantly outperform the
nonrobust method. Moreover, the performance gap between
the iterative approach and the GP power allocation method
is negligible for α ≤ 0.4. For α > 0.4, the iterative approach
outperforms the GP method. In all cases, the sum MSE
increases with the increasing values of correlation coefficient.

6. Conclusions

The problem of jointly optimizing the source precoder,
relay transceiver, and destination equalizer for a cooperative
MIMO relay system has been treated in this paper. An
iterative approach with the guaranteed convergence has been
proposed to solve the nonconvex problem. It has been
shown that for the case without the direct link where the
two-hop MIMO channels have only transmit-side antenna
correlations, the joint optimization turns to the joint source
and relay power allocation problem which has been solved by
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using GP technique under high-SNR approximation. Simu-
lation results confirm the efficiency and good performance of
the iterative approach for the MIMO relay channel with and
without the direct link. Furthermore, the proposed robust
methods significantly outperform the nonrobust method
when the channel estimates are imperfect.
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