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We propose an adaptive, data-driven thresholding method based on a recently developed idea of Minimum Noiseless Description
Length (MNDL). MNDL Subspace Selection (MNDL-SS) is a novel method of selecting an optimal subspace among the competing
subspaces of the transformed noisy data. Here we extend the application of MNDL-SS for thresholding purposes. The approach
searches for the optimum threshold for the data coefficients in an orthonormal basis. It is shown that the optimum threshold can
be extracted from the noisy coefficients themselves. While the additive noise in the available data is assumed to be independent, the
main challenge in MNDL thresholding is caused by the dependence of the additive noise in the sorted coefficients. The approach
provides new hard and soft thresholds. Simulation results are presented for orthonormal wavelet transforms. While the method
is comparable with the existing thresholding methods and in some cases outperforms them, the main advantage of the new
approach is that it provides not only the optimum threshold but also an estimate of the associated mean-square error (MSE)
for that threshold simultaneously.

1. Introduction

We can recognize different phenomena by collecting data
from them. However, defective instruments, problems with
the data acquisition process, and the interference of natural
factors can all degrade the data of interest. Furthermore,
noise can be introduced by transmission errors or compres-
sion. Thus, denoising is often a necessary step in data pro-
cessing and various approaches have been introduced for this
purpose. Some of these methods, such as Wiener filters, are
grouped as linear techniques. While these techniques are easy
to implement, their results are not always satisfactory. Over
past decades, researchers have improved the performance
of denoising methods by developing nonlinear approaches
such as [1–6]. Although these approaches have succeeded
in providing better results, they are usually computationally
exhaustive, hard to implement, or use particular assumptions
either on the noisy data or on the class of the data estimator.

Thresholding methods are alternative approaches to
the denoising problem. The thresholding problem is first
formulated in [7] where VisuShrink is introduced. This
threshold is a nonadaptive universal threshold and depends

only on the number of data points and noise variance.
VisuShrink is a wavelet thresholding method which is both
simple and effective in comparison with other denoising
techniques. When an orthogonal wavelet basis is used, the
coefficients with small absolute values tend to be attributed
to the additive noise. Taking advantage of this property,
finding a proper threshold, and setting all absolute values of
coefficients smaller than the threshold to zero can suppress
the noise. The main issue in such approaches is to find
a proper threshold. In using the thresholding method for
image denoising, the visual quality of the image is of great
concern. An improper threshold may introduce artifacts and
cause blurring of the image. One of the first soft thresholding
methods is SureShrink [8] which has a better effect on the
image than Visushrink in many cases. This method uses
a hybrid of the universal threshold and the SURE (Stein’s
Unbiased Risk Estimator) threshold. The SURE threshold is
chosen by minimizing Stein’s estimate.

In this research we focus on the mean-square error
(MSE) associated with the denoising process. The impor-
tance of this error in any signal reconstruction and esti-
mation is inevitable [9, 10]. After all, in any estimation
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process, in this case reconstructing the denoised signal from
the noisy one, the major goal is to achieve the original
signal as much as possible, and the MSE is one of the most
used criteria for evaluation purposes. To find the optimum
threshold we estimate the MSE of a set of completing
thresholds and choose the one that minimizes this error.
The fundamentals of MSE estimation are similar to the
method proposed in Minimum Noiseless Description Length
(Codelength) Subspace Selection (MNDL-SS) [10]. Each
subspace in this approach keeps a subset of the coefficients
and discards the rest. Thresholding also produces a subspace
that includes a set of coefficients that are being kept. On
the other hand, it was shown in [10] that an estimate of
noiseless description length (NDL) can be provided for each
subspace by using the noisy data itself. We also show that in
the process of estimating the NDL, the estimates of MSE is
also provided. Furthermore comparison of the NDL of com-
peting subspaces is equivalent to comparison of their MSEs.
Therefore, the method presented in this paper is denoted by
MNDL thresholding. The competing thresholds that are the
sorted coefficients generate competing subspaces. For these
subspaces the estimate of MSEs are provided and compared.
The optimum threshold is associated with the subspace with
minimum MSE (equivalently minimum NDL). Because of
the particular choice of competing subspaces in MNDL
thresholding, the effect of the additive noise is different from
that in MNDL-SS. While the independence of the additive
noise in MNDL-SS is the main advantage in estimating the
desired NDL, in the case of thresholding, the additive noise
is highly dependent. The main challenge in this work is to
develop a method for NDL estimation acknowledging the
presence of this noise dependence. We provide a threshold
that is a function of the noise variance σ2

w, the data length N ,
and the observed noisy data itself.

The paper is arranged as follows. Section 2 describes the
considered thresholding problem. Section 3 briefly describes
the fundamentals of the existing MNDL subspace selection.
Section 4 introduces the MNDL thresholding approach.
Hard and soft MNDL thresholdings are presented in Sections
5 and 6. Section 7 provides the simulation results and
Section 8 is our conclusion.

2. Problem Statement

Noiseless data {y(i), i = 1, . . . ,N} of length N has been
corrupted by an additive noise:

y(i) = y(i) + w(i), (1)

where w(i) is an independent and identically distributed
(i.i.d) Gaussian random process with zero mean and variance
σ2
w. ( The method presented here is for real data. However,

it can also be used for complex data. ) In the considered
denoising process, we project the noisy data into an orthog-
onal basis. The goal is to provide the optimum threshold
for the resulting coefficients that minimizes the mean square
error.

Assume that the noiseless data vector yN = [y(1) y(2)
· · · y(N)]T is generated by space SN . The space SN can be
expanded by orthogonal basis vectors:

〈
si, s j

〉
=
⎧⎨
⎩

1 if i = j,

0 if i /= j,
(2)

where 〈si, s j〉 is the inner product of vectors si and s j .
The data in (1) is represented in this basis as follows:

yN =
N∑

i=1

θ(i)si, yN =
N∑

i=1

θ(i)si, wN =
N∑

i=1

v(i)si,

(3)

θ(i) = θ(i) + v(i), (4)

where θ(i) is the ith coefficient of the noiseless data, θ(i)
is the i-th coefficient of the noisy data, and v(i) is the i-th
coefficient of the additive noise. Note that since the basis
vectors of SN are orthogonal, v(i) is also a sample of Gaussian
distribution with zero mean and variance, σ2

w.
The thresholding approach uses the available noisy

coefficients, θ, to provide the best estimate of the noiseless

coefficients denoted by θ̂. There are two general thresholding
methods: hard and soft thresholdings. Hard thresholding
eliminates or keeps the coefficients by comparing them with
the threshold

θ̂(i) =
⎧⎨
⎩
θ(i), if |θ(i)| ≥ Th,

0, otherwise,
(5)

where Th is the hard threshold. Soft thresholding eliminates
the coefficients below Ts and reduces the absolute value of
the rest of the coefficients:

θ̂(i) =
⎧⎨
⎩

sgn(θ(i))(|θ(i)| − Ts), if |θ(i)| ≥ Ts,

0, otherwise.
(6)

There are different approaches for calculation of the proper
Th and Ts. In this paper, we expand the existing theory of
the MNDL subspace selection method in [10] to provide new
hard and soft thresholding methods.

Important Notation. In this paper a random variable is
denoted by a capital letter, such as W and V , while a sample
of that random variable is represented by the same letter in
lower case such as w and v.

3. MNDL Subspace Selection (MNDL-SS)

The MNDL Subspace Selection (MNDL-SS) approach has
been introduced in [10]. This approach addresses the
problem of basis selection in the presence of a noisy data.
In MNDL-SS, competing subspaces represent a projection
of the noisy data on a complete orthogonal basis such as an
orthogonal wavelet basis. each subspace contains a subset of
the basis. The subspace keeps the coefficients of the noisy
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data in that subset and sets the rest of the coefficients to
zero. Among competing subspaces, MNDL-SS chooses the
subspace that minimizes the description length (codelength)
of “noiseless” data. In this setting subspaces of the space SN
are chosen as follows: Each Sm is a subspace of SN that is
spanned by the first m elements of the bases. The estimate
of the noiseless coefficients in subspace Sm is

θ̂Sm(i) =
⎧⎨
⎩
θ(i), if si ∈ Sm,

0, otherwise,
(7)

and the estimate of the noiseless data in Sm, ŷNSm , is

ŷNSm =
N∑

i=1

θ̂sm(i)si. (8)

In each subspace the description length (codelength) of the
noiseless data is defined as [10] ( this criterion is different
from MDL criterion and the explanation is provided in [10])

DL
(
yN ; ŷNSm

)
= log2

√
2πσ2

w +
log2e

2σ2
w
zSm , (9)

where zSm is the reconstruction error ( the equality of the
error in the time domain and the error in coefficients of data
is the result of the Parseval’s Theorem) :

zSm =
1
N

∥∥∥yN − ŷNSm

∥∥∥2

2
= 1

N

∥∥∥∥θ
N − θ̂NSm

∥∥∥∥
2

2
, (10)

which is a sample of random variable ZSm .
The optimum subspace Smopt can be chosen by min-

imizing the average description length of noiseless data
among the competing subspaces. Minimizing the average of
noiseless data length in (9) is equivalent to minimizing the
mean square error (MSE) in the form of E(ZSm) as the term

log2

√
2πσ2

w is a constant and not a function of m:

mopt = arg min
Sm

E
(
ZSm

)
. (11)

MNDL-SS estimates the MSE for each subspace by using the
available data error xSm in that subspace. The data error is
defined in the following form:

xSm =
1
N

∥∥∥yN − ŷNSm
∥∥∥2

2
= 1

N

∥∥∥θN − θ̂NSm

∥∥∥2

2
, (12)

which is a sample of random variable XSm . MNDL-SS studies
the structure of the two random variables ZSm and XSm and
uses the connection between these two random variables
to provide an estimate of the desired criterion E(ZSm) for
different m.

4. MNDL Thresholding

To use the ideas of subspace selection in thresholding, we first
have to explain how a particular choice of subspaces serves
the problem of thresholding. In MNDL-SS, the competing
subspaces are chosen a priori and are not functions of the

observed data. However, if the method is going to be used for
thresholding, forming the competing subspaces is based on
the observed data. In this case, we first sort the bases based on
the absolute value of the observed noisy coefficients θ. This
will dictate a particular indexing on the bases such that

|θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(N)|. (13)

Therefore, the first subset represents the basis associated
with the largest absolute value of the coefficients. The subset
with two coefficients includes the two bases with the largest
absolute value of the sorted coefficients and so on. The
subspace Sm includes m of the basis and represents the first
m largest absolute values of the coefficients and as a result
this subspace represents thresholding with a threshold value
of θ(m).

Back to the MNDL-SS, the subspace Smopt that minimizes
the average codelength of the noiseless data (equivalent to
the subspace MSE in (11)) is the optimum subspace. Due to
the indexing in the form of (13), the choice of this subspace
results in the optimum threshold θ(mopt).

To estimate the MSE of the subspaces, we follow the
fundamentals of the MNDL-SS method. Due to the random
choice of subspaces in MNDL-SS, the random variables V(i)s
that represent the additive noise of the coefficients in (4) are
independent Gaussian random variables. In MNDL thresh-
olding, the additive noise of coefficients is still Gaussian.
However, due to the particular choice of the index for the
coefficients, V(i)s are no longer independent. This will cause
a major challenge in estimating the MSE of subspaces and is
the main focus of this paper.

5. MNDLHard Thresholding

In [10] it is shown that the expected value of the reconstruc-
tion error and that of the data error in subspace Sm can be
written in the form of

E
(
ZSm

) = E
(
AZsm

)
+

1
N

∥∥ΔSm

∥∥2
2, (14)

E
(
XSm

) = E
(
AXsm

)
+

1
N

∥∥ΔSm

∥∥2
2, (15)

where ‖ΔSm‖2 is the l2-norm of the discarded coefficient
vector in subspace Sm:

1
N

∥∥ΔSm

∥∥2
2 =

1
N

N∑

i=m+1

θ
2
(i), (16)

and the noise parts are

E
(
AZsm

) = 1
N

m∑

i=1

E
(
V(i)2

)
, (17)

E
(
AXsm

) = 1
N

N∑

i=m+1

E
(
V(i)2

)
, (18)

where V(i) is the Gaussian random variable with samples
defined in (3).
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Figure 1: Distributions of θ(m + 1), θ(m), and θ(m− 1).

If the noise parts E(AZsm) and E(AXsm) are available, then
by estimating the expected value of the data error with the
available sample xSm we have

1
N

∥∥ΔSm

∥∥2
2 ≈ xSm − E

(
AXsm

)
. (19)

and then the estimate of the desired MSE in (14) is

E
(
ZSm

) ≈ xSm − E
(
AXsm

)
+ E

(
AZsm

)
. (20)

The main challenge in MNDL thresholding is in calculating
E(AXsm) and E(AZsm) in (18) and (17). In MNDL-SS, due
to the independence of V(i)s in (4), random variables AXsm

and AZsm are Chi-square random variables and calculation
of the expected values of these terms is straight forward.
However, in MDNL thresholding, since the V(i)s are not
independent, calculation of these expected values is not easy.
In the following section we focus on estimating these desired
expected values for the case of thresholding.

5.1. Estimate of MSE in MNDL Hard Thresholding. In order
to calculate the expected value of the additive noise in
(17) and (18), we need to study the noise effects that are
associated with the sorted noisy coefficients. Each θ(i) in
(4) has a Gaussian distribution with mean θ(i) and variance
σ2
w. Figure 1 shows the distribution of θ(m + 1), θ(m), and
θ(m−1). The expected value of the noise part of θ(m) under
the condition θ(m + 1) < θ(m) < θ(m− 1) is as follows:

E
[
V 2(m)

] = σ2
w + εh(d1(m),d2(m)), (21)

where

d1(m) = θ(m + 1)− θ(m), (22)

d2(m) = θ(m− 1)− θ(m), (23)

and εh(d1(m),d2(m)) is

εh(d1(m),d2(m)) = f1(m)− f2(m)
Q(d1(m))−Q(d2(m))

, (24)

where Q(x) = 1/2π
∫∞
x exp(−t2/2)dt and f1(m) and f2(m) are

defined as

f1(m) = σw√
2π

d1(m)e−d
2
1 (m)/2σ2

w , (25)

f2(m) = σw√
2π

d2(m)e−d
2
2 (m)/2σ2

w . (26)

Details of the calculationare provided in Appendix B.

Therefore, for the desired noise parts we have

E
(
nzSm

)
= 1

N

m∑

i=1

E
(
V 2(i)

)
(27)

= m

N
σ2
w +

1
N

m∑

i=1

εh(d1(i),d2(i)). (28)

Similarly we have

E
(
nxSm

)
= 1

N

N∑

i=m+1

E
(
V 2(i)

)
(29)

= N − (m + 1)
N

σ2
w +

1
N

N∑

i=m+1

εh(d1(i),d2(i)).

(30)

The noise part of the MSE in (27) and the noise part of the
expected value of data error in (29) are dependent on d1, d2

that are not available. We suggest estimating them by using
the available data as follows [11].

(i) Generate gi Gaussian vectors of data length with
variance of the additive noise.

(ii) Sort the absolute value of the associated noise
coefficients, gsort

i .

(iii) Find the estimate of the expected value of this vector
E[Gsort] by averaging over 50 samples of these vectors:

E
[
Gsort(m)

] ≈ 1
50

50∑

i=1

gsort
i (m). (31)

(iv) Estimate θ as follows:

θ̂(m) = θ(m)− E
[
Gsort(m)

]
. (32)

(i) Estimate d1 and d2 by replacing θ with θ̂ in (22) and
(23):

d̂1(m) = θ(m + 1)− θ̂(m), (33)

d̂2(m) = θ(m− 1)− θ̂(m). (34)

The estimates of the noise parts in (27) and (29) are

Ê
(
nzSm

)
= m

N
σ2
w +

1
N

m∑

i=1

εh
(
d̂1(i), d̂2(i)

)
, (35)

Ê
(
nxSm

)
= 1

N

N∑

i=m+1

εh
(
d̂1(i), d̂2(i)

)
+
N − (m + 1)

N
σ2
w.

(36)

5.2. Calculating the Threshold. By using the provided noise
part estimates in (35) and (36) we can estimate the desired
MSE for subsets of different order with the following steps.



EURASIP Journal on Advances in Signal Processing 5

(i) Estimate the noise parts E(nxSm ) and E(nzSm ) using
(36) and (35).

(ii) Estimate the MSE in (20) as follows:

Ê
(
ZSm

) = xSm − Ê
(
AXsm

)
+ Ê

(
AZsm

)
. (37)

In MNDL thresholding the goal is to find mopt by
minimizing the MSE in (11). Here we provide an estimate
of mopt using the MSE estimate:

m̂opt = arg min
Sm

Ê
(
ZSm

)
, Th = θm̂opt . (38)

6. MNDL Soft Thresholding

In some applications, such as image denoising, soft thresh-
olding generally performs better and provides a smaller MSE
than hard thresholding [12]. In soft thresholding, not only
are the values smaller than the threshold set to zero, but
also the value of coefficients larger than the threshold is also
reduced by the amount of the threshold. Thus, we need to
take into account this changing level of coefficients in MSE
estimation. For MNDL soft thresholding we follow the same
procedure as in MNDL hard thresholding. Here, the MSE in
subspace Sm is

E
(
Zsm

) = 1
N
E

⎛
⎝

m∑

i=1

(V(i)− Tm)2

⎞
⎠ +

1
N

∥∥ΔSm

∥∥2
2, (39)

where Tm is the smallest coefficient in subspace Sm (which is
θm).

6.1. Noise Effects in the MSE. The noise part of the MSE in
(39) is

E
(
nzsm

)
= 1

N

m∑

i=1

E(V(i)− Tm)2, (40)

where V(i)s are the associated noise parts of coefficients θ(i)s
in subspace Sm. The expected value of the noise part of θ(i)
under the condition θ(i + 1) < θ(i) < θ(i− 1) is

E
[

(V(i)− Tm)2
]
= T2

m + σ2
w + εs(d1(i),d2(i),Tm), (41)

where d1(i) and d2(i) are defined similar to those in (22) and
(23), and εs(d1(i),d2(i),Tm) is defined as

εs(d1(i),d2(i),Tm) = j1(i,Tm) + j2(i,Tm)
Q(d1(i))−Q(d2(i))

, (42)

where j1(i,m) and j2(i,m) are defined as

j1(i,Tm) = σw√
2π

e−d
2
1 (i)/2σ2

w (d1(i)− 2Tm), (43)

j2(i,Tm) = σw√
2π

e−d
2
2 (m)/2σ2

w (2Tm − d2(i)). (44)

Details of this calculation are provided in Appendix C.

Using the estimates of d1 and d2 from (33) and (34), the
estimate of MSE’s noise part in (40) is

Ê
(
nzSm

)
= m

N

(
T2
m + σ2

w

)
+

1
N

m∑

i=1

εsd̂1

(
(i), d̂2(i),Tm

)
. (45)

6.2. Estimate of the Noiseless Part of MSE. To complete the
estimation of MSE in (39), we need also to estimate the
noiseless part using the data error. The expected value of the
data error in the case of soft thresholding is

E
(
XSm

) = m

N
Tm +

1
N

∥∥ΔSm

∥∥2
2 +

1
N

N∑

i=m+1

E
(
V 2(i)

)
(46)

(Details are provided in Appendix A). The last component is
the same as noise part in MNDL hard thresholding in (29)
and can be estimated by using (36). Therefore, by estimating
E(XSm) with its available sample xSm , from (46) we have

1
N

∥∥∥Δ̂Sm

∥∥∥2 = xSm −
m

N
Tm − N − (m + 1)

N
σ2
w

− 1
N

N∑

i=m+1

εh
(
d̂1(i), d̂2(i),Tm

)
.

(47)

where εh is defined in (24) and d̂1 and d̂2 are defined in (33)
and (34).

6.3. Calculating the Threshold. The two components of MSE
in (39) were estimated in previous sections. Therefore, the
MSE can be estimated as follows.

(i) The noise part is estimated by using (45).

(ii) The noiseless part is estimated by using (47).

(iii) The estimate of the MSE in (39) is the sum of (45)
and (47):

Ê
(
ZSm

) = 1
N

∥∥∥Δ̂Sm

∥∥∥2
+ Ê

(
AZsm

)
. (48)

Similar to MNDL hard thresholding, the optimum subspace
is the one for which the estimate of the MSE is minimized:

m̂opt = arg min
Sm

Ê
(
ZSm

)
, Ts = θm̂opt . (49)

6.4. Subband-Dependent MNDL Soft Thresholding. In image
denoising, soft thresholding methods outperform hard
thresholding methods in terms of MSE value and visual qual-
ity. In addition, it has been shown that subband-dependent
thresholding performs better than universal thresholding
methods [8]. In the subband-dependent method, a different
threshold is provided for every subband of the wavelet
transform. Here, we present the subband-dependent MNDL
soft thresholding method. In every subband the MSE is
estimated as a function of its subspaces. The subspace and
its equivalent threshold that minimizes the MSE are chosen.
The process of subband dependent MNDL thresholding with
wavelet thresholds is as follows.
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Figure 2: (a) Blocks signal with length 1024, (b) wavelet coefficients, (c) noisy blocks signal with additive white noise, σw = 1, and (d) noisy
coefficients.

(i) The discrete wavelet transform of the image is taken.

(ii) In every subband the MSE, in (39), is estimated as a
function of the Sm: the noise part is estimated using
(45), and the noiseless part is estimated using (47).
MSE estimate Ê(ZSm) is the sum of the noiseless part
and the noise part estimates.

(iii) In each subband, the MSE is minimized over values
of m, and m̂opt in (38) is chosen, where (m ∈
{1, 2, . . . ,N}), and N is the number of coefficients in
the subband.

(iv) In each subband, the m̂optth largest absolute value of
the coefficients is the optimum threshold.

(v) The image is denoised using the subband thresholds.

(vi) The inverse discrete wavelet transform is taken.

The unknown noise variance is estimated by the median
estimator, σ̂n = MAD/0.675, where MAD is the median of

absolute value of the wavelet coefficients at the finest decom-
position level (the diagonal direction of decomposition level
one).

In the following section we provide simulation results
of the method. The low complexity of this algorithm is an
additional strength of the method. Our future plan is to
utilize the approach for potential applications in areas such
as biomedical engineering [13].

7. Simulation Results

We first demonstrate the performance of MNDL hard and
soft thresholding by using two well-known examples in
wavelet denoising. The first signal is the Blocks signal of
length 1024 with few nonzero coefficients. The signal along
with its wavelet coefficients is shown in Figure 2. Wavelet
transform employs Daubechies’s wavelet with eight vanish-
ing moments with four scales of orthogonal decomposition
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Figure 3: (a) Mishmash signal with length 1024, (b) wavelet coefficients, (c) noisy Mishmash signal with additive white noise, σw = 5, and
(d) noisy coefficients.

Table 1: Comparing mopt and its estimates using MNDL hard
thresholding and MNDL-SS methods for the Blocks signal.

mopt m̂opt m̂opt

Optimum order Hard thresholding MNDL-SS

σw = 1 72 74 91

σw = 3 34 32 40

σw = 5 22 19 37

[14]. The other signal is the Mishmash signal of length 1024
with no nonzero coefficients in Figure 3.

The MSE and its estimates using the existing MNDL-SS
method [10] and the developed MNDL hard thresholding
method are shown in Figure 4. The mopt that minimizes
the unavailable MSE and its estimate, m̂opt, with these
approaches are provided in Table 1 for different noise
variances. The results in this table and the rest of the
results in this section are averages of five runs. As the figure

and the table show, as was expected MNDL thresholding
outperforms the MNDL-SS approach.

Table 2 compares the MSE of the proposed hard thresh-
olding method with that of two hard thresholding meth-
ods, VisuShrink and MDL. The comparison includes the
optimum hard MSE, which represents the minimum MSE
when the noisy coefficients are used as hard thresholds, along
with the resulting MSE of different approaches. As the table
shows, in most cases, MNDL hard thresholding provides the
minimum MSE among the approaches.

The MSE and its estimate with MNDL soft thresholding
are shown in Figure 5. The results in this figure are for Blocks
and Mishmash signals and for two different levels of the
additive noise. As the figure shows, MSE estimates are very
close to the MSE itself.

The MSE results for soft threshoding are compared
in Table 3. The table provides optimum MSE with both
optimum thresholding and optimum subband thresholding
along with the results for Sureshrink and MNDL soft
thresholding. As the table shows for Blocks the MNDL
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Figure 4: Desired unavailable MSE (solid red line), and its estimate using MNDL hard thresholding (- -) and MNDL-SS (. -) as a function
of m. (a) Blocks signal with σw = 1, (b) Blocks signal with σw = 5, (c) Mishmash signal with σw = 1, and (d) Mishmash signal with σw = 5.

subband-dependent has the best results while for Mishmash
MNDL soft thresholding outperforms the other approaches
in almost all cases. While here we have shown the simulation
results for two of six test signals in [8], the results for the
other two signals (Heavy sine, Doppler) are similar to those
of the provided signals.

7.1. Image Denoising. There are many image denoising
approaches, such as recent work in [15, 16]. These
approaches have succeeded in providing good results. They
usually use a particular assumption either on the noisy image
and/or on the class of the data estimator. A well-known
image denoising thresholding approach is BayesShrink.

BayesShrink [12] is a thresholding method that is also
widely used for image denoising. This method attempts to
minimize the Bayes’ Risk Estimator function assuming a
prior Generalized Gaussian Distribution (GGD) and thus
yields a data adaptive threshold [17]. Note that our method
does not make any particular assumption on the data and
is not especially proposed for image denoising. Here we use
the approach for images as an example of a class of two-
dimensional data.

To explore the application of MNDL soft thresholding
in image denoising we use four images: Cameraman (a
sample of a soft image), Barbara (a sample of a highly
detailed image), Lena, and Peppers. These images are shown
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Table 2: MSE comparison of different thresholding methods with the MNDL hard thresholding approach.

Blocks Optimum hard MSE MNDL-SS MNDL hard thresholding MDL VisuShrink

σw = 1 0.13 0.3 0.18 0.2 0.2

σw = 3 1.8 2.8 1.5 2.1 2.2

σw = 6 7.9 9.3 9 9 9.2

σw = 10 14 17.6 17.2 17.7 15.4

Bumps

σw = 1 0.3 0.33 0.32 0.33 0.37

σw = 3 1.32 1.54 1.4 1.68 1.5

σw = 6 4.16 6.1 5 5.2 4.9

σw = 10 9.3 11.3 10.59 15.7 10.63

Quadchirp

σw = 1 0.96 1 .98 1.4 2.29

σw = 3 6.62 4.7 6.75 7 6.9

σw = 6 7.7 8.9 7.8 10.51 8.01

σw = 10 7.86 12 7.86 15.9 8.5

Mishmash

σw = 1 0.9 1.2 0.9 2 3.3

σw = 3 7.1 7.8 7.5 7.4 7.3

σw = 6 7.8 8 7.8 10 7.9

σw = 10 7.86 8.2 7.86 16 8
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Figure 5: The MSE and its estimate in MNDL soft thresholding as a function of m. (a) Blocks signal, σw = 1, (b) Blocks signal with σw = 5,
(c) Mishmash signal with σw = 1, and (d) Mishmash signal with σw = 5.
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Table 3: MSE for (1) Optimum soft thresholding; (2) Optimum
Subband-dependent soft thresholding; (3) MNDL soft thresh-
olding, (4) MNDL Subband-dependent soft thresholding, (5)
Sureshrink.

Blocks 1 2 3 4 5

σw = 1 0.3 0.18 0.3 0.21 0.27

σw = 3 2.1 1.13 2.2 1.23 1.35

σw = 6 6.5 3.2 6.9 3.8 3.3

σw = 10 12.1 7.9 12.5 8 9.7

Bumps

σw = 1 0.3 0.23 0.3 0.26 0.3

σw = 3 1.6 1.13 1.6 1.32 1.5

σw = 6 4.2 3.2 4.3 3.8 3.9

σw = 10 8 7.7 8.3 9.9 8.6

Quadchirp

σw = 1 0.82 0.83 1 0.9 0.91

σw = 3 4.5 4.7 4.6 4.8 6.5

σw = 6 7.2 8.1 7.5 8.9 8.5

σw = 10 7.8 13.19 9.03 15 13.5

Mishmash

σw = 1 0.9 0.95 1.2 1.3 1.2

σw = 3 4.8 5 4.9 5.1 7

σw = 6 7.3 8.5 7.5 9.1 9

σw = 10 7.7 12.7 8.8 14.5 12.8

in Figure 6 and with size 512×512. The wavelet transform
employs Daubechies’s wavelet with eight vanishing moments
and with four scales of orthogonal decomposition.

In Table 4, we compare the MSE of the MNDL with
two well-known thresholding methods: BayesShrink [12]
and SureShrink [8]. All these thresholds are soft subband-
dependent. As the table shows, MNDL thresholding per-
forms better than SureShrink in most cases and is compa-
rable with the BayesShrink. The MNDL soft thresholding
is compared visually with BayesShrink and SureShrink in
Figure 7. As the figure shows, the ringing effect at the edges
of the image with the MNDL soft thresholding is less than
that with the BayesShrink approach. The importance of
the new approach is that it can provide an estimate of
MSE simultaneously. Note that it can also provide estimate
of MSE for other thresholding methods as follows. Find
the closest absolute value of the coefficients to the given
threshold and use the index m of that coefficient and
check the estimate of MSE for the associated Sm. Table 5
shows the optimum subband threshold for Cameraman
and Table 6 shows the thresholds for BayesShrink and
MNDL. As the tables show, the thresholds of MNDL are
slightly larger than the optimum ones. On the other hand
the Bayes thresholds are smaller than the optimum ones,
especially for the coarsest level. While the MSE at this noise
level is almost the same for these methods, the thresholds
indicate that MNDL keeps fewer coefficients compared to
BayesShrink and its threshold is much closer to the optimum
one.

(a) (b)

(c) (d)

Figure 6: Test images. From top left, clockwise: Peppers, Lena,
Cameraman, and Barbara.

8. Conclusion

We proposed thresholding method based on the MNDL-
SS approach. This approach uses the available data error
to provide an estimate of the desired noiseless codelength
for comparison of competing subspaces. In this approach,
the statistics of the data error plays an important role.
Unlike MNDL-SS, in MNDL thresholding the involved
additive noises of the error are highly dependent. The
main challenge of this work was to estimate the desired
criterion in the presence of such dependence. We developed
a method to estimate the desired criterion for the purpose of
thresholding.

Experimental results show that the proposed MNDL hard
thresholding method outperforms VisuShrink most of the
time and the proposed MNDL soft thresholding method
outperforms SureShrink most of the time. Application of
MNDL soft thresholding for image denoising is also explored
and the method proves comparable with the BayesShrink
approach. Unlike the image denoising approaches, with
MNDL thresholding no assumption on the structure of the
signal is necessary. The main advantage of the method is
in estimating both the desired noiseless description length
and the mean square error (MSE). The calculated MSE
estimate provides a quantitative quality measure for the
proposed threshold simultaneously. An additional strength
of the approach is its ability to estimate the MSE for any
given threshold and it can be used for quality evaluation of
any thresholding method.
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Table 4: MSE for various images with (1) Optimum soft MSE, (2) MNDL soft thresholding, (3) BayesShrink, and (4) SureShrink. Averaged
over five runs.

Cameraman Optimum soft MSE MNDL thresholding BayesShrink SureShrink

σw = 5 11.3 12 13.3 12.6

σw = 10 32.5 34.6 35.7 62

σw = 15 58 61 62 85

σw = 20 83.4 87 89.2 102

Barbara

σw = 5 14.5 16.8 15.6 21

σw = 10 42 46.4 51 56

σw = 15 74 80 79 86

σw = 20 109.4 115.2 121.6 121.2

Lena

σw = 5 18.2 20 18.7 19.3

σw = 10 28 30 30.6 30

σw = 15 51 52.9 51.5 54.7

σw = 20 54.8 58 61.6 64

Peppers

σw = 5 16.4 18.1 17.85 17.45

σw = 10 39.4 42 44.5 43.8

σw = 15 61.4 64.95 67 75.95

σw = 20 82.65 87 87.7 94.9

Table 5: Optimum threshold of subbands for Cameraman and
σw = 10.

Level LH HH HL

1 (finest) 10.4 13.9 9.9

2 6.4 8.7 6.9

3 5 5.7 6.6

4 3 4.6 4

Table 6: (a): MNDL threshold, (b): BayesShrink threshold of
subbands for Cameraman and σw = 10.

(a)

Level LH HH HL

1 (finest) 12.5 13.9 11.8

2 10.8 11.7 11.2

3 9.3 9.9 9.4

4 5 5.3 4.7

(b)

Level LH HH HL

1 (finest) 8.2 13.8 6

2 3.8 6 2.5

3 1.7 3.1 1.3

4 1 1.5 0.6

Appendices

A. XSm in Hard and Soft Thresholding

The expected value of the data error in hard thresholding, in
(12), is

E
(
XSm

) = 1
N
E

⎡
⎣

N∑

i=m+1

(
θ(i) + V(i)

)2

⎤
⎦ (A.1)

= 1
N

N∑

i=m+1

θ
2
(i) +

1
N

N∑

i=m+1

E
(
V 2(i)

)

+
2
N

N∑

i=m+1

E
(
θ(i)V(i)

)
.

(A.2)

Since the noiseless coefficients θ(i)s are independent of
the noise part V(i)s, the third term becomes zero and we
conclude with (15).

The expected value of the data error in soft thresholding
is

E
(
XSm

) = 1
N

⎛
⎝

m∑

i=1

E
(
T2
m

)
+

N∑
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1
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N∑
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E
((

θ(i) + V(i)
)2
)
. (A.4)
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) Noiseless image, (b) Noisy image with σw = 15,
(c) Optimum soft thresholding, (d) Bayeshrink, (e) Sureshrink, (f)
MNDL soft thresholding.

The second part of the expected value of the data error in
(A.4) is the same as the expected value of the data error in the
hard thresholding in (A.1). Therefore, (A.4) can be written in
the form of (46).

B. Calculating E[V 2(m)] in MNDLHard
Thresholding

The distribution of noise coefficients is a Gaussian one and
we have V(m) ∼ (0, σ2

w). On the other hand, for a sorted
version of coefficients we have θ(m + 1) < θ(m) < θ(m − 1)
while θ(m) = v(m) + θ(m). Therefore, the following extra
condition holds on the noise coefficients:

θ(m + 1)− θ(m) < v(m) < θ(m− 1)− θ(m). (B.1)

Under the above condition, the desired conditional expected
value is

E
[
V 2(m) | θ(m + 1)− θ(m) < V(m) < θ(m− 1)− θ(m)

]

= τ

Pr
(
θ(m + 1)− θ(m) < V(m) < θ(m− 1)− θ(m)

) ,

(B.2)

where the numerator τ is

τ =
∫ θ(m−1)−θ(m)

θ(m+1)−θ(m)
γ2 1√

2πσw
e−γ

2/2σ2
wdγ

= σw√
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[
θ(m− 1)− θ(m)

]
e−

[
θ(m− 1)− θ(m)

]2

2σ2
w

− σw√
2π

[
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[
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2σ2
w

+ σ2
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⎡
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[
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⎞
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(B.3)

and the denominator is

Pr
(
θ(m + 1)− θ(m) < V(m) < θ(m− 1)− θ(m)

)

= κ1 − κ2,
(B.4)

where κ1 and κ2 are

κ1 =
∫ +∞

θ(m+1)−θ(m)

1√
2πσw

e−γ
2/2σ2

wdγ

= Q

⎛
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[
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κ2 =
∫ +∞

θ(m−1)−θ(m)

1√
2πσw

e−γ
2/2σ2

wdγ

= Q

⎛
⎝
[
θ(m− 1)− θ(m)

]

σw

⎞
⎠.

(B.6)

The conditional expectation of E[(V 2(m))] in (B.2) can be
simplified to

E
[
V 2(m)

] = σ2
w + εh(d1(m),d2(m)), (B.7)

where d1(m), d2(m), and εh(d1(m),d2(m)) are defined in
(22), (23), and (24).
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Any E[V 2(m)] in the paper is the conditional expectation
in (B.2). For notation simplicity, the condition of the
expectation is eliminated throughout the paper.

C. Calculating E[(V(i)− Tm)2] in
MNDL Soft Thresholding

Similar to calculating the conditional expected value of
E(V 2(i)) for MNDL hard thresholding, under the same
condition θ(i + 1)− θ(i) < v(i) < θ(i− 1)− θ(i), we have

E
[

(V(i)− Tm)2 | θ(i + 1)

−θ(i) < V(i) < θ(i− 1)− θ(i)
]

= μ

Pr
(
θ(i + 1)− θ(i) < V(i) < θ(i− 1)− θ(i)

) ,

(C.1)

where the denominator is provided in (B.4) and the numer-
ator is

μ =
∫ θ(i−1)−θ(i)
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There are three integrals in μ. The first integral is

∫ θ(i−1)−θ(i)
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The second integral is

∫ θ(i−1)−θ(i)
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and the third integral is

∫ θ(i−1)−θ(i)

θ(i+1)−θ(i)
2γTm
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2πσw

e−γ
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wdγ

= 2Tmσw√
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(C.5)

The numerator of (C.1) is calculated by adding up (C.3),
(C.4) and (C.5). Therefore, the simplified version of
E[(V(i)− Tm)2] in (C.1) is

E
[

(V(i)− Tm)2
]
= T2

m + σ2
w + εs(d1(i),d2(i),Tm), (C.6)

where d1(m), d2(m), and εs(d1(i),d2(i),Tm) are defined in
(22), (23), and (42).
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