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We present a level set-based method for object segmentation in polarimetric synthetic aperture radar (PolSAR) images. In our
method, a modified energy functional via active contour model is proposed based on complex Gaussian/Wishart distribution
model for both single-look and multilook PolSAR images. The modified functional has two interesting properties: (1) the curve
evolution does not enter into local minimum; (2) the level set function has a unique stationary convergence state. With these
properties, the desired object can be segmented more accurately. Besides, the modified functional allows us to set an effective
automatic termination criterion and makes the algorithm more practical. The experimental results on synthetic and real PoISAR

images demonstrate the effectiveness of our method.

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is a well-
established multidimensional SAR technique based on
acquiring earth’s surface information by means of using a
pair of orthogonal polarizations for the transmitted and
received electromagnetic fields [1, 2]. The object segmen-
tation of PolSAR image plays an important role of PolSAR
image understanding and analysis. In this paper, we focus
on the problem of PolSAR image object segmentation.
In literature, active contour model was well known to
automatically recover the shape of objects from various types
of images and provide a good detection of object boundaries
in PolSAR images [3]. In [4-6], several PoISAR image object
segmentation methods based on the classical snake model
[5] were proposed. But the classical snake model presents
one limitation that topological changes which occur during
the curve evolution are difficult. Because the snake model
discretizes a curve using a set of points, this representation
is hard to describe the curve topological changes.

In [7], a single-look PolSAR image segmentation algo-
rithm based on level set and complex Gaussian distribution
is proposed. In [8], a PoISAR image segmentation method is
developed by embedding complex Wishart distribution into

level set and active contour model. In [9, 10], these level set-
based methods in [7, 8] are improved by a new multiphase
method which embeds a simple partition constraint directly
in curve evolution for PolSAR image segmentation. The
level set-based methods can overcome topological change
difficulties because level set has the significant advantage
of allowing, in natural and numerically stable manner,
variations in the topology of active contour [11].

However, the previous level set-based PolSAR image
segmentation methods [7-10] may result in an unexpected
state when they are used for object segmentation. That is
because the corresponding energy functional which derives
from Chan-Vese model [12] may have a local minimum.
This limitation makes these algorithms may fail to detect the
inside objects or the objects far from the contours. Moreover,
it is difficult to set an automatic termination criterion to
cease the computation automatically for these methods [7-
10], since the value of level set function will not converge to
a stationary state.

In [13], a level set-based energy functional, which is a
modified version of the Chan-Vese model, has been proposed
for bimodal segmentation of optical image. This functional is
designed for the images which are not noisy or the images of
which the noise is not too high. In [14], we proposed a level



set-based energy functional which is a modified functional
in [13]. This functional is proposed for segmentation of SAR
image which contains high level of speckle noise [15]. The
proposed functional in [14] is designed to overcome the
influence of speckle noise in one-dimensional (1D) data for
SAR image. The above two level set-based energy functional
[13, 14] can get a stationary global minimum.

As illustrated in [16], the 1D speckle noise model cannot
be extended to multidimensional SAR data directly though
SAR polarimetry represents an extension to multidimen-
sional data by the use of polarization wave diversity. PoISAR
image segmentation is significantly difficult due to the
complexity of the data and the occurrence of multiplicative
speckle noise [10].

In this paper, following on from our initial effort in [14],
we develop a level set-based bimodal segmentation method
for PolSAR image object segmentation using complex
Gaussian/Wishart observation models. These models are
demonstrated to be effective for POISAR image segmentation
in [5, 7-10]. Besides, we improve the mathematical proof
of the stationary property compared to our previous work
[14]. At last, we discuss the robustness of our method and the
effectiveness of the termination criterion in the experiment.

The rest of the paper is organized as follows. In
Section 2, we present the statistic observation models. In
Section 3, a new energy functional for PolSAR image object
segmentation is proposed. In Section 4, we prove that the
functional can arrive at a stationary global minimum. In
Section 5, an effective termination criterion for the proposed
segmentation method is presented. In Section 6, we deduce
a numerical approximation of the proposed method. In
Section 7 we show the experimental results of our method
on both synthetic and real PolSAR images. The conclusions
are given in Section 8.

2. PolSAR Image Speckle Observation
Model Description

We use different statistical observation models for single-
look and multilook PolSAR image case. Let QO C R be the
domain of a PoISAR image and x the pixel of image.

As [16, 17], a PolSAR sensor measures the 2 X 2 complex
scattering matrix [S], for each resolution cell, which relates
the components of the scattered electromagnetic field with
the illuminating field, for a particular polarization basis. For
the liner polarization basis case,

Shn Shy
[S] - |: Svh va :|’ (1)

where h and v represent the horizontal and vertical linear
polarizations, respectively. S,; is the scattering coefficient
relating the illuminating field with g-polarization and the
received field in p-polarization. [S] can be decomposed in
an orthogonal matrix basis, yielding to the target vector’s
concept [18]. For the lexicographc decomposition basis, the
target vector K is,

k=[S Sw Su Sw]’, @)
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where T indicates transpose. For the backscattering direc-
tion, due to the reciprocity theorem under the BSA conven-
tion [19], that is, Spy = Sy, k can be simplified as

k=[S S Sw] . (3)

In the case of single-look PolSAR images, each pixel
x of the image in a homogeneous region R consists of a
corresponding vector k(x) as (3).

As [16, 20, 21], based on the coherent nature of SAR,
under the Gaussian scatterer assumption, k(x) can be
modeled by a multivariate, complex, zero-mean, Gaussian
probability density function (pdf):

Pk | R) = i exp (=K IICI k), (4)

where t indicates the complex conjugate transpose and |[C]|
denotes the determinant of [C]. This pdf is determined by
the 3 X 3 complex, Hermitian, covariance matrix [C], as

[C] = E{k(x)k(x)'}

E{1Sul*} E{SuSi,] E{Sms3)
= E{Shvs}fh} E{|Shv|2} E{Shvs;kv} ’
E{SuSi} E{swsi,} EfIsn 2]

where E{-} represents the ensemble average, and * is the
complex conjugate of a complex quantity.

To estimate the [C] in a homogeneous region R of
single-look PolSAR images for the proposed segmentation
algorithm in the next section, we use the following maximum
likelihood method as [9, 10]:

Jverk(x)k* (x)
fxERdx ’

In the case of multilook PolSAR images, [C] is estimated
substituting the ensemble average by spatial averaging [16,
17]:

(5)

[Clr = (6)

L
2= X1k )
-1

where L represents the number of looks, and [C]; is the
covariance matrix of a particular pixel defined as [C]; = klk;r .
As [22-24], each pixel x of the multilook PolSAR image in
a homogeneous region R can be represented by a Hermitian
matrix [Z(x)] as (7). Z(x) follows the complex Wishart pdf:

1Z()1" exp(~Ltr([C] ' Z(w)))

P(Z(x) | R) = K(L,3)I[C]|*

, (8)

where tr(-) is the matrix trace, and K(L, 3) is as follows for
PolSAR system:

K(L,3) = w*T(L)[(L — 1)T(L - 2). (9)
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To estimate [C] in a multilook PolSAR image homoge-
neous region R, we use the following maximum likelihood
estimation as [8—10]:

[erZ(x) (i, j) dx

[C]R(l’]) = f Rdx

Vi, j=1,2,3  (10)

3. New Energy Functional for PolSAR
Image Object Segmentation

As the descriptions of the PolSAR image speckle models in
Section 2, we could make the following assumptions. The
PolSAR image consists, at each pixel x € Q, of a matrix I(x).
When the PolSAR image is single-look, I(x) is a complex
vector as k(x) and follows a complex Gaussian distribution as
(4). When the PolSAR image is multilook, I(x) is a complex
matrix as [Z(x)] and follows a complex Wishart distribution
as (8).

As in [10], let P(I | R) be the assumed distribution of T
in the region R C Q. The object segmentation is a partition
{Robjecb Rbackground} of the image domain. {Robject: Rbackground}
is abbreviated to {R,,R,} below. Segmentation into two
classes by Bayesian estimation consists in determining a
partition {R,,Rp} of maximum a posteriori probability as
follows:

{f(o,b} = arg max P({R,, Ry} | I)
\—(—J

posteriori

(11)
=arg max | P(I'| {Ro,Rp}) - P({Ro, Ry }) |-

likelihood prior

Assuming that I(x) is independent of I(y) for x #y, and
taking the negative of the logarithm in (11), this Bayesian
estimation is converted to the following energy function
minimization problem:

{R,,R,} = arg min E(R,, Ry), (12)
where energy function E(R,, R) is defined by,

E(Ro,b)

=<J —log(P(I(x)IRo))dx+J —logP(I(x)Rb)dx),
) XER, XERyp )

likeﬂhood
—log P({Ro, Rp}).
[N ——

prior

(13)

Equation (13) indicates that the minimization of energy
function (13) can obtain the correct object segmentation of
R,. In other words, this turns the problem of object segmen-
tation into a problem of energy function minimization.

In order to solve this function minimization problem by
curve evolution and level set, the energy functional based on
level set function ¢ in [10] is proposed as follows:

Fov-ra(9) =u| | VH(§(x) |dx

~

prior term

~ [ tog(1) | R)H($0)dx

- )

likelihood term

- j  Jog(PI(x) | Ry)H (~()) dx,

likelihood term

(14)

where u is regularization parameter, ¢ is the level set
function, and H(¢) is the 1D Heaviside function, with
H(¢) = 1if¢ = 0or H(¢) = 0if ¢ < 0. R, and Ry are
defined by {¢ < 0} and {¢ > 0}, respectively. The first term
is the prior term which is the classic boundary length term
[25] for smooth segmentation boundaries. The second and
third terms are the likelihood terms which are specified by
the observation model.

As [10], the minimization of level set-based energy
functional (14) via curve evolution is equivalent to the
minimization of (13). And then this turns the problem of
object segmentation into the problem of energy functional
minimization. That is to say, the contours of the objects can
be obtained by the minimization of energy functional (14)
concerning level set function ¢.

However, as pointed out in [13], the segmentation
method in [10] based on the minimization of the functional
(14) has two limitations.

Firstly, the minimizer, which is obtained by the min-
imization of energy functional (14), may become a local
minimizer during curve evolution. Because the likelihood
terms of functional (14) are a modified edition of Chan-
Vese model [12], this model may sometimes enter into a local
minimum, as indicated in [12, 13]. When the minimization
of energy functional (14) enters into a local minimizer, the
segmentation method by [10] based on (14) may fail to
detect the inside region or the objects that are far from the
initial zero level set. This situation is also shown in our
experiments.

Secondly, when we minimize (14) by curve evolution
with respect to ¢ for object segmentation, it is difficult to set
an appropriate automatic terminate criterion based on the
value of the level set function. This is because the value of
the level set function cannot converge to a stationary state
by the minimization of the energy functional (14) via curve
evolution. In practical application, this limitation makes
it hard to decide whether the desired object segmentation
has been obtained and then stop the curve evolution
automatically.



In order to overcome these two limitations, we modify
the likelihood terms of (14) and present the following energy
functional for PoISAR image object segmentation:

Fsm-rol (¢) = MJQ | VH (¢(x)) |dx

~

prior term

—j;mgmHM|&»wMHM+¢u»w

likelihood term

+J;mgmmw|m»wwHw—¢u»w,

likelihood term

(15)

where « is an arbitrary small positive value, and the other
parameters are the same to the functional (14).

As shown in [13], the minimization of energy functional
(15) with respect to ¢ by curve evolution is also equivalent
to the minimization of energy function (6). In other words,
the minimization of the functional (15) will result in a level
set function whose zero level set can be the contours that
separate the objects from the background.

In order to avoid the occurrence of small, isolated regions
in the final segmentation, we take the same prior term as
in [10, 25]. The likelihood terms, which are the second and
third terms of (15), are specified by observation models.
These observation models have been described in Section 2.

The minimization of energy functional (15) by curve
evolution can obtain a stationary global minimum. That
is to say, the corresponding final contours will detect all
the objects in the PolSAR image. Moreover, the modified
likelihood terms with shift Heaviside function can confine
the range of ¢, so that the solution always becomes stationary.
Due to the above improvements, the objects in the PolSAR
image can be fully segmented and a termination criterion can
be imposed on the algorithm due to the stationary solution.
We present a termination criterion in Section 5.

We prove that the minimization of (15) with respect to ¢
can arrive at a stationary global minimum in Section 4.

4. Proof of the Stationary Global Minimum

We have made two modifications in (14) to obtain (15),
multiplying ¢(x) and using shifted Heaviside functions in
the second and third terms of (15). By multiplying ¢(x),
the energy functional (15) can get a global minimum. By
using shifted Heaviside functions, the values of the level
set function will converge to a stationary state. These two
properties will be proved as follows.

Firstly, we introduce that multiplying ¢(x) leads to the
global minimum as follows. In (14), the likelihood terms,
which are the second and third terms of (14), change only
if the sign of ¢(x) changes during the curve evolution.
However, by multiplying ¢(x) in the energy functional (15),
the likelihood terms, which are the second and third terms
of (15), can reflect the value change of ¢(x), even in the
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absence of a sign change of ¢(x). As illustrated in [13, 14],
this modification of the functional can overcome the local
minimum limitation of the Chan-Vese model and guarantee
that a global minimum can be obtained with the energy
functional (15).

Secondly, we prove that the shifted Heaviside functions
can guarantee that the level set function will enter into
a stationary state when the energy functional achieves the
global minimum as follows.

As indicated in [13, 14], the prior term in (15) does not
influence the stationary of the energy functional. Therefore,
we do not consider the prior term in the following proof for
simplicity. We denote by W[¢] the integrand of the energy
functional (15):

Y[¢](x) = —log(P(I(x) | Ry))¢(x)H (a + ¢(x))
+log(P(I(x) | Rp))¢(x)H (& — ¢(x)),

where the values of P(I(x) | R,) and P(I(x) | Rp) only
depend on the zero level set. The values of ¢(x)H (e + ¢(x))
and ¢(x)H (a — ¢(x)) are controlled by all the level sets.

From (16), we can deduce that, during the curve evolu-
tion, every ¢(x) with magnitude value |¢(x)| > & experiences
a change such that |¢(x)| decreases until |¢(x)| < a. This fact
can be concluded as Lemma 1.

(16)

Lemma 1. If ¢(x) is a minimizer for energy functional (16),
then —a < ¢(x) < a whenever Y[$] # 0.

We put the proof of Lemmal in the appendix. By
Lemma 1, the magnitude value of ¢(x) will converge to the
interval —a« < ¢(x) < « at all points when the level set
function achieves the convergence state. Now we only need
to consider the case |¢(x)| < a. In this case, H(a + ¢(x) ) =
H(e — ¢(x) ) = 1. Hence ¥[¢] is simplified as ¥[¢] =
$(x)Ag, where

Ag = —log(P(I(x) | R,)) +log(P(I(x) | Rp)). (17)

Because |¢(x)| < @, we can easily find that if Ay > 0,
the minimizer of ¥[¢] can be obtained when ¢(x) = —a; if
Ag < 0, the minimizer can be obtained when ¢(x) = a; if
Ag = 0, the image may be a homogenous region and there
is no object to be obtained. Observing this fact and based on
Lemma 1, we have the following theorem.

Theorem 1. Assume that I(x) is a continuous function. If ¢(x)
is the minimizer for the energy functional E(¢) in (15), then
$(x) = asign(Ag), whenever sign(Ay) # 0. Here

1 ifa >0,
sign(a) =41-1 ifa<0, (18)
0 ifa=0.

As indicated in [13] that an image can be approximated
by a continuous function, for example, by convolving
it with a Gaussian kernel. Theorem 1 will hold in this
case. The proof of Theorem 1 based on Lemmal has
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been presented in [13]. Theorem 1 can guarantee that
¢(x) will enter into a stationary state when ¢(x) is the
minimizer of the functional (15). The effect of Theorem 1
is also shown in the experiments for PoISAR image object
segmentation.

5. Imposition of a Termination Criterion

An effective automatic termination criterion is important for
a level set-based PolSAR image object segmentation method
when the PolSAR image processing system which employs
this segmentation method needs to automatically determine
whether the desired objects have been obtained.

There are several existing termination criteria for level
set-based PolSAR image segmentation as follows. Firstly, a
termination criterion bases on the comparison between the
¢ values of the current and the previous step. Secondly,
terminate the curve evolution when the sign of the ¢ values
does not change any more. These criteria are not suitable for
they may fail to segment certain regions, for example, inside
regions [13, 14].

Generally one could set a predefined number of iterations
large enough to detect all the desired regions in the PolISAR
image domain. However, this will bring so much unnecessary
computation. What is more, the number of iterations is
dependent on the initialization of ¢ and the kind of PolSAR
image which make it difficult to predefine.

The level set function corresponding to these PolSAR
image segmentation methods [7-10] will not be stationary
when curve evolution enters into a convergence state; so it is
difficult to impose a suitable termination criterion on these
methods based on the value of level set function.

Because the ¢ of our method is stationary, which means
that the value of ¢ will be —« or « at the converged state, we
can easily set a termination criterion for our method based
on the measurement of the convergency of ¢. We define the
“PolSAR step difference energy” (PolSDE) as follows:

11900)] —alf

PolSDE =
° o)

(19)

We can just measure the PolSDE every time step and
terminate the computation automatically when the PolSDE
decreases approximate to 0; for example, if PolSDE <
0.1, stop the curve evolution and then obtain the desired
segmentation result. The effect and graph of the PolSDE are
shown in our experiments.

6. Numerical Approximation

As in [13, 14], we precede the following two steps iteratively
to compute minimizer of (15) by curve evolution via
the Euler-Lagrange equation. Firstly, keeping ¢ fixed, we
compute [C]p using (6) or (10). Secondly, keeping [C]y

fixed, we solve the following gradient descent flow equation
with respect to ¢:

a¢_ w1 V¢
a dw(lwl)

+1og(P(I(x) | Ro))[H (a + ¢(x)) + ¢Jc (a + ¢p(x)) |

—log(P(I(x) | Ry))[H (& = ¢(x)) — ¢0c (a — ¢(x)) ].
(20)

For the implementation of H'(-), we use the compactly
supported regularized version J,(-) which is defined as

roN L _ 1L e
H(z)—&g(z)—n e

(21)

We calculate the curvature using

>

dw( Vi, ) Dy (DEJ*)Z—zszD?JDE;‘Mgg? (o)
|6 (CHEICHY

(22)

0 0 ox :
where D%, D;, D%, D;’”, and D, ;" are central difference

approximations which is defined in [11] as follows:

Do _ Gir1,j — Pi-1,)
= 5 >
DY — Gijr1 — Pij-1
e
DY = ivrj — 2¢1) + i1, (23)

0
Di,]y'y =¢ijr1 — 2¢i; +dij1,

oxy  QPirt,jr1 — Pirt,j-1 — Picrjr1 + Pin1,j1
DY = 4 .

We can start with any initial level set function and
then obtain the same segmentation result in the steady
state because the proposed level set-based energy functional
in Section 3 can arrive at the global minimum by curve
evolution.

We use the following usual notations as [12, 13]: let At
be the time step, and let (7, j) be the grid points. Let ¢;; =
¢(nAt, i, j) be an approximation of ¢(t), with ¢° being the
initial ¢.



As [13], the steps to the implementation with an explicit
finite difference scheme are as follows.

(1) Initialize the level set function.
(2) Compute [C]g, and [C]g, by (6) and (10).
(3) Compute ¢"*! by the following discretization:

¢n+1 _ (pn

At

* 1: V(pi’j
= p* div
ne ( ’V(Pi,j) )

+log(P(I(x) | R,)) [max(sign (a+¢!; ), 0)+¢7;0: (g ) |

— log(P(I(x)| Ry))|max sign(a—¢?;),0)-¢7;0: (a—¢7;) |-
(24)

(4) Calculate the value of PolSDE by (19).

(5) Repeat steps (2), (3), and (4) until PolSDE is less than
the threshold,

Where max(-) is defined as follows:

a ifa=0,

max(a,0) = <| (25)
0 ifa<O.

7. Experimental Results

In the following, we present several experimental results
on synthetic and real PolSAR images to show the object
segmentation effect of our method. We display the span
image of the PolSAR image in this paper.

We choose the parameters for the experiments as follows.
We use 0:(-) which is defined as [12-14] with ¢ = 2.
According to Theorem 1, « can be an arbitrary positive value
theoretically and we set « = 10 or &« = 3 for the following
experiments. It is also shown that different values of & do not
affect the accuracy of segmentation in the experiments. We
stop the curve evolution if PolSDE < 0.1. These parameter
settings are the same for all the experiments. Only the
regularization parameter y, which has a scaling role [12], is
not the same in all experiments. We will give the exact value
of u each time in the following experiments.

In Figures 1 and 2, we compare the segmentation results
of our method with the method in [10]. The ¢ function is
initialized as a signed distance function. We show the PoISAR
images with the corresponding contours.

The synthetic images of single-look and 4-look are both
generated using the ideal segmentation image in Figure 1(a).
In Figure 1, we segment single-look PolSAR image. In
Figure 2, we segment 4-look PolSAR image. It can be seen
that, without a stationary global minimum, the method in
[10] fails to detect the inside region and objects that are far
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from the zero level set, whereas, with our method, all the
regions are detected.

Figure 3 shows the evolutions of the ¢ functions with the
method in [10] and the proposed method. The value of «
determines the converged state of ¢ according to Theorem 1.
The ¢ functions are corresponding to the segmentation
results in Figures 1 and 2. It can be seen that the magnitude of
¢ increases with the method in [10] and does not converge.
With our method, the value of ¢ converges to a. In Figures
3(c) and 3(e), the values of ¢ converge to 3 or 10, respectively.
This proves the effectiveness of Theorem 1.

In the following experiments we use a very simple initial
¢ function. Half of ¢ has the value of 1 and half of ¢ has the
value of —1.

Figure 4 shows the segmentation of the island in a chip
of L-band 4-look AIRSAR image in San Francisco Bay. The
island in the PolSAR image is the foreground for the object
segmentation.

Figure 5 shows the segmentation of the bridge in a part
of L-band 4-look PiSAR image in Niigata. The bridge in the
PolSAR image is the foreground for the object segmentation.

We show the effect of the regularization parameter y in
Figure 6. Figure 6 shows the experiments on the L-band 4-
look AIRSAR image in San Francisco Bay (Figure 4) with
y = land y = 80. There are many small isolate points in
Figure 6(a) with a small weight of regularization term. In
Figure 6(b), with a large weight of regularization term, the
details of the island contour are lost.

Figure 7 shows the segmentation of power transmission
towers in a part of L-band 4-look PiSAR image in Niigata.
The four power transmission towers in the PolSAR image
are the foreground for the object segmentation. In order
to evaluate the robustness of the method with respect
to different initial conditions, we test the three different
initializations represented in Figures 7(a), 7(b), and 7(c). We
obtain the same segmentation result as Figure 7(d). All the
three different initial level set functions converge to the same
object segmentation result. This demonstrates the robustness
of our method to different initializations.

We also plot the PolSDE versus iterations in Figure 8,
which are corresponding to the three different initializations
in Figures 7(a), 7(b), and 7(c). It can be seen from Figure 8
that the values of PolSDE all drop to zero after different
numbers of iterations. Therefore, we can easily impose a
termination criterion on our method to stop the curve
evolution automatically. Furthermore, since our method has
a global minimum, it can be seen that an initialization close
to the true objects (Figure 7(c)) results in a faster object
segmentation process.

We show the role of the parameter « in Figure 9. Figure 9
shows the experiments on the 4-look synthetic PolSAR image
(Figure 2(a)) with & = 10 and a = 3, respectively. According
to Theorem 1, the value of & determines the value to which
¢(x) converges. Thus, if we set & = 3, every ¢(x) converges
either to 3 or to —3, and if we set a = 10, they converge to 10
or —10. The results of Figures 9(e) and 9(f) verify Theorem 1.
The object segmentation results with different values of « are
the same. That is, ¢(x) has the same sign regardless of the
value of « while the magnitude of ¢(x) is different.
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(a)

(b)

FiGure 1: Comparison of single-look synthetic data object segmentation. (a) Ideal segmentation, size: 120 x 120. (b)—(e) Segmentation by
the method in [10]. (f)—(i) Segmentation using our method with global stationary minimum, y = 3.6, « = 3.

In Figure 10, we present the object segmentation results
by the single channel-based algorithm in [14]. As a contrast
experiment, we use the hh and hv channels of PiSAR
image in Figure 7. We adopt the same initialization of
level set function and the same regularization parameter
p. It can be seen from the segmentation results that the
power transmission towers cannot be extracted correctly
from the single channel of the PolSAR image. However, our
algorithm is designed for multidimension SAR data and the
corresponding energy functional is derived from the complex
Wishart distribution which can characterize the multidimen-
sional SAR data effectively [17]. Thus, our algorithm can
extract the information of objects in PolSAR image more
accurately than the method in [14] from single channel.

The proposed algorithm is designed to extract desired
objects in PolSAR images, by relying on an active contour
model and level set. The resulting contours could be
used for high-level PolSAR image analysis, for instance,
object recognition. The experiments show that the proposed
method outperforms previous level set-based approaches for
PolSAR image object extraction in two senses: firstly, it can
provide more accurate object extraction results; secondly,
an automatic termination criterion can be easily set for the
algorithm, which is useful for practical application.

There is a limitation that the accuracy of the proposed
algorithm would decrease when the scenes of background are
very complicated. The reason lies in the description limita-
tion of the observation model (complex Gaussian/Wishart



(a)
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(h)

FiGure 2: Comparison of 4-look synthetic data object segmentation. (a)—(d) Segmentation by the method in [10]. (e)—(h) Segmentation

using our method with global stationary minimum, y = 2, & = 10.

distribution) adopted by our level set-based method. In
complicated scenes, there are several regions of which the
scattering mechanisms are similar to that of the desired
objects. In this case, the adopted unimodal observation
models are not accurate enough to model the background
and the foreground, for instance, complicated urban area.
Thus, the output of our algorithm may mistake the undesired
objects for the desired one because of the inaccurate adopted
observation distribution.

One way to overcome this limitation is to use more
accurate observation models for such scenes of PolSAR

image, for example, the mixture models proposed by [26].
An alternative solution is to introduce some known high-
level cues, such as the context information, as a prior to the
proposed algorithm.

8. Conclusion

We present a new level set-based bimodal method to segment
the objects in PolSAR images. The method has an advantage
that it can get a stationary global minimum. This means that
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F1GURE 3: Evolution of the ¢ function with the method in [10] and our method. (a) Initial ¢ for the following experiments. (b) Evolution
result with the method in [10] for single-look data. (c) Evolution result with our method for single-look data, « = 3. (d) Evolution result
with the method in [10] for 4-look data. (e) Evolution result with our method for single-look data, & = 10.
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(e) (f)

FIGURE 4: Segmentation result on an AIRSAR image, size: 101 X133,
a = 3, u = 20.2. Left column: PolSAR image and the contours.
Right column: corresponding object segmentation results. (a) and
(b) Initial; (c) and (d) after 100 iterations; (e) and (f) converged
state after 350 iterations.

the curve evolution will never converge to a local minimum
and the value of ¢ in the converged state is predictable.
Thereby, the proposed method can detect the desired objects
in the PolSAR images well. Moreover, we can set a reasonable
termination criterion based on the values of level set function
to cease the computation automatically, and this property has
practical value in PolSAR image processing.

A major limitation of our algorithm is that for the
very complex scenes, the object segmentation accuracy may
decrease. The fundamental cause lies in that our method
adopts a simple unimodal complex observation model which
may be not accurate enough to model some complicated
scenes. In view of this point, our plan is to extend the
proposed algorithm by using more suitable observation
models including mixture model which can describe the
complicated scene of PolSAR image more accurately. Also,
another plan is to combine other known high-level context
information with the proposed algorithm to get a more
accurate object segmentation result.

EURASIP Journal on Advances in Signal Processing

L AL T

()

FIGURE 5: Segmentation result on a PiSAR image, size: 102 X 96,
a = 3, u = 113. Left column: PolSAR image and the contours.
Right column: corresponding object segmentation results. (a) and
(b) Initial; (c) and (d): after 30 iterations; (e) and (f) converged state
after 290 iterations.

Appendix

Proof of Lemma 1

Suppose that there exist x; such that [¢(xo)| > a and ¢ is
continuous at xg. Observe that

if ¢(x) > a,

if ¢(x) < —a.
(A1)

Wigl - {(—IOg(P(I(x) | R,))) (),
—(—log(P(I(x) | Ry)))¢(x),

Because P(I(x) | R,) and P(I(x) | Rp) are complex
Gaussian/Wishart distributions, —log(P(I(x) | Rop)) > 0.
We choose ¢ > 0 such that ¢(x) > «a (or ¢(x) < —a) for
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F1GURE 6: Effect of parameter 4 on an AIRSAR image, size: 101 X
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F1GURE 8: PolSDE versus iterations for different initializations.

B:(x), which is the disk centered at xy with the radius £. Now
define the infinitesimal variation in ¢ as follows:

_ ) _
}’]¢(X) = —¢ | (P(X) | [ | ¢(x) | a]XBE(XU)(x)) (AZ)

where yp is the characteristic function of B. With this
variation in ¢, the averages do not change: ave{¢p < 0} =
ave{¢ + ny < O},ave(¢ = 0) = ave{¢ + 14 = 0}. So
\I’[(/) + 11¢] = \I’[</>] for x & Be(x).

Now, consider the case that x € Bg(xo). If ¢(x) > «
and x € B.(xp), we have

\P[¢ + ;1¢] —¥[p] = elog(P(I(x) | Ro))W
= elog(P(I(x) | R))[|¢(x)| —a] <0,

(A.3)

where the equality holds only if —log(P(I(x) | R,)) = 0, or
[¢p(x)| = a. Note that log(P(I(x) | R,)) = 0 implies ¥[¢] = 0
since (A.2).

Similarly, if # € B,(x) and ¢(x) < —a, we have

[ [¢p(x)| —a]

. ¥[g+75] — ¥[g] = elog(PU(x) | RS
© @ — —elog(PU(x) [ Ry))[| $(x) |- o] < 0.
(A4)

FIGURE 7: Segmentation result on a PiSAR image with different o
initialization size: 498 x 213. a = 10, y = 72.6. (a)—(c) Three Hence, a minimizer ¢ must be —a < ¢(x) < «, whenever
different initializations. (d) Segmentation result. W[¢] # 0. This completes the proof.
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(e) (f)

F1GURE 9: Effect of parameter «. Left column: the evolution of the ¢ function with a = 10. Right column: the evolution of the ¢ function
with « = 3. (a) Initial, (¢) 30 iterations, (d) final result. (b) Initial, (d) 36 iterations, (e) final result.
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FIGURE 10: Segmentation results on a single channel of the PiISAR
image by the method in [14]. (a) hh channel after 1380 iterations,
and (b) hv channel after 2100 iterations.
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