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Elevation Circular Synthetic Aperture Radar (E-CSAR) is a novel radar modality used to form radar images from data sets acquired
along a complete or even a segment of a cylindrical geometry above a given scan area. Due to the nonlinear nature of the target
signatures on the E-CSAR data sets, the collected data must be focused. In this paper, a novel E-CSAR reconstruction algorithm
is proposed. The proposed method uses a new formulation of the Green’s function of an E-CSAR scan geometry in which the
phase components introduced by the scan geometry can be clearly identified and their effects can be effectively compensated.
Additionally, theoretical aspects of the point spread function related to this new Green’s function were determined. The feasibility
of the proposed technique was assessed using experimental data sets. The proposed method yielded spatially accurate images and
exhibited an average execution time in the order of minutes.

1. Introduction andMotivation

Since its origins in 1951, Synthetic Aperture Radar (SAR) has
been used for a wide variety of applications, from military
reconnaissance to agricultural imaging to only name two
examples [1]. Similarly to other radar imaging modalities,
SAR techniques collect the reflections from an irradiated
area and process them to create a reflectivity map from
the scattering bodies present in the imaged region [2]. The
SAR data acquisition process can be described as follows.
A trajectory over the scan region is defined. Along this
trajectory, an illuminating source radiates an ultra-wideband
waveform and records the collected reflections from the
objects inside the scan area. The recorded reflections are then
processed to eliminate the distortions caused by the antenna,
the shape of the irradiated waveform, and the motion of the
moving platform [3–5]. Finally, the resulting reflectivity map
can be visualized and interpreted.

The most commonly used scan geometries in SAR
imaging scenarios are linear trajectories [3]. However, this

kind of scan geometries only offer a limited view of the
targets present in the scan region, which may difficult
the interpretation and recognition of the different target
signatures present in the image [6]. This is due to the fact
that a target can present different signatures depending on its
orientation with respect to the scan geometry. The amount of
power reflected from a given target varies according to the
dielectric contrast between the target and the propagation
medium, the relative reflecting area of the target when
viewed from the illuminating location, and the radiated
power density [7]. For example, the power reflected from
a sphere is the same when illuminated from any given
location. On the other hand, the reflected power from a
flat metal plate varies according to its orientation with
respect to the illuminating beam. The signature variations
may difficult the interpretation of the target locations and
orientations in the resulting SAR images. This task becomes
even more complicated if a 3D reflectivity map from the
scan region is required. Nevertheless, this problem can be
solved by spotlighting the scan region using a cylindrical scan
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geometry [8]. This SAR modality is called Elevation Circular
Synthetic Aperture Radar (E-CSAR) [3].

Similarly to other SAR scan geometries, E-CSAR data
sets must be focused in order to be properly visualized and
interpreted. Several reconstruction approaches have been
proposed for this SAR modality, including Time Domain
Correlation (TDC) techniques and Plane Wave Approxi-
mation (PWA) methods. However, TDC techniques have
execution times in the order of days or even weeks and PWA
methods produce images with low focal quality, considerable
spatial location errors and target smearing [9, 10]. An
alternative approach is the use of waveform reconstruction
techniques. These methods are based on performing a series
of operations in the frequency domain that transfer the
collected data from the spatiotemporal domain in which it
was originally collected to the spatial domain where it will
be displayed. It has been shown that wavefront reconstruc-
tion techniques produce spatially accurate E-CSAR images
[3].

Nevertheless, current E-CSAR wavefront reconstruction
approaches still present limitations such as the execution
times in the order of hours and altitude constraints [8,
11]. These considerations limit the widespread use of E-
CSAR techniques in scenarios where the geometry of the
scan region or target detection requirements suit the E-
CSAR advantages, such as novel near field applications like
breast microwave imaging [12], wood inspection [13], and
low altitude SAR imaging scenarios [14]. In this paper,
a novel E-CSAR wavefront reconstruction algorithm is
proposed. Unlike current E-CSAR wavefront reconstruction
approaches, the proposed method uses a novel formulation
of Green’s function of the E-CSAR scan geometry that does
not include a Hankel function and imposes no altitude
restrictions on the inversion algorithm. The algorithm
presented in this paper is an extension of the work presented
by the authors in [15] for radar data sets acquired along
cylindrical scan geometries. This paper is organized as
follows. The E-CSAR signal model is explained in Section 2.
In Section 3, the spectrum of Green’s function corresponding
to the E-CSAR scan geometry is calculated. The proposed
reconstruction method is described in Section 4. A theoreti-
cal analysis of the point spread function of the E-CSAR imag-
ing geometry, including aspects such as the spatial sampling
constraints and resolution, is done in Section 4. In Section 5,
the feasibility of the proposed method is assessed using
experimental data sets. Lastly, some concluding remarks are
mentioned in Section 6.

2. Signal Model

Consider the scan geometry depicted in Figure 1. In E-CSAR
scan scenarios, the data acquisition process is performed
along a series of circular trajectories in the (x, y) plane
defined along the z-axis. The antenna mainlobe is always
pointing towards the center of a scan region with radius Rg .
The antenna radiation footprint is assumed to be constant
over the scan region. A total of T targets are assumed to be
present inside the scan area. The E-CSAR data acquisition
process is performed as follows. At each scan location,

a waveform f (t) is irradiated and the responses from the
targets present in the scan area are recorded. For the scan
location at (R · cos(θ),R · sin(θ), z), the received signal can
be expressed as

s(t, θ, z) =
T∑

p=1

σp(θ, z)

· f
(
t − 2 ·

√
X + Y +

(
zp − zc − z

)2
/c

)
,

(1)

where X denotes (xp − R · cos(θ))2, Y denotes (yp−
R · sin(θ))2, and z ε[0, zmax], c is the medium propa-
gation speed, σi(θ, z) is the reflectivity of the pth target
when irradiated from (R · cos(θ), R · sin(θ), z), (xp, yp, zp)
is the location of the pth target, and zmin and zmax are the
lower and upper spatial bounds of the scan trajectory along
the azimuth direction. The frequency representation of the
reflected signals from each target along the t direction can
be obtained by calculating its Fourier transform which yields
the following expression:

Sp(ω, θ, z) = σp(θ, z) · F(ω)

· exp

(
−2k ·

√
X + Y +

(
zp − zc − z

)2
)

,

(2)

where k = ω/c which is known as the wavenumber and
ω ∈ [ωmin,ωmax] and ωmax and ωmin are the maximum and
minimum frequency components of f (t), and p = 1, 2, . . . ,T .
The exponential term in (3) is also known as the spherical
phase function of the imaging system [3].

3. Wavefront Reconstruction

3.1. Green’s Function Spectrum Calculation. The collected
data sets are a function of the signal travel time and the
recording spatial location. Due to the different travel times of
the target reflections and the shape of the scan geometry, the
target responses exhibit nonlinear signatures when viewed
on the (t, θ, z) domain. An example of this can be seen in
Figure 2. This fact makes difficult to assess the locations and
dimensions of the targets present in the scan area. If the
collected data is directly mapped to a rectangular coordinate
system, the target signatures appear at a shifted location
and present a considerable augment on their dimensions. In
order to properly visualize the target responses, the recorded
data must be focused by transferring it from its original
spatial temporal space to the spatial space related to the
dimensions of the scan area. A common way of performing
this process is to use the phase delay from the recorded
reflections to determine its spatial location. This approach
is known as wavefront reconstruction or holography [3, 16,
17].

Let define the following distance function:

Lp(θ, z) =
√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z

)2
,

(3)
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Figure 1: E-CSAR scan geometry.
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Figure 2: Unprocessed experimental E-CSAR data corresponding
to 2 metal ovoids inside a PVC pipe.
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where
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√
x2
p + y2

p,

ϕp =

⎧
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tan−1
yp
xp

if xp > 0, yp ≥ 0,

tan−1
yp
xp

+ 2π if xp > 0, yp < 0,

tan−1
yp
xp

+ π if xp < 0,

π

2
if xp = 0, yp > 0,

3π
2

if xp = 0, yp < 0,

0 if xp = 0, yp = 0.

(4)

The next step is to determine the Fourier transform of
Sp(ω, θ, z) in the angular and elevation domains. This
operation is given by

Sp(ω, ε, kz) =
∫ zmax

0

∫ 2π

0
σp(θ, z) · F(ω)

· exp
(
− j ·

(
2k · Lp(θ, z) + εθ + kzz

))
dθ dz,

(5)

where ε, and kz are the spatial frequency counterparts of θ
and z respectively. To determine a closed form expression
for (5), the stationary phase method will be used [17]. This
technique determines the Asymptotic Behaviour (AB) of
integrals containing a Phase Modulated (PM) function, as
the value of the modulating terms tends to infinity. This
approach determines the phase center of the PM term by
analyzing the behaviour of its Instantaneous Frequency (IF).
The AB is then determined by evaluating the PM function
at the stationary point. The resulting expression is the
frequency response of the imaging system. This technique
has been used by several radar imaging reconstruction
approaches to determine the frequency response of their
corresponding imaging geometries [5, 18–21].

To calculate the AB of (6), the first step determines
the stationary points in each slow time trajectory, z∗ and
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Figure 4: Block diagram of the proposed inversion approach.
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Figure 5: (a) Diagram of the data acquisition system. (b) Photograph of the data acquisition setup.
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Figure 6: Physical setup for experiment 1. (a) (x,y) plane view, (b) (x,z) plane view, and (c) (y,z) plane view.
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Figure 7: Experiment 1 reconstructed 3D image: (a) (x,z) plane
view, and (b) (y,z) plane view.

θ∗. To make this process easier to follow, the value of
z∗ will be calculated first. The IF in the z direction is
given by

∂
(

2k · Lp(θ, z) + εθ + kzz
)

∂z

=
2k ·

(
zp − zc − z

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z

)2
− kz.

(6)

The phase center along the z direction, z∗, is defined as
follows:

2k ·
(
zp − zc − z

)

√
R2 +r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z

)2
− kz

∣∣∣∣∣∣∣∣
z=z∗

=0.

(7)

By making the left side of (6) equal to zero, the following
expression is produced:

zp − zc − z∗
√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z∗

)2
= kz

2k
. (8)

Notice how the left side of (8) resembles a trigonometric
relationship. Taking advantage of this fact, (8) can be
rewritten as

tan

⎛
⎜⎜⎝sin−1

⎛
⎜⎜⎝

zp − zc − z∗
√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+ A

⎞
⎟⎟⎠

⎞
⎟⎟⎠

= tan
(

sin−1
(
kz
2k

))
,

(9)
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Figure 8: Physical setup for experiment 2. (a) (x,y) plane view, (b) (x,z) plane view, and (c) (y,z) plane view.

0.15

0.1

0.05

0

z
(m

)

−0.102
−0.034

0.034
0.102y

(m
)

−0.102 −0.068 −0.034 0 0.034 0.068 0.102

y (m)

(a)

0.15

0.1

0.05

0

−0.102 −0.068 −0.034 0 0.034 0.068 0.102

x (m)

z
(m

)

0
0.102
y (m)

(b)

Figure 9: Experiment 2 reconstructed 3D image: (a) (x,z) plane
view, and (b) (y,z) plane view.

where A denotes (zp − zc − z∗)2. By algebraically manipu-
lating (9), the next expression is obtained:

z∗ = zp − zc −
kz

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)

√
4k2 − k2

z

. (10)

Next, the value of z∗ will be used to determine the AB of
(5) along the z direction. The resulting expression is

Sp(ω, ε, kz)

=
∫ 2π

0
σp(θ, kz) · F(ω)

·exp
(
− j·

(√
4k2 − k2

z ·Dp(θ, z) + εθ + kzzp − kzzc

))
dθ,

(11)

where σp(θ, kz) is the spectrum amplitude component
in the (θ, kz) domain, ε and kz are the frequency
counterparts of θ and z, respectively, and Dp(θ, z)

=
√
R2 + r2

p − 2Rrp cos(ϕp − θ). Next, the asymptotic
behaviour in the θ direction will be calculated. The IF of the
PM component of (11) in the θdirection is

∂
(
−
(√

4k2 − k2
z ·Dp(θ, z) + εθ + kzzp − kzzc

))

∂θ

= −
(√

4k2 − k2
z

)
· R · rp · sin

(
ϕp − θ

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

) − ε.

(12)

The phase center θ∗ is defined as:

−
(√

4k2 − k2
z

)
· R · rp · sin

(
ϕp − θ

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

) − ε

∣∣∣∣∣∣∣∣
θ=θ∗

= 0. (13)

By algebraically manipulating (13), the following expression
is obtained:

sin
(
ϕp − θ∗

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ∗

) =
−ε(√

4k2 − k2
z

)
· R · rp

.

(14)
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Figure 10: Physical setup for experiment 2. (a) (x,y) plane view, (b) (x,z) plane view, and (c) (y,z) plane view.
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Figure 11: Experiment 3 reconstructed 3D image: (a) (x,z) plane
view, and (b) (y,z) plane view.

By using the fact that the left side of (14) resembles a sine
law relationship, an analytical solution can be obtained. As
depicted in Figure 3, a triangle between the pth target, the
antenna, and the center of the scan pattern is formed. Using
basic trigonometry concepts, it can be shown that θ∗ = ϕp +

α∗ + β∗ − π. Therefore, the relationship between (ϕp − θ∗),
α∗ and β∗ is given by

sin
(
ϕp − θ∗

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ∗

)

= sin(α∗)
rp

= sin
(
β∗
)

R
= −ε(√

4k2 − k2
z

)
· R · rp

.

(15)

From (16), the values of α∗ and β∗ are

α∗ = − sin−1

⎛
⎝ ε(√

4k2 − k2
z

)
· R

⎞
⎠, (16)

β∗ = − sin−1

⎛
⎝ ε(√

4k2 − k2
z

)
· rp

⎞
⎠. (17)

Next, the AB of (5) is calculated by evaluating (11) at θ∗. The
resulting expression is

Sp(ω, ε, kz)

= σp(ε, kz) · F(ω)

· exp
(
− j ·

(√(
4k2 − k2

z

)
r2
p − ε2 +

√(
4k2 − k2

z

)
R2 − ε2

+ ε· sin−1

⎛
⎝ ε(√

4k2 − k2
z

)
· R

⎞
⎠

+ ε · sin−1

⎛
⎝ ε(√

4k2 − k2
z

)
· rp

⎞
⎠

+ε · π + ε · ϕp + kzzp − kzzc

))
,

(18)
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where σp(ε, kz) is the spectrum amplitude component in
the (ε, kz) frequency space. In the majority of the E-CSAR
scenarios, s(t, θ, z) is defined over an L × N × M discrete
space (tl, θn, zm), where L is the number of time samples, N is
the total scan locations in the circular scan pattern defined
in the (x, y)-plane, M is the total number of scan planes
along the z-axis, and l, n, and m denote the sample indexes
along t, θ, and z scan trajectories in that order. Given that the
Shannon-Nyquist theorem was satisfied the mathematical
analysis shown in the last subsection holds true for the 3D
discrete Fourier transform of s(tl, θn, zm), and S(ω′, ε′, k′z),
where ω′, ε′, and k′z are the discrete counterparts of ω, ε, and
kz, respectively.

3.2. Image Reconstruction. In order to properly visualize the
recorded reflections, the effect of the scan geometry must
be compensated and the data must the migrated from the
(t, θ, z) domain to the rectangular space (x, y, z) where it will
be visualized and interpreted. The following steps can be
used to form the 3D image, i(xa, yb, zm), where a and b are
the sample indexes along the x- and y-axes, corresponding to
the collected data set s(tl, θn, zm).

(1) Calculate the 3D FFT of s(tl, θn, zm). The result of this
operation isS(ω′, ε′, k′z).

(2) Next, the effects of the scan trajectory on the collected
data are removed. The phase terms in (18) can be divided
into two main types. The first one, denoted by B(ω′, ε′, k′z), is
the PM terms related to the target responses. These terms are
a function of the target location, (rp,ϕp, zp). The second type
of spectral components, C(ω′, ε′, k′z), is the PM terms related
to the delays produced by the shape of the scan geometry.
In order to eliminate the effects of the scan trajectory
on the collected data, C(ω′, ε′, k′z) must be removed from
S(ω′, ε′, k′z). This is achieved by performing the following
operation:

U
(
ω′, ε′, k′z

) = S
(
ω′, ε′, k′z

) · C(ω′, ε′, k′z
)+, (19)

where C(ω′, ε′, k′z)+ denotes the complex conjugate of
C(ω′, ε′, k′z) which is equal to

C
(
ω′, ε′, k′z

)+

= F(ω)+

· exp

⎛
⎝ j ·

⎛
⎝
√(

4k2 − k2
z

)
R2 − ε2

+ε· sin−1

⎛
⎝ ε(√

4k2 − k2
z

)
· R

⎞
⎠ + ε · π − k′zzc

⎞
⎠
⎞
⎠.

(20)

The resulting spectrum is given by

U
(
ω′, ε′, k′z

)

=
T∑

i=1

σi
(
ε′, k′z

)

· exp

⎛
⎝− j ·

⎛
⎝
√(

4k′2 − k′2z
)
r2
i − ε′2 + ε′

·sin−1

⎛
⎝ ε′(√

4k′2 − k′2z
)
· ri

⎞
⎠ + ε′ · ϕi + k′zzi

⎞
⎠
⎞
⎠,

(21)

where k′ = ω′/c.
(3) The next step is to transfer the data in U(ω′, ε′, k′z),

from the (ω′, ε′, k′z) frequency space to the (k′x, k′y , k′z) spatial
frequency space, where k′x and k′y are the spatial frequency
counterparts of the x and y spatial domains. For this purpose,

the auxiliary function kur(ω′, k′z) =
√

(4k′2 − k′2z ) will be
used. Due to the fact that both k′ and k′z are evenly sampled,
the differences between adjacent values within kur(ω′, k′z)
vary across the grid in which the function is defined.
As mentioned in [22], uneven sampled frequency spaces
are unfit to be processed using FFT-based techniques. To
generate a space without this issue, the function kr(ω′, k′z) is
defined, where the differences between the values present at
adjacent samples are the same for all its domain grid, Δkr =
π/R. We will denote the set of values present in kr(ω′, k′z) by
the (kr , k′z) frequency space. To produce a spectrum suitable
to be processed using FFT techniques, the data present
in each (ω′, k′z) plane in U(ω′, ε′, k′z), is interpolated into
the frequency values specified in the (kr , k′z) space. This
operation is performed for each plane in the ε′direction. The
outcome of this process will be referred as U(kr , ε′, k′z). This
process is also known as Stolt‘s interpolation [19–21].

(4) The inverse FFT of the focused data is computed on
the ε′direction, resulting in a representation of the collected
data in the (kr , θn, k′z) domain. We will refer to the resulting
spectrum by U(kr , θn, k′z).

(5) At this point, a new frequency space, denoted by
(kux , kuy , k′z) is generated, where

kux = kr · cos(θn),

kuy = kr · sin(θn).
(22)

This mapping is performed for the (kr , θn) plane correspond-
ing to each k′z value.

(6) Next, we can map U(kr , θn, k′z) into (kux, kuy , k′z) using
the following function:

I
(
kux, kuy , k′z

)
= U

(
kr , θn, k′z

) ∀(u, v) ∈ (ρ,ϕ
)
, (23)

where the corresponding (kux, kuy) for each (kr , θn) point is
given by (22).

(7) Similarly to kur(ω′, k′z), the differences between
adjacent samples in the (kux, kuy) plane are not constant,
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resulting in a nonuniformly sampled frequency space. In
order to obtain an evenly sampled spectrum, a new discrete
frequency space, denoted by (k′x, k′y , k′z), is defined. In
this space the separation between samples in each (k′x, k′y)
plane is Δk′y = Δk′x = π/R. Next, the evenly sampled
spectrum I(k′x, k′y , k′z) is generated by interpolating the data
contained in I(kux, kuy , k′z) into the frequency values specified
in the (k′x, k′y , k′z) space.

(8) Finally, in order to visualize the reconstructed data in
the spatial domain a 3D inverse FFT is applied to I(k′x, k′y , k′z).
The result of this process is the 3D model i(xa, yb, zm). A
flow diagram of the reconstruction process can be seen in
Figure 4.

4. Point Spread Function Analysis

4.1. Preliminaries. The point spread function (psf) is an
important analytical tool to assess the spatial constraints
of a radar system. This mathematical expression provides
a measure of the spatial resolvability of a particular scan
geometry and waveform. Additionally, the psf is also used to
determine the spatial sampling criteria needed to properly
record and reconstruct radar data sets. In general, the point
spread function of the pth target along a generic scan
trajectory w is modeled as follows:

psfp
(
Ωw,p,w

)
=
∣∣∣Ωw,p

∣∣∣sinc
(
Ωw,p ·w

2π

)
, (24)

where Ωw,p is the support band of the collected responses
from the pth target along the w scan direction. The extension
of Ωw,p is obtained by calculating the difference between
the maximum and minimum IF values along each scan
trajectory [3]. From basic radar signal theory, it is well
known that the support band corresponding to the fast time
trajectory t is the same for all the targets in the scan area, or
in other words, |Ωt,p| = B, where B is the bandwidth of the
radiated waveform. The psf function of a radar signal in the
fast time trajectory is given by

psfp(B, t) = 4πB
v

sinc
(
B · t
v

)
. (25)

The spatial resolution achieved by this psf is equal to

Δtp = v

2B
. (26)

To properly define the psf for a multidimensional SAR
system, the support bands along the slow time trajectories
must be calculated. Thus, in the following discussion, the
behaviour of the psf in the θ and z trajectories is analyzed.
The corresponding resolution values in both slow-time
trajectories are calculated and the corresponding sampling
requirements are determined.

4.2. Angular Scan Trajectory. For the E-CSAR spf, the IF
along the θ scan direction is given by

∂
(

2k · Lp(θ, z)
)

∂θ

=
2k · Rrp sin

(
ϕp − θ

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z

)2
.

(27)

The maximum IF value is achieved at

ϑp

= cos−1

⎛
⎜⎜⎝
γ
(
R, rp,

(
zp−zc−z

))
−
√(

γ
(
R, rp,

(
zp−zc−z

)))2−4

2

⎞
⎟⎟⎠,

(28)

where

γ
(
R, rp,

(
zp − zc − z

))
=

R2 + r2
p +
(
zp − zc − z

)2

R · rp
(29)

and the corresponding IF value is

∂
(

2k · Lp(θ, z)
)

∂θ

∣∣∣∣∣∣
ϕp−θ=ϑp

=
2k · Rrp sin

(
ϑp
)

√
R2 + r2

p − 2Rrp cos
(
ϑp
)

+
(
zp − zc − z

)2
.

(30)

Similarly, it can be shown that the minimum IF value with
respect to θ is achieved when ϕp − θ = 2π − ϑp. The IF value
in this case is

∂
(

2k · Lp(θ, z)
)

∂θ

∣∣∣∣∣∣
ϕp−θ=2π−ϑp

= −
2k · Rrp sin

(
ϑp
)

√
R2 + r2

p − 2Rrp cos
(
ϑp
)

+
(
zp − zc − z

)2
.

(31)

Therefore, the value of Ωθ,p is given by

Ωθ,p =
2k · Rrp sin

(
ϑp
)

√
R2 + r2

p − 2Rrp cos
(
ϑp
)

+ (zp − zc − z2)2

−
−2k · Rrp sin

(
ϑp
)

√
R2 + r2

p − 2Rrp cos
(
ϑp
)

+ (zp − zc − z2)2
,

Ωθ,p =
4k · Rrp sin

(
ϑp
)

√
R2 + r2

p − 2Rrp cos
(
ϑp
)

+ (zp − zc − z2)2
.

(32)
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Ωθ,p is not the same for all the targets in the scan area,
because it is a function of the target location and the scan
plane. Nevertheless an accurate estimate of the psf mainlobe
width can be calculated by using the center value of the
domains of k, rp, and (zp − z) [2]. For a set of fixed R and
B values, the average spatial resolution that can be achieved
in this support band is given by

Δθ
(
rq, zq

)
=

c

√
R2 +

(
rq/2

)2 − 2R
(
rq/2

)
cos
(
ρ
)

+
(
zq/2

)2

4 fc · R ·
(
rq/2

)
sin
(
ρ
) ,

(33)

where rq is the radius of the scan area, zq is the length of the
scan geometry along the z-axis, fc is the center frequency of
the emitted signal, and

ρ = cos−1

⎛
⎜⎜⎝
γ
(
R, rq/2, zq/2

)
−
√(

γ
(
R, rq/2, zq/2

))2 − 4

2

⎞
⎟⎟⎠.

(34)

Finally, to avoid the presence of aliasing along the θ scan
direction in the collected data, the spacing between scan
locations in this slow-time direction must be set in such a
way that the Nyquist sampling criterion is satisfied. For this
purpose, the maximum value that Ωθ,p can achieve must be
determined, within the limits imposed by the scan trajectory.
A simple way of determining this value is by substituting the
upper bound values of the domains corresponding to the k,
rp, and (zp − z) variables into the right side of (31). The
resulting expression is

∂
(

2k · Lp(θ, z)
)

∂θ

∣∣∣∣∣∣
k=km ,rp=rq ,(zp−zc−z)=zq ,ϕp−θ=ϑ̃

=
2km · Rrq sin

(
ϑ̃
)

√
R2 + r2

q − 2Rrp cos
(
ϑ̃
)

+ z2
q

,

(35)

where

ϑ̃ = cos−1

⎛
⎜⎜⎝
γ
(
R, rq, zq

)
−
√(

γ
(
R, rq, zq

))2 − 4

2

⎞
⎟⎟⎠, (36)

and km is the maximum wavenumber value present in the
emitted signal. Therefore, the angular separation between
adjacent scan locations along the θ scan direction, δθ, must
satisfy the following criterion:

δθ ≤
c

√
R2 + r2

q − 2Rrq cos
(
ϑ̃
)

+ z2
q

4 fm · R·rq sin
(
ϑ̃
) , (37)

where fm is the minimum wavelength present in the radiated
signal.

4.3. Azimuth Scan Trajectory. The IF of the E-CSAR psf with
respect to z is

∂
(

2k · Lp(θ, z)
)

∂z

=
2k ·

(
zp − zc − z

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − z

)2
.

(38)

And the size of the support band is

Ωz,p =
2k ·

(
zp − zc + zq/2

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc + zq/2

)2

−
2k ·

(
zp − zc − zq/2

)

√
R2 + r2

p − 2Rrp cos
(
ϕp − θ

)
+
(
zp − zc − zq/2

)2
.

(39)

The support band for this slow time trajectory Ωz,p is
also a function of the target location and the scan angle. In
this case we can also use the center values of the domains
corresponding to k, rp, (zp − zc − z), and (ϕp − θ) to define
an average value for the support band. Following a similar
approach to the one used for (35), the average psf mainlobe
size in the z direction (with fixed R and B) values is equal to

Δz
(
rq, zq

)
=

c

√
R2 +

(
rq/2

)2
+
(
zq/2

)2

4 fc · R·zq
. (40)

Finally, in order to satisfy the Nyquist criterion in the z scan
trajectory, the spacing between scan planes, δz, must satisfy
the following condition:

δz ≤
c
√
R2 + r2

q + z2
q

4 fm · R·zq
. (41)

5. Results

The performance of the proposed reconstruction approach
was assessed using experimental data sets collected from a
Stepped Frequency Continuous Wave (SFCW) radar system.
The system consists of a 360 B Wiltron network analyzer
and an AEL H horn antenna with a length of 19 cm and a
height of 12 cm. This antenna is mounted on a support base
that is mechanically attached to a mechanism that allows
its vertical motion. This mechanism is operated by using
a step motor. The support base is made of synthetic low
reflective foam. The phantom is mounted into a platform
made of maple wood with a height of 25 cm. In order to
accurately emulate a cylindrical scan trajectory, the platform
is attached to the top of a step motor in order to rotate the
phantom. Both step motors are operated using a custom
designed control system. This system can communicate to
a PC via the serial port in order to specify the desired scan



EURASIP Journal on Advances in Signal Processing 11

Table 1: Permittivity values of the materials used in the phantom
structure and support base.

Material Permittivity value (6 GHz)

PVC 3

Air 1

Maple wood 1.55–1.7

Synthetic foam 1.05

locations. A SFCW waveform with a bandwidth of 11 GHz
(1–12 GHz) was used in all the experiments. The system
was characterized by recording the reflections of a steel
sphere inside an anechoic chamber. The reference signal was
subtracted from the experimental data in order to eliminate
distortions introduced by the system components. The data
acquisition setup was surrounded by electromagnetic wave
absorbing material to reduce undesirable reflections from the
surrounding environment. The data was reconstructed using
a 2.6 GHz dual processor PC with 3 GB RAM.

The phantom used in all the experiments consists of a
Polyvinyl Chloride (PVC) pipe filled with synthetic foam
disks. The PVC pipe was used as a support structure and has
an inner diameter of 10 cm and a height of 90 cm. Aluminum
ovoids were used as targets. The ovoids have a 1.2 cm
diameter and a 3 cm height. The dielectric permittivity values
of the materials used in the support base and the phantom
structure are shown in Table 1. A diagram and a photograph
of the data acquisition setup can be seen in Figures 5(a) and
5(b), respectively.

The data acquisition process was performed by rotating
the phantom at 5◦ intervals for a total of 72 positions.
Along the z-axis, the data was acquired at 15 scan planes
with a separation of 1 cm. The value of zc in all the
experiments was 10 cm. In order to allow the beamwidth
to illuminate the entire phantom and reduce undesirable
interferences of antenna early time artifacts, the distance
between the antenna and the center of the phantom was set
to 70 cm. A zero padding factor of 2 was used to improve the
visualization of the reconstructed images. In the following
discussion, the center of the phantom will be denoted as the
origin, and the displayed images show the normalized energy
of the reconstructed data. The sampling along the slow time
scan trajectories, q and z, was done according to the criteria
set in the previous section.

The data collected from three experimental setups was
used to determine the feasibility of the proposed approach
and assess its performance. In all the experiments, the sepa-
ration between the targets was at least equal to twice the value
of the spatial resolution along the fast time scan trajectory
(1.36 cm). In the first experiment, a single ovoid positioned
at (0, 2, 5.5) cm was used. A diagram of the experimental
setup can be seen in Figure 6. The reconstructed 3D model
is shown in Figure 7. In order to have a better visualization
of the target signatures, the PVC pipe reflections were
removed using the method proposed by the authors in
[23]. In the second experiment, two targets were positioned
at (0,−2.5,9) cm and (2.5,0,6) cm. The experimental setup
can be seen in Figure 8. The reconstructed image viewed

Table 2: Location errors and SNR values obtained in each image.

Experiment SNR Target Location error

1 6.7 dB a (0.18,0.36,0) cm

2 6.64 dB
a (0,−0.22,0) cm

b (0.22,0,0) cm

3 7.01 dB
a (0.1,0.25,0) cm

b (0.2,0.25,0) cm

c (0.1,0,0) cm

from an (x, z) plane perspective is shown in Figure 9(a).
The corresponding (y, z) plane perspective view is shown
in Figure 9(b). The third experimental setup is shown in
Figure 10. In this scan scenario, 3 targets were positioned
at (−2,2,6) cm, (2.5,2,8.5) cm, and (0,−2.5,12) cm. The
reconstructed 3D model viewed from an x-axis perspective is
shown in Figure 11(a). The corresponding y-axis perspective
view is shown in Figure 11(b).

To quantitatively assess the performance of the proposed
method, the spatial errors of the reconstructed target
signatures and the Signal-to-Noise Ratio (SNR) of each
reconstructed image were calculated. The SNR of the 3D
images was determined as follows:

SNRw = 20 · log10

⎛
⎝
∑T

q=1 Γq,3 dB/T

σw

⎞
⎠, (42)

where Γp,3 dB is the magnitude of the 3 dB point of the
pth target signature in the 3D model generated by the
proposed algorithm and σw is the standard deviation of
the background noise. The locations errors of the target
signatures and SNR of each reconstructed image are shown
in Table 2. Finally, the computational cost of the proposed
technique was evaluated. The simulated data sets were
generated using the radar simulation tool proposed by the
authors in [24]. The execution time of a set of 75 simulated
sets was measured. The number of angular scan locations in
each plane was 200, and the number of scan planes was set to
21. The order of complexity of the proposed algorithm was
O(n · log(n)), where n is the number of data points. This
resulted in an average execution time of 10 minutes and 10
seconds (30.5 seconds per plane) for a single data set on the
PC used for data processing.

6. Conclusions

In this paper, a novel wavefront reconstruction method for E-
CSAR data is proposed. The algorithm is based on processing
the phase variations exhibited by target reflections along the
slow-time trajectories. These differences are used to migrate
the target responses from the spatial temporal domain where
they are originally collected to a Cartesian space where they
are to be displayed. The spectrum of the psf was calculated
along the slow-time directions using the stationary phase
method. This mathematical approach was chosen because
it produces a closed form expression. The mathematical
model of the inversion algorithm does not include any
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terms in the form of Hankel functions, making the proposed
reconstruction method computationally efficient.

Theoretical aspects, such as the size of the psf and
sampling constraints, were analyzed. In order to determine
the experimental feasibility of the proposed method an
experimental data acquisition system was assembled. The
proposed methods produced spatial accurate imagery with
acceptable SNR values at reasonable computational cost.
Future research will be concentrated on two main aspects.
First, the proposed techniques will be tested on experimental
data sets collected from more complex phantoms in order to
evaluate their feasibility on more realistic scenarios. Finally,
another area of interest is the reduction of the computational
cost of the proposed algorithms.
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