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We propose time-varying FIR equalization techniques for spatial multiplexing-based multiple-input multiple-output (MIMO)
transmission over doubly selective channels. The doubly selective channel is approximated using the basis expansion model (BEM),
and equalized by means of time-varying FIR filters designed according to the BEM. By doing so, the time-varying deconvolution
problem is converted into a two-dimensional time-invariant deconvolution problem in the time-invariant coefficients of the
channel BEM and the time-invariant coefficients of the equalizer BEM. The timevarying FIR equalizers are derived based on either
the matched filtering criterion, or the linear minimum mean-square error (MMSE) or the zero-forcing (ZF) criteria. In addition
to the linear equalizers, the decision feedback equalizer (DFE) is proposed. The DFE can be designed according to two different
scenarios. In the first scenario, the DFE is based on feeding back previously estimated symbols from one particular antenna at a
time. Whereas, in the second scenario, the previously estimated symbols from all transmit antennas are fed back together. The

performance of the proposed equalizers in the context of MIMO transmission is analyzed in terms of numerical simulations.

1. Introduction

The wireless communication industry has experienced a
rapid growth in recent years, and digital cellular systems
are currently designed to provide high data rates at high
terminal speeds. High data rates give rise to intersymbol
interference (ISI) due to multipath fading. Such ISI channels
are described as frequency-selective. On the other hand,
due to the user’s mobility and/or receiver carrier frequency
offset (CFO) the received signal is subject to frequency
shifts. CFO in conjunction with the Doppler shift give
rise to time-selectivity characteristics of the mobile wireless
channel. Therefore, the mobile wireless communication
channel is generally characterized as time- and frequency
selective channel or the so-called doubly selective, which in
turns causes degradation in the system performance. This
motivates the search for efficient and robust equalization
techniques to improve on the information transmission
reliability.

The data rate provided by the wireless communication
system can be increased substantially by using multiple
antennas at the transmitter and at the receiver. It is
well-known that multiple-input multiple-output (MIMO)
systems can provide an increase in the system capacity by
a factor linear in the minimum number of the antennas
used at either the transmitter or the receiver [1, 2]. In
this paper, we address the problem of equalization for
spatial multiplexing-based MIMO transmission over doubly
selective channels. Linear and nonlinear decision feedback
equalizers are proposed based on the minimum mean-square
error (MMSE) and the zero-forcing (ZF) criteria.

For slowly time-varying channel, adaptive techniques for
channel estimation or equalization are developed to combat
the problem of ISI. These algorithms range from the least
mean-squares (LMS) algorithm [3], to the recursive least
squares (RLS) algorithm or Kalman filtering algorithm [4].
For fast flat-fading channels, polynomial fitting of the 1-
tap time-varying channel is used to predict the channel



as proposed in [5]. Extending the polynomial fitting over
the whole packet (or using a sliding window approach) to
time-varying frequency-selective channels is investigated in
[6]. For single-input multiple-output (SIMO) transmission
over doubly selective channels, ZF and MMSE time-varying
FIR equalization techniques were proposed in [7]. The
extension to the DFE equalizer was presented in [8]. In
the MIMO context, the authors in [9] propose block linear
filters to mitigate intercarrier interference (ICI) for OFDM
transmission over time-varying multipath fading channels.
A Kalman filter based MMSE interference suppression is
proposed in [10] for MIMO transmission over doubly
selective channels. In there, a two-stage suppression tech-
nique is proposed; one stage is used to mitigate ISI due to
channel frequency selectivity, and another stage is used to
mitigate ICI due to channel time selectivity. For estimation
of MIMO doubly selective channels, an MMSE pilot-aided
transmission is proposed in [11] for cyclic prefix (CP)
based block transmission scheme. Optimal training design
is proposed in [12]. Adaptive estimation of doubly selective
channels is proposed in [13]. There in a subblock tracking
scheme for the basis expansion model (BEM) coefficients of
the doubly selective channel using periodically transmitted
training symbols.

In this paper, we propose matched filter (MF), ZF
MMSE, and DFE time-varying FIR equalizers for MIMO
transmission over doubly selective channels. Spatial multi-
plexing, where independent data streams are assumed on
different transmit antennas, is considered for the MIMO
transmission. Considering other MIMO transmission tech-
niques, for example, space-time block coding (STBC) [14]
is out of the scope of this paper. In the above mentioned
schemes, perfect channel state information (CSI) is assumed
to be known at the receiver. The basis expansion model
(BEM) [15, 16] is used to approximate the underlying
communication channel, and to model and design the
equalizers. In this sense, a large complex 1D time-varying
deconvolution problem is turned into a lower complexity
2D deconvolution problem in the BEM coefficients of the
channel and the BEM coefficients of the equalizers.

This paper is organized as follows. In Section 2, the
system model is introduced. The time-varying FIR linear
equalizers are developed in Section 3. The time-varying
FIR DFEs are investigated in Section 4. Our findings are
confirmed by numerical simulations introduced in Section 5.
Finally, conclusions are drawn in Section 6.

Notation. We use upper bold face letters and lower bold
face letters to denote matrices and vectors, respectively.
Superscripts #, T, and * represent Hermitian, transpose,
and conjugate, respectively. To simplify notations and save
space, the double summation over the subscripts i and j
is denoted as X;;, where the ranges of i and j should
be clear from the context. We denote the N x N identity
matrix as Iy, the M X N all-zero matrix as Opxn. Finally, ®
denotes Kronecker product, @ denotes the direct sum, and
diag{x} denotes the diagonal matrix with vector x on its
diagonal.
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FIGURE 1: System model.
2. System Model

We consider an MIMO system with N; transmit antennas
and N, receive antennas. The input data stream is spatially
multiplexed across the N; transmit antennas, and transmit-
ted over the time-varying multipath fading channel at a rate
of 1/T symbols/s. Assuming that Tpmay is the maximum delay
spread of all channels and the received symbols are sampled
at 1/T samples/s, the channel order L is then obtained as
L = | Tma/T] + 1. The Ith tap of the time-varying channel
characterizing the link between the tth transmit antenna
and the rth receive antenna at time-index » is denoted as
g9 [m1] for I = 0,...,L. The baseband received signal at
the rth receive antenna at time-index # is obtained as

Ny L
yOnl = > > ¢ mlxOn-11+vT[n], (1)

t=11=0

where x¥)[n] is the QAM symbol transmitted from the tth
antenna at time-index n, and v")[n] is the additive noise
at the rth receive antenna. The baseband equivalent of the
system described by (1) is depicted in Figure 1.

We will use the BEM [15-17] to approximate the doubly
selective channel g (n;I] for n € {0,...,N + L' — 1}
(L" will be the time-varying FIR equalizer order). In this
model, the channel is characterized as a time-varying FIR
filter, where each tap of the time-varying FIR is expressed as
a superposition of time-varying complex exponential basis
functions with frequencies on a DFT grid. The Ith tap of
the approximated time-varying FIR channel between the tth
transmit antenna and the rth receive antenna at time-index
n is expressed as

Q/2
KOl = X byl 2)
q=-Q/2

where Q is the number of time-varying basis functions.
Suppose fmax is the maximum frequency offset of all
channels, the number of time-varying basis functions is
chosen such that it satisfies Q/(2KT) = fuax, where K is
the BEM resolution. In general K is chosen as an integer
multiple of the Block size N. The coefficients hgf) are kept
invariant over a block of N + L" symbols. Substituting the
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FIGURE 2: Time-varying FIR linear equalization for MIMO trans-
mission.

channel BEM (2) into (1) leads to the following: (note that
we use different notations for the true channel g[n; 1] and the
BEM channel h[n;l] to stress the fact that the BEM model
is an approximation of the true channel. However, in the
subsequent analysis we proceed as if the channel follows
exactly the BEM)

y[n] = -0+vInl.  (3)

Z Z eJann/Kh r,t) (t)[

l’lql

Casting the received symbols into blocks of length N +L’, the
received vector at the rth receive antenna is obtained as

N;
=3y h;f D, Zx D + v, (4)

t=1 q,l

where y®™ = [y [-L'],...,y" [N - 1]]7,x® = [xO[-L -
L'),...,x"[N = 1]]7, and v\") is similarly defined as y").
The diagonal matrix D, representing the gth basis function
is defined as D, = diag{[1, ., el AN+ =1/K Ty Sang the
(N + L)X (N+L + L) Toeplitz matrix Z; is defined as
Z; = [ON+1 x(L-1)> IN+L> ON+1)xi ) -

3. Linear Time-Varying FIR Equalization

In this section, linear time-varying FIR equalizers are derived
based on matched filtering (MF), MMSE, and ZF criteria.
Each of these linear equalizers consists of a bank of N;
time-varying FIR filters applied to each receive antenna.
The outputs are combined as shown in Figure 2 to estimate
the transmitted symbols of all data streams on all transmit
antennas. An estimate of the symbol of the ath transmit
antenna at time-index # subject to some decision delay d can
be obtained as

N, L
dl =2 > we* ml'yDm-1], (5

r=11"=0

where w(®") [n;1'] is the time-varying FIR equalizer corre-
sponding to the ath transmit antenna and the rth receive
antenna, and L’ is the order of all filters. As the channel is
approximated using the BEM, the BEM can also be used to
model the time-varying FIR equalizers. The time variation

of each tap is then composed of a superposition of Q" + 1
complex exponential basis functions with frequencies on the
same DFT grid as the BEM of the time-varying channel.
Therefore, the I'th tap of the time-varying FIR equalizer
w(@" [n;1'] at time-index # for n € {0,...,N — 1} is modeled

as
Q2
W(u,r)[n; Il = Z W{(;:lr,)efjbrq n/K’ (6)
q'=-Q/2
where w; . is the BEM coefficient of the q'th basis of

w@)[n;I']. Substituting (6) into (5) an estimate of the
transmitted symbol on the ath antenna at time-index # can
be obtained as

3?(“)

HMZ

Z j2mq’ n/K y(r)[ _r ] (7)
q.

On a block level formulation (vector-matrix form), (7) can
be written as

w “; 1y, (8)
gl

HMZ

where the vector of the estimated symbols x@ =
[x@[-d],...,@[N — d+1]]", the N x N diagonal matrix
D, = diag{[1,...,e/2 N-D/K]T} "and the N x (N + L")
Toeplitz matrix Zy = [Onx( -1, In, Onxr]. Substituting (4)
into (8) yields

N, N;
2@ = Z z Z ZW!(;’ r)* (rt D Z[rD ZlX
r=li=1lq,lI' g,
9)
N,
£ S S WD, Z, v
r=lgql'

The formula (9) can be further simplified using the property
Z,D, = e -1V/KD 7, , which leads to

N, N,
)/E(a) _ Z Z Z Z e]2nq(L ~1I )/KW;?:;’,)*h;rjt)Dkax(t)

r=1t=1 q’,l’ q,l
(10)
N,
E S S WD,z
r=1 q',l’

wherep q+q,k=1+I,and the N x (N + L+ L") matrix

Zi = [Onx(z+1/—k)> In, Onxk]. We can now define f({;ct as

N,

(at) _ i2n(p—q' YL =I')/K ,, (@r)* 1 (r,t)
Tok =D D e =h War' Mo g k-rs (11)
r=1 q’,l'

which is a 2D function representing a weighted 2D convolu-
tion in the time-invariant BEM coefficients of the equalizer
and the time-invariant BEM coefficients of the channel.
Substituting (11) into (10) yields

N;
2@ = 2 Z (at DPZkX

t=1pk

Z > wi Dy Ziv. (12)
r=lgq’l



. (a)t) (a)t)
Defining £ = [fr@r@y20- > Qrayaisws -+

f&t )" and £@ = [f@DT f@NIT]T(12) can
finally be written as

R0 = (f97 e Iy ) (Iy,® A)x+ (W@ e Iy ) (Iy, ®B)v, (13)

where x = [xVT,.. . xMTT v = [vOOT  yWNIT]T and
the matrices A and B are defined as

D_(q:0220o D_grZ
A = | D_q+@)2isr | B=|D_qgpZy|. (14
L ﬁ(Q+Q’)/2iL+L' | ﬁQ’/ZZL’

The time-varying FIR equalizer BEM coefficients vector is
defined as w@ = [w@DT w@NOT]T with wier) =
[w(,“é)/zyo,...,W(,a’Qr,)/z)L,,...,wg’/rz))L,]T. We can derive a rela-

tionship between w(® and £ as follows. First, define the
(L' +1) x (L+ L' + 1) block Toeplitz matrix #,"" as

h(’f(,)f) h(T’Lf) 0
9 . %
(r,t) _ . .
g - Lo SNGE)
(r,t) (r,t)
0 hgy ... hyp

then define the (Q" + 1)(L' +1) X (Q+ Q"+ 1)(L+ L +1)
block Toeplitz matrix &€ ") as

gg(r,t)
(r,t) (r,t)
Q_qndt=y), Qondy),
= 0 .. 0 5
Q_0n %), Qon 3y
(16)
with @, = diag{[e/>™/K,...,1]"}. Defining #© =

[FOOT,. ., FHNDTIT and g€ = [HD,..., HN], we can
derive from (11) the following relationship in the BEM
coefficients of the time-varying FIR channel and the BEM
coefficients of the time-varying FIR equalizers as

f@T — w@Hgp. (17)

3.1. Matched Filter Equalizer. The matched filter (MF) equal-
izer is the optimal linear equalizer (filter) that maximizes
the signal-to-noise ratio (SNR) without necessarily canceling
ISI. Defining the SNR, to be the ratio of the power of the
MF output due to the desired signal to the power of the MF
output due to the noise as

_ Elq"q} _ tr{E{qq"}} (18)
E{nfn}  tr{E{nn"}}’

SNR,

where q and n are the first and the second terms of (13),
respectively. In this definition, q constitutes the output due
to the desired signal, while n constitutes the output due to
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noise. Before we proceed, let us first introduce the following
properties:

tr{ (aT ® IN)V} = alsubtry {V},
(19)
tr{ (aT ® IN)U(a>k ® IN)} = alsubtry {Ula*,

for an arbitrary k X 1 vector a, an arbitrary kN X N matrix V,
and an arbitrary kN X kN matrix U. The operator subtry { -}
splits the matrix into N X N submatrices and replaces each
submatrix by its trace (let A be a pN X gN matrix A =

An Ay
|: ], where A;; is the (4, j)th N X N submatrix of A.
Apt o Apg
The p X g matrix subtry {A} is then defined as subtry {A} =
|:tr{A11} . tr{Agg)
trihp} . trihp)
the column dimensionality by a factor N. Assuming that the
different data streams are independent and possess the same
autocorrelation function such that E{x"x(WH} = R,§[i — j]

fori,j = 1,..., Ny, the SNR at the MF equalizer output can
then be written as

}). Hence, subtry{-} reduces the row and

W(a)HW(INt ® RA)J(’HWW)

SNRg = W(“)HRBW(“) >

(20)

where Ry = subtry{AR,AF}, and Ry = subtry{(Iy, ®
B)R,(Iy, ® BH)}, with R, and R, are the signal and noise
autocorrelation matrices, respectively. For short we define
Q= IN[ ® Ry.

Without loss of generality, the MF equalizer w'®) can
be forced to satisfy the constraint w@HRgw!® = 1, which
can then obtained by solving the following constrained
optimization problem

argmaxw @7 FQH W, st wVHRzw = 1. 1)
w(@

The problem in (21) is a generalized eigenvalue problem,
with the MF equalizer coefficients are obtained as

Wity = eig,,. (R' #Qae™), (22)

where eig_. (A) is the eigenvector that corresponds to the
maximum eigenvalue of the matrix A. For a white source
(R, = 0?2I), and a white additive noise (R, = ¢2I), and a
BEM resolution with K = N, the SNR at the output of the
MF equalizer is obtained as

wOH Je JeHw@ 52

SNR, = —r g (23)
and hence the solution reduces now to
Wit = eig,,, | FeFe1 . (24)

This is a special case of (22). However, for K = 2N, and
provided that the source and the noise are white, the matrices
Ry, and Rp are not scalar multiple of the identity matrix.
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3.2. MMSE and ZF Equalizers. In the following, we will
derive the linear MMSE and ZF equalizers. Starting with the
linear MMSE equalizer, it can be determined by solving the
following minimization problem:

2
argmm E{wa — Zgx@ }, (25)

wia

where the multiplication with Z; accounts for the system
decision delay. The minimization (25) can be equivalently
written as

argmin woH (JGQJ(_’H + RB)W<”)
. (26)
- zm{w(“mat’rff)} + tr{zdeZ;Tl},

where rff) = subtry {(Iy, ® AR, (T & IN)zg}, with e\
an N; dimensional unity vector with one at the ath position
and zeros elsewhere. Solving for w(® in (26), we obtain

wiiase = (R + #6QaeT) 'er@ (27)

-1
=R;'(HR;'H+Q 1) e, (28)

where eff) = e ® ey, with eg is a (Q+ Q + 1)(L +

L’ + 1) dimensional unity vector with one at position (Q +
Q')(L+ L+ 1)/2 + d. Note that (28) is obtained from (27)

by applying the matrix inversion lemma ((A + BCD)™' =
A"' — A"'B(DA'B+C!)"'DA!), and using the fact that

QY =&,

The ZF solution can be obtained from the MMSE
solution by setting the signal power to infinity. Hence, the
ZF solution is obtained as

1
wyp = Ry 9 (HR; ' F¢) el (29)

For the ZF solution to exist, the matrix #€ has to be of
full column rank. A necessary condition for #€ to be of full
column rank is that the inequality N,(Q" + 1)(L" + 1) =
N(Q+Q +1)(L+L"+1) is satisfied. For sufficiently large L',
and Q’, this inequality is satisfied when the number of receive
antennas is larger than the number of transmit antennas,
that is, N, = N; + 1. The MMSE equalizer always exists
regardless of the number of receive antennas. However, the
performance of the MMSE equalizer is largely improved if
the above inequality is satisfied.

Obtaining the linear MMSE and ZF equalizers involves
matrix inversion of size P X Pwith P = N;(Q+ Q" + 1)(L +
L" + 1). Therefore, the computational complexity of these
equalizers requires @ (P?) Multiply-Add (MA) operations.

5
Y
Feed forward
y(l)[n]i o
; [m51'] . .
1 Decision device
1 %@ [y —
| X [n—d] 2@ [n —d]
Y : —
1
I
| fm——————n
(Nr) nl! I I
Y [ ]: (ﬂNr)[n '] : b(“)[n;l"] :
L . i
__________ [iep—|
Feedback

FIGURE 3: Time-varying FIR DFE-I for the ath antenna.

4. Decision Feedback Equalization

In this section we extend the results for linear equalization
to decision feedback equalization. The DFE consists of two
filters, a feed-forward filter and a feedback filter. The feed-
forward and feedback filters are again designed to be time-
varying FIR filters. The time-varying FIR filters in the
forward path are identical to the linear equalizers described
in Section 3.2 (see Figure 2). The feedback filters have as
their input the sequence of decisions on previously detected
symbols. Given the extra degrees of freedom offered by the
MIMO systems, we can devise two different scenarios. In
one scenario, only previously estimated symbols from one
transmit antenna are fed back to cancel/reduce ISI in the data
stream of that particular transmit antenna. This scenario
is referred to as DFE-I. In the other scenario, previously
estimated symbols from all transmit antennas are fed back
together to cancel/reduce ISI in the data stream of one
particular transmit antenna. This scenario is referred to as
DEFE-II.

4.1. DFE-I. The DFE corresponding to this scenario is
depicted in Figure 3. The feed-forward filters w'®") [n;1'] are
identical to the linear equalizers developed in the previous
section. For each data stream only one feedback filter is used
to feedback previously detected symbols of that particular
data stream. For the ath data stream, the feedback filter
b@[n;1""] is again designed as a time-varying FIR filter with
order L”. Hence, an estimate of the transmitted symbol at
time-index n subject to the decision delay d is obtained as

Zzwar

r=11"=0

X[ —d] = (m1']y[n—1T]

L"+A

- Z plax[
I"=A

g0 -1, GV

29[n —d) = Q(X9[n —d]),

where A = d + 1, and Q(-) is the quantizer used by the
decision device. Based on the BEM (6), the time-varying FIR
feedback filter on the (I"’)th tap can be written as

Q12

> bf;),l,, e

q7'=-Q'/2

b(a)[n; l"] — —j27'mq”n/K, (31)



where Q" is the number of time-varying basis functions.
Substituting (31) into (30), and assuming past decisions are
correct, yields the following:

N, Q2 L

=3 X w1

r=1q'=-Q' /2 I'=0

Q2 L'+A
_ Z Z b(?, ?f/ j2nng’ n/K [ lu]
=—Q"/2 1
(32)
With a block level formulation, (32) can be written as
N Q2 I
-3 3 S Dy
r=1q'=-Q/2 I'=
(33)
Q2 L'+A :
a)* 5
- > Z byt Dy Zyx@
Q-2 1

The first part of (33) is similar to (12), and hence can be
written as

N, N;
R0 =SS 90D, 7x0 + S S W D,z

t=1p,k r=lgq,lI'

Q"/2
-2

q'=—Q"/2 I"=A

(34)
L"+A

Assuming the feedback filter is designed such that Q" < Q +
Q',and L” + A < L+ L', then (34) can be written as

N; N,
@ = Z Zf;)“k’t)Dkax(t) + Z Z Wl(;:lr,)*querV(r)
=1 pk r=lqr (35)

- Zb Dy Zix@,

where 5;?,)( = b;ﬁ)’,,,(?[p — q"18[k — I""], that is, zeros are
appended in the feedback filter BEM coefficients such that
the span of the BEM coefficients of the feedback filter

matches that of the sequence fp(i) Hence, (35) can finally be
written in a compact vector-matrix form as

%@ = (f(a>T

+ (w(“)H

Defining b =

®Iy)(Iy, ® A)x
(36)

®Iy) (Iy, ® B) - (b & Iy) Ax(®).

bQ,,/2 17, then

(a) (a)
(605 v es by -
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b@ is obtained as b@ = Pb@, where Pisa (Q+ Q' + 1)(L +
L'+1)x (Q" +1)(L" + 1) selection matrix defined as

0(Q+Q —Q)/2(L+L +1)x(Q +1) (L7 +1)
P= Ligren ®]F , (37)
0(Q+Q - Q)/2(L+L +1)x(Q" +1) (L +1)

with the (L+ L" + 1) X (L"" + 1) matrix J defined as

Oax (L7 +1)
] = I , (38)
O+ -1 —A)x (L7 +1)

where A is restricted to A = d+1 to simplify the forthcoming
analysis. Assuming past decisions are correct, the MMSE-
DEFE is then obtained by minimizing the error across the
decision device as

_ @

arg min
wil@) @

(39)

Using (34) the mean square-error (MSE) function MSE =
)||? can be written as

|Ix(@) de
MSE = w(@H (JeQJfH + RB)W(“)

— 2R W@ (e, ®RA) (B +1") ] (a0

+(l;(“)+ed) RA(b +ed)

Solving for the feed-forward coefficients w® in (40) such
that OMSE/ow(@ = 0, we obtain

—R;'90(Q 7 + HRG 9€) 1O (B +ey), (41)

where I(A“) = eE“’ ®I(g+q+1)1+1+1)- Note that, for no feedback
the feed-forward filter in (41) reduces to the MMSE filter
solution (28). Substituting (41) into (40), yields the following
MSE:

MSE = (b@ +ed) R (b +ey), (42)
where R is given as
-1
RY =R, — 1)) (Q !+ Ry 9¢)  F¢'R;' QI

(43)

The feedback BEM coefficients are then obtained by solving
the following equation:

argmin MSE. (44)
To solve for the feedback filter BEM coefficients, we define
u@ = [b" 2;,,,/2, BT LT, bS], with by =

[bé‘f%o,. . q”,L”] . Hence, (44) is equivalent to the following
constrained quadratic minimization problem

H

s.t. u@

argminu "R u, =1,  (45)
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FIGURE 4: Time-varying FIR DFE-II for MIMO transmission.

where RY” = PTRP where Pisa (Q+ Q' + 1)(L+L +1) x
(Q"+1)(L" +1)+1) selection matrix defined as

0(Q+Q —Q)2L+L + D)X (Q +1)(L"+1)+1
P= (Igne))efe (Igr®)) | (46)

0(Q+Q —Q)/2(L+L +1)X(Q+1)(L7+1)+1
with J is defined as

0d><(L”+2)
| §) , (47)

O —17—A)x(17+2)

=i
Il

and ep is a (Q” + 1)(L” + 1) + 1 dimensional unity vector
with one in position Q" (L” + 1)/2 + 1. The feedback filter
coefficients are then obtained by solving the constrained
quadratic minimization problem (45) as

(a —1
R
u®@ = ﬁa) — (48)

The computational complexity of the feed-forward filter
coefficients requires matrix inversion of size P = N;(Q +
Q + 1)(L + L' + 1), and hence the complexity is O (P?).
Computing the feedback filter coefficients requires matrix
inversion of size (Q” + 1)(L” + 1) + 1, which requires
complexity O(((Q" +1)(L" +1) + 1)%). In most of the cases,
the feedback filter order and number of time-varying basis
functions are smaller than the feed-forward filter order and
number of basis functions, that is, (Q” + 1)(L" + 1) <«
(Q+Q +1)(L+L"+1). Hence, the computational complexity
of the DFE of this scenario is dominated by the computation
of the feed-forward filter @ (P?), which is exactly the same
computational complexity of the linear MMSE or ZF filters.
However, the overall complexity is slightly larger for this DFE
than the linear equalizers.

4.2. DFE-1I. The DFE corresponding to this scenario is
depicted in Figure 4. In this scenario, past estimates of sym-
bols on all data streams are made available to cancel/reduce
ISI. Thus, for each data stream N; feedback equalizers are
employed. Denote the feedback filter that feedback past
decisions of the tth antenna data stream to cancel ISI on
the ath antenna data stream as b®"[n;1"”]. Assuming past
decisions are correct, an estimate of the transmitted symbols
at time-index n subject to the decision delay d can be
obtained as

%
@ [n—d]= Z W(u:lf) ei2nd n/Ky(r) [n— l,]

b;a,’tl) ej2mng " n/K [ —1".

(49)
With a block level formulation, (49) can be written as
N;
%0 = 'S f05, 7x0 1 3 3 w0 D, Zpv
t=1 p,k r=lgq'l'
(50)

N; Q"/2  L'"+A

S S S Be D e

t=1q"=-Q"/2 I"=A

Assuming the feedback filters are designed such that Q" =<
Q+Q and L” + A < L+ L', then we can write (50) as

Nt
%@ = Z Z (at DPZkX + Z Z W{(Ja:lr D er

t=1 p,k r=lgq'l

S S HED, 70,

t=1 p,k

(51)

where b (@f) _ (?,tl)né‘[p q" 16k —

form, (51) can finally be written as

I'’]. In a compact vector

@ = (97T o Iy) (Iy,® A)x+ (W " © Iy) (Iy, © B)

N (52)

- (b(a)H ® IN) (INt ® A)X,
where b@ [Ew DT S<a Nr>T]T, with b@) = Pbl),
and b at) = [b Q”/Z 0>+ b er/z Lise- bQ”/Z er] . The MSE

across the decision dev1ce can then be obtalned as
N ~ 2
MSE = Hx(“) — Zx@
= w@H (F6QFT + Ry ) w'

(53)

— ZER{W(“)HJ(Q (g(“) + ef;)) }

+ (IN)(“) + eff))HQ (b“‘) + e(”)>



Solving for the feed-forward coefficients in (53) such that
OMSE/ow@ = 0, we obtain

w = Ry 9¢(Q1 + 7Rz 9) (B9 + <) (54)

Substituting for the feed-forward coefficients (54) into (53)
yields the following MSE

MSE = (B + e;“))HRi (b +e), (55)

where the matrix R, is given as

R. = Q- Q¥ (#Qa" +R;)  9€7Q
B (56)
= (#"R'FH+Q!) .

Defining u®@ = [u@)7, ., u@N)T]T where

b(@t) t#a
u@? (57)

T
(b LT bE ] =g,

the MMSE-DFE feedback filter BEM coefficients are
obtained by solving for the following constrained quadratic
minimization problem:

argmin u@HRPu@, st u@Hel = 1, (58)
e

where lNI(A“) = P@WTR, P@, with

~

(@) —
P Po... L e...P, (59)

ath position

and eg“) isan N;(Q” +1)(L” +1)+1 dimensional unity vector
with one in position (a—1)(Q"+1)(L"+1)+Q"/2(L" +1)+1.
The feedback filter coefficients are finally obtained as

n(@-1_(a)
0@ = RA~730T. (60)
TR

The computational complexity of the feed-forward filter
coefficients of this scenario requires matrix inversion of size
P x P, which requires @ (P?) MA operations. This complexity
is the same complexity associated with computing the feed-
forward filter coefficients of DFE-I scenario and the linear
equalizer. Computing the feedback filter coefficients requires
matrix inversion of size N;(Q” + 1)(L”" + 1) + 1 x N:(Q"" +
1)(L"+1)+1, which requires O ((N;(Q"+1)(L" +1)+1)*) MA
operations. In this sense, the computational complexity of
DFE-II for the feedback part is N} times the computational
complexity of DFE-I. Provided that (Q” + 1)(L” + 1) <
(Q+Q + 1)(L+L"+1), the computational complexity is
still dominated by the computation of the feed-forward filter.
However, the overall computational complexity for DFE-II is
the highest among all devised equalizers.
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5. Simulation Results

In this section we present some simulation results for the
proposed equalization techniques for MIMO transmission
over doubly selective channels. In the simulations, uncoded
Quadrature Phase Shift Keying (QPSK) modulation is used.
The channel is assumed to be perfectly known at the receiver.
The BEM coefficients are then obtained by least-squares
(LS) fitting the true underlying channel with the BEM.
The performance of the proposed equalization techniques
under channel estimation errors is outside the scope of this
paper, and a topic of further investigation. The channel taps
are simulated as i.i.d random variables, correlated in time
according to Jakes’ model with correlation function r,[n] =
Jo(27t1 finax T'), where ]y is the zeroth-order Bessel function of
the first kind, fiaxT is the maximum normalized Doppler
spread. Two channel setups are used. One with order L = 3,
and fmaxT = 0.001, and another setup with order L = 6, and
normalized maximum Doppler spread fi.xT = 5 X 1074
A BEM window size N = 800 is considered all over the
simulations. The BEM resolution is chosen such that K = N
and K = 2N. We measure the performance in terms of bit
error rate (BER) versus signal-to-noise ratio (SNR). The SNR
is defined as (L + 1)E,/02, where E is the transmitted symbol
energy, and o7 is the additive white Gaussian noise variance.
In all the simulations the decision delay is taken as d =
(L+L")/2+1, and the approximation Ry ~ 021(Q+q/+1)(L+L/+1)
and Rp ~ 021(+1)(1'+1) are used. It is worth mentioning here
that the BEM approximated channel is used for the equalizers
design, but the true channel is used for BER simulations,
which will be subject to channel modeling error.

5.1. Channel Setup-I. In this setup the number of basis
functions is Q = 2 for K = N, and Q = 4 for K = 2N. Two
MIMO setups are considered; a first setup with Ny X N, =
2 x 4, and a second setup with Ny X N, = 2 X 2. In the first
setup, a linear ZF equalizer may exist, and therefore it can be
evaluated against the linear MMSE equalizer and DFE. In the
second setup, only the linear MMSE equalizer and the DFE
are evaluated.

There are many parameters to tune in the simulations,
and to choose the optimal parameter set is a difficult task.
In this sense we divided the problem into two sets. In the
first set we fixed L” and Q" and vary L’ and Q" at a fixed
SNR value. In the second we obtained the optimal (best) L’
and Q" and varied the feedback parameters L” and Q". In
this sense, the BER performance is evaluated as a function
of the feed-forward filter order L’ and number of time-
varying basis functions Q" at a fixed SNR = 8dB. The the
feedback filters parameters are set at Q" = 4, and L' = 3,
which are the same as the channel BEM parameters. The
simulation results corresponding to this setup are shown in
Figure 5. For K = N the BER is significantly improved for
L" > 4 which corresponds to the case where ZF solution
exists. For K = 2N, the BER improves by increasing L', for
a value of L’ > 8, the improvement in the BER becomes
marginal. For this reason the order of the feed-forward filters
is chosen to be L' = 8. Similarly the BER performance
improves by increasing Q'. Clearly there is no significant
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FiGure 5: BER versus Q" and L’ for N; X N, = 2 x 4, SNR = 8 dB.
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F1Gure 6: BER versus Q" and L” for N, X N, = 2 x 4, SNR = 8 dB.

difference in BER performance for Q" = 8 compared to
Q" = 10. Taking complexity into account, Q" is set at
Q = 8. Setting L' = 8, and Q" = 8, we also vary the
feedback filter parameters Q", and L” for the DFE-I and
DFE-II scenarios. At an SNR = 8 dB, the simulation results
are shown in Figure 6. The BER performance improves by
increasing Q"'. For DFE-I scenario the BER performance
significantly improves by increasing Q" up to Q" = 4, for
which the performance is rather steady. For DFE-II scenario,
similar results are observed, except that the performance is
slightly best for Q" = 6. With regard to feedback filters
order L”, the BER performance is significantly improved for
3 < L"” < 5. Therefore, the feedback filter order is set at

BER
=
!
/E
i

SNR (dB)
— K=N o MMSE
--- K=2N A DFE-I
* ZF o DFE-II

Ficure 7: BER versus SNR for N; X N, = 2 X 4.

L” = 3, and the number of time-varying basis functions
is set at Q" = 6. These specifications of the feed-forward
filters are sufficient for the linear ZF equalizer to exist. The
simulation results for the BER versus SNR corresponding to
this MIMO setup are shown in Figure 7. For K = N, the
equalizers suffer from an early error floor at BER = 1072
except for the linear ZF equalizer which shows a higher error
floor at BER = 4 x 1072. For K = 2N, the BER curves
for DFE-I and DFE-II show an error floor at BER = 1.3 x
107% and BER = 1.5 X 107>, respectively. Benchmarking
at BER = 1074, DFE-I, and DFE-II outperform the linear
MMSE and ZF equalizers. An SNR gain of 1.3dB and 2dB
is observed for DFE-I and DFE-II over the linear MMSE
equalizer, respectively. The performance of the linear ZF
equalizer is very marginal. The performance of DFE-II suffers
from a higher error floor than DFE-I, this actually due to
the fact that DFE-II is more prone to error propagation
than DFE-I, which is clear from the BER figures at high
SNR values, where error propagation would become the
limiting factor rather than the noise power. This can also
be explained based on the structure of each equalizer. Based
on their structure, DFE-I feeds back past decisions on only
one data stream to cancel/reduce ISI on that particular data
stream, while DFE-II feeds back past decisions on all data
streams. As such, for DFE-I, incorrect past decisions on one
data stream will influence subsequent decisions on only that
data stream, while incorrect decisions on one or more data
streams for DFE-II will influence subsequent decisions on
the other data streams, and hence more likely to propagate.
Therefore, DFE-II based on its structure is more vulnerable
to error propagation than DFE-I.

For the second setup, the simulation results are shown in
Figure 8. The feed-forward filters are designed to have order
L' = 12, and the number of time-varying basis functions
Q' = 12. For the decision feedback equalizers the feedback
filters are designed to have order L” = 6, and number of
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FiGure 8: BER versus SNR for N; X N, = 2 X 2.

time-varying basis functions Q" = 6. For K = N, the BER
curves of all equalizers suffer from an early error floor at a
BER around BER = 3x 1072, DFE-II marginally outperforms
the linear MMSE equalizer and DFE-I. For K = 2N and
benchmarking at BER = 5 x 1073, an SNR gain of 4dB
and 5.8 dB are observed for DFE-I and DFE-II, respectively,
compared to the linear MMSE equalizer.

5.2. Channel Setup-II. In this setup the number of basis
functions is Q = 2 for K = 2N and Q = 4 for K = 3N.
An MIMO setup with N; X N, = 2 X 4 is considered. The
Linear MMSE and ZF equalizers as well as the nonlinear
DFEs are evaluated. The feed-forward filters are designed
such that L’ = 12, and Q" = 6. The feedback filters are
designed such that L” = 6 and Q" = 4. The simulation
results corresponding to this set up are shown in Figure 9.
For K = 2N, the BER curves for DFE-I and DFE-II show
an error floor at BER = 9.2 x 107® and BER = 5.7 X
1073, respectively. Benchmarking at BER = 107, DFE-I and
DFE-II outperform the linear MMSE and ZF equalizers. An
SNR gain of 1.3dB and 2dB are observed for DFE-I and
DEFE-II over the linear MMSE equalizer, respectively. The
performance of the linear ZF equalizer is very marginal. For
K = 3N, the different equalizers (the ZF does not exist
for this case) exhibit almost the same performance as the
K = 2N case. A slight performance degradation is observed
for the linear MMSE equalizer, this is due to the fact that for
this case more parameters to equalize than the K = 2N case.
The DFE equalizers exhibit lower error floor. An error floor
of BER = 6 x 107° is observed for DFE-I and error floor at
BER = 107> for DFE-IL. Again the BER floor of DFE-II is still
higher than the error floor of DFE-I, which again confirms
the fact that DFE-II is more vulnerable to error propagation
than DFE-I even though with the modeling error is smaller
due to the higher BEM resolution.
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F1GURE 9: BER versus SNR for N; X N, = 2 X 4 channel setup-II.

6. Conclusions

In this paper, time-varying FIR equalization techniques have
been proposed for spatial multiplexing-based MIMO trans-
mission over doubly selective channels. The time-varying
FIR equalizers are designed considering the matched filter,
MMSE and ZF criterion for linear and nonlinear decision
feedback equalizers. The BEM is used to approximate the
doubly selective channel, and to model and design the time-
varying FIR feed-forward and feedback filters. By doing so,
the one-dimensional time-varying deconvolution problem is
reduced to a two-dimensional time-invariant deconvolution
problem in the time-invariant coefficients of the channel
BEM coefficients, and the time-invariant coefficients of the
BEM equalizers. Using the BEM, and for a sufficient number
of BEM parameters, the ZF solution exists for N, > N; + 1,
which extends a well-known result for the time-invariant
MIMO equalization of frequency-selective channels. Using
the extra degrees of freedom offered by the MIMO system,
a DFE that feeds back the previously estimated symbols on
all data streams to cancel/reduce ISI on a particular data
stream can be obtained, which is shown to outperform
the linear MMSE equalizer and the DFE that feeds back
only the previously estimated symbols from one particular
data stream. Block equalizers can be derived, but in general
require high computational complexity. Hence, time-varying
FIR equalization allows for lower complexity equalization
techniques.
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