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In subspace-based method for direction-of-arrival (DOA) estimation of signal wavefronts, the additive noise term is often assumed
to be spatially white or known to within a multiplicative scalar. When the noise is nonwhite but has a known covariance matrix, we
can still handle the problem through prewhitening. However, the problem turns to be complex when the noise field is completely
unknown. In this paper, we study the localization of the sources, when the noise covariance matrix is one unknown band matrix.
An iterative denoising algorithm based on the noise subspace spanned by the eigenvectors associated with the smallest eigenvalues is
developed. The performance of the proposed algorithm is evaluated by computer simulations. We also test the proposed algorithm
with some experimental data recorded during an underwater acoustic experiment.

1. Introduction

Array processing is used in diverse areas such as radar,
sonar, communications, and seismic exploration. Usually
the parameters of interest are the directions of arrival of
the radiating sources. The high-resolution subspace-based
methods for direction-of-arrival (DOA) estimation have
been a topic of great interest. The subspace-based methods
well-developed so far require a fundamental assumption,
which is that the background noise is uncorrelated from
sensor to sensor, or known to within a multiplicative scalar.
In practice this assumption is rarely fulfilled and the noise
received by the array may be a combination of multiple noise
sources such as flow noise, traffic noise, or ambient noise,
which is often correlated along the array [1, 2]. However,
the spatial noise is estimated by measuring the spectrum
of the received data when no signal is present. The data
for parameter estimation is then prewhitened using the
measured noise. The problem with this method is that the
actual noise covariance matrix varies as a function of time
in many applications. At low signal-to-noise ratio (SNR)
the deviations from the assumed noise characteristics are
critical and the degradation may be severe for the localization

result. A maximum likelihood algorithm is presented in [3],
where the spatial noise covariance is modeled as a function
of certain unknown parameters. Also in [4, 5] a maximum
likelihood estimator is analyzed. The problem of incomplete
prewhitening or colored noise is circumvented by modeling
the noise with a simple descriptive model. As opposed to AR
and ARMA models used in [6] this gives the advantages of
incorporating prior knowledge into the model [5, 7]. There
are other approaches to the problem of spatially correlated
noise: one is based on the assumption that the correlation
structure of the noise field is invariant under a rotation or a
translation of the array, while another is based on a certain
linear transformation of the sensor output vectors [8–13].

In this paper, we present an algorithm to estimate the
noise with band covariance matrix. This algorithm is based
on the noise subspace spanned by the eigenvectors associated
with the smallest eigenvalues of the covariance matrix of the
recorded data. The goal of the present study is to investigate
how the perturbations due to the noise covariance matrix
affect the accuracy of the narrow-band signal DOA estimates
[14–18].

The remainder of the paper is as follows. Section 2
presents the high resolution algorithm. Section 3 proposes
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the model of the additive noise. Section 4 introduces the
covariance matrix of the band noise. Section 5 presents
the proposed algorithm. Sections 6 and 7 present some
comparative results concerning the proposed algorithm
exemplified using simulated data and real-world signals in
a noisy environment. Section 8 gives the conclusions.

In this paper, we denote by, x a scalar, x a vector, and X a
matrix.

2. Problem Formulation

Consider an array of N sensors which receive the signals
in one wave field generated by P (P < N) sources in the
presence of an additive noise. The received signal vector is
sampled and the DFT algorithm is used to transform the data
into the frequency domain. We represent these samples by

r
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f
)
s
(
f
)

+ n
(
f
)
, (1)

where r( f ), s( f ), and n( f ) are, respectively, the Fourier
transforms of the array outputs, the source signals, and the
noise vectors. The matrix A( f ), with dimensions (N × P),
is the transfer matrix of the source-sensor array systems
with respect to some chosen reference point. The sensor
noise is assumed to be independent of the source signals
and partially spatially correlated. The sources are assumed
to be uncorrelated. The covariance matrix of the data can be
defined by the (N ×N)-dimensional matrix
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where E[·] denotes the expectation operator, superscript +
represents conjugate transpose, Γn( f ) = E[n( f )n+( f )] is the
(N ×N) noise covariance matrix, and γs( f ) = E[s( f )s+( f )]
is the (P×P) signal covariance matrix. The above assumption
concerning the noncorrelation of the sources means that
γs( f ) is full rank.

The high-resolution algorithms of array processing
assume that the matrix Γn( f ) is diagonal with constant
element. The subspace-based techniques are based on these
properties. For example the Multiple Signal Classification
(MUSIC) [10] null-spectrum Pmusic(θ) is defined by

Pmusic(θ) = 1∣
∣
∣a+(θ)V̂N V̂+

Na(θ)
∣
∣
∣

, (4)

and it is expected that Pmusic(θ) has maximum points around
θ ∈ {θ1, . . . , θP}, where θ1, . . . , θp are the directions of arrival
of the sources. Therefore, we can estimate the DOA by taking
the local maximum points of Pmusic(θ).

In this paper, we consider that the matrix Γn( f ) is
not diagonal because the noise realizations are spatially
correlated and then the performances of these methods are
considerably degraded [16–19].
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Figure 1: Noise correlation along a uniform linear array with N
sensors, ρ is the noise spatial correlation coefficient.

3. Modeling the Noise Field

A fundamental limitation of the standard parametric array
processing algorithms is that the covariance matrix of
background noise cannot, in general, be estimated along
with the signal parameters. So this leads to a unidentifi-
able parametrization, the measured data should always be
regarded to consist on only the noise with a covariance
matrix equal to that of the observed samples. This is a
reason for imposing a model on the background noise.
Several parametric noise models have been proposed in some
literatures recently. Here, as well as in [8, 20], a descriptive
model will be used, that is, the spatial noise covariance
matrix is assumed to be a linear combination of some
unknown parameters, which are weighted by known basis
matrices. There are two different noise phenomenons to be
described. We can model the noise as follows.

(i) An internal noise generated by the sensors so-called
thermal noise. This noise is assumed to be indepen-
dent [8, 11] from sensor to sensor, but not necessarily
spatially white. Then the spatial covariance matrix of
this noise denoted ΓSn( f ) is diagonal.

(ii) An external noise received on the sensors, whose
spatial covariance matrix is assumed to have the fol-
lowing structure [8, 11, 12, 19], ΓBn( f ) = ∑K

k=1 αkβk,
where αk are unknown parameters and βk are
complex weighting matrices, βk are chosen such that
ΓBn( f ) is positive definite and of band structure.

Consequently, the additive noise is the sum of these two noise
terms and the spatial covariance matrix is

Γn
(
f
) = ΓSn

(
f
)

+ ΓBn
(
f
)
. (5)

4. Modeling the CovarianceMatrix of
the Band Noise

In many applications when a uniform linear array antenna
system is used, it is reasonable to assume that noise
correlation is decreasing along the array (see Figure 1). This
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is a widely used model for colored noise. We can then obtain
a specific model for noise correlation under the following
assumptions:

(i) the correlation length is K which means that the
spatial correlation attains up to the Kth sensor;

(ii) the noise realizations received by sensors which are
separated with a distance no less than Kd, where

d is the distance between sensors, are considered
uncorrelated.

The noise correlation model which is obtained is repre-
sented on Figure 1.

In this paper the noise covariance matrix is modeled as
a Hermitian, positive-definite band matrix Γn( f ), with half-
bandwidth K . The (i,m)th element of Γn( f ) is ρmi with

ρmi = 0 for |i−m| ≥ K i,m = 1, . . . ,N
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where ρmi = ρmi + jρ̃mi; i, m = 1, . . . ,N ; ρmi are complex
variables, j2 = −1, σ2

i is the noise variance at the ith sensor,
and ∗ denotes complex conjugate.

In the following section, an algorithm to estimate the
band noise covariance matrix is developed for narrow-band
signals.

5. Estimation of the Noise CovarianceMatrix

5.1. Proposed Algorithm. Several methods have been pro-
posed for estimating the directions of arrival of multiple
sources in unknown noise fields. Initially the noise covari-
ance matrix is measured, when signals of interest are not
present. Other techniques [5, 7, 21] based on the maximum
likelihood algorithm are developed, which incorporate a
noise model to reduce the bias for estimating both the noise
covariance matrix and the directions of arrival of the sources.
In this paper, our approach is realized in two steps. Using an
iterative algorithm, the noise covariance matrix is estimated,
then this estimate is subtracted from the covariance matrix
of the received signals.

As the noise is supposed to be uncorrelated with the
source signals, using (3), one can see that (i, j)th element of
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where [A]i j is the (i, j)th element of the matrix A. These
equations show that the element [Γ( f )]i j for |i− j| < K i =
1, . . . ,N and j = 1, . . . ,N is not impaired by the additive
noise. We know also that [12]
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where Λs( f ) is a (P × P) diagonal matrix containing the
P largest eigenvalues and where the (N × P) matrix Vs( f )
contains the P corresponding eigenvectors of the covariance
matrix Γ( f ). So, we have
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Using (9), we obtain a constraint for estimating cor-
rectly the largest eigenvalues and the corresponding
eigenvectors. Indeed by minimizing the error ‖Γ( f )−
Vs( f )Λs( f )Vs( f )‖F if |i − j| ≥ K we can estimate the
eigen-elements by an iterative algorithm. Then by using
(10) we calculate the noise covariance matrix. The proposed
method for estimating the noise covariance matrix can be
summarized as follows.

Step 1. Estimate the covariance matrix Γ( f ) of the received
signals using T snapshots: Γ( f ) = (1/T)[

∑T
t=1 rt( f )r+

t ( f )].
Calculate the eigendecomposition of this matrix: Γ( f ) =
V( f )Λ( f )V+( f ) with Λ( f ) = diag[λ1( f ), . . . , λN ( f )] and
V( f ) = [v1( f ), v2( f ), . . . , vN ( f )], where λi( f ), i =
1, . . . ,N , (λ1 ≥ λ2 ≥, . . . ,≥ λN ), and vi( f ) are, respectively,
the ith eigenvalue and the corresponding eigenvector.

Initialize the noise covariance matrix by, Γ0
n( f ) = 0.

Step 2. Calculate W(1)
P = V(1)

S ( f )(Λ1/2
S )(1)( f ), and V(1)

S ( f ) =
[v(1)

1 ( f ), v(1)
2 ( f ), . . . , v(1)

P ( f )]. V(1)
S ( f ) is the matrix of the
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P eigenvectors associated withthe first P largest eigenval-

ues of Γ( f ) calculated at the first iteration. Λ
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covariance matrix
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Step 4. Eigendecomposition of the matrix [Γ( f ) − Γ(1)
n ( f )].

The new matrices Δ(2)( f ) and Γ(2)
n ( f ) are calculated using

the previous steps. Repeat the algorithm until a significant
improvement of the estimated noise covariance matrix is
obtained.

Stop Test. The iteration is stopped when ‖Γ(m+1)
n ( f ) −

Γ(m)
n ( f )‖F < ε or the Frobenius norm ‖Γ( f ) −

Vs( f )Λs( f )Vs( f )‖F < ε calculated only with the elements
such that |i − j| ≥ K for i, j = 1, . . . ,N and ε is a fixed
threshold. Symbol ‖ · ‖F stands for Frobenius norm and the
superscript “(m)” indicates the mth iteration.

5.2. Estimation of the Spatial Correlation Length. In the pre-
viously proposed iterative algorithm, the spatial correlation
length of the noise is supposed to be known. In practice, this
is aforehand uncertain, therefore the search for a criterion
of an estimate of K is necessary. In [21], one algorithm
which jointly estimates the number of sources and the spatial
correlation length of the noise is presented. We propose to
vary the value of K until the stability of the result is reached,
that is, until the noise covariance matrix does not vary when
K varies. The algorithm incorporating the choice of the
correlation length K is presented in Figure 2. In the stop test,
we check whether ‖[ΓK+1

n ]( f )− [ΓKn ]( f )‖F < ε or not.

6. Simulation Results

In the following simulations, a uniform linear array of N =
10 omnidirectional sensors with equal interelement spacing
d = c/2 fo is used, where fo is the mid-band frequency and
c is the velocity of propagation. The number of independent
realizations used to estimate thepagebreak covariance matrix
of the received signals is 1000. The signal sources are
temporally stationary zero-mean white Gaussian processes

End

K = 2, 3, . . .

K > N

No

Proposed algorithm

Stop test

‖ [ΓK+1
n ]1( f )− [Γkn]1( f ) ‖F< ε

Yes

No

Yes

Figure 2: Integration of the choice of K in the algorithm, where
[ΓKn ]( f ) indicates the principal diagonal of the banded noise
covariance matrix Γn( f ) with spatial correlation length K .

with the same frequency fo = 115 Hz. Three equipower
uncorrelated sources impinge on the array, with the SNR =
10 dB. The noise power is taken as the average of the diagonal
elements of the noise covariance matrix σ2 = 1/N

∑N
i=1 σ

2
i .

To demonstrate the performance of the proposed algo-
rithm, the following three situations are considered:

(i) Band-Toeplitz noise covariance matrix, with each
element given by a modeling function;

(ii) Band-Toeplitz noise covariance matrix with the ele-
ments arbitrary chosen;

(iii) Band noise covariance matrix used in [16].

In each case, two spatial correlation lengths are studied: K =
3 and K = 5.
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6.1. Noise Covariance Matrix Estimation and Results
Obtained. To localize the directions of arrival of sources and
to evaluate the performance of the proposed algorithm, the
high-resolution methods such as MUSIC [9, 10] are used
after the preprocessing, with priori knowledge of the exact
number of sources (P = 3).

Example 1 (Band-Toeplitz noise covariance matrix). In
this example, the spatial correlation between the noises is
exponentially decreasing along the antenna array and the
elements of the noise covariance matrix are expressed as

[
Γn( f )

]
im = σ2ρ|i−m|e jπ(i−m)/2 if |i−m| < K ,
[
Γn( f )

]
im = 0 if |i−m| ≥ K ,

(12)

where σ2 is the noise variance equal for every sensor and
ρ is the spatial correlation coefficient. The values which are
retained are, σ2 = 1 and ρ = 0.7.

In each of the two studied cases (K = 3 and K = 5), the
noise covariance matrix is estimated with a fixed threshold
value ε = 10−5 after a few iterations and we notice that the
number of iterations for K = 5 is greater than that of K = 3.

Example 2 (Band-Toeplitz noise covariance matrix with the
elements arbitrary chosen). In this example, the covariance
matrix elements are chosen such that their values are
decreasing along the array of antenna. The noise covariance
matrix has the same structure as in Example 1
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(i) The parameters used are in the case K = 3, σ2 = 1,
ρ2 = 0.4 + 0.3 j, and ρ3 = 0.1 + 0.07 j. Using the
proposed algorithm, the three complex parameters
of the noise covariance matrix can be perfectly
estimated.

(ii) For K = 5: σ2 = 1, ρ2 = 0.4 + 0.3 j, ρ3 = 0.1 +
0.07 j, ρ4 = 0.07 + 0.05 j, and ρ5 = 0.01 + 0.009 j.
The proposed algorithm gives good estimates of the
simulated parameters.

Example 3 (Band noise covariance matrix using model in [16,
Example 1]). The configuration of this experiment contains
a ten-element uniform rectilinear array with three sources at
10◦, 12◦, and 15◦(angles are measured with respect to the
normal of the array). One hundred snapshots of array data
were taken.
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Figure 3: RMSE versus sensor noise correlation: proposed method
(solid) and MUSIC method in [16] (dashed).

Example 3.1 (typical correlated noise with sensor spacing
d = c/2 f0).

[
Γn( f )

]
im = σ2

nρ
|i−m| if |i−m| < K ,

[
Γn( f )

]
im = 0 if |i−m| ≥ K ,

(14)

where σ2
n is the noise variance equal for every sensor and ρ

is the spatial correlation coefficient. Figure 3 shows the root-
mean-squared error versus sensor noise correlation factor ρ
over the range from 0 to 0.9. The SNR is held constant at
10 dB (SNR = 10 log(1/σ2

n)), the number of sensor N = 10
and the noise spatial correlation length K = 5.

Figure 4 presents the root-mean-squared error and the
Cramer-Rao bound (CRB) [22] versus signal-to-noise ratio
over the range from 0 to 30 dB.

Figure 5 shows the RMSE performances of the tested
algorithms and the CRB with respect to the number of
snapshots.

Figures 4 and 5 show that it is possible to mitigate the
estimation error if SNR and/or the number of snapshots
increase.

Example 3.2. In order to study the influence of the estima-
tion of the spatial correlation length on the localisation of the
sources, we have considered the same data as in the previous
example. The value of K is varied over the range 1 to N − 1
and for each value the number of the sources (number of
largest eigenvalues) is estimated after applying the proposed
algorithm. Figure 6 shows that the estimation of the number
of the sources is sensitive to the choice of K . The number of
the sources is correctly even the value of K is overestimated
(K = 6). Figure 7 shows the variations of the bias of the
estimated angles for different values of K . When K is equal
to 5 we obtain good results—P = 3 and very small value of a
bias—this conclusion is observed for several scenarios.

Figure 8 shows the norm of the vector difference between
the 10 elements of the principal diagonal of the simulated
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Figure 4: RMSE versus signal-to-noise ratio, K = 5: Cramer-
Rao bound (stars) from [22], proposed method (solid), maximum
likelihood (dashed) [5], and MUSIC method in [16] (dots).
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Figure 5: RMSE versus number of snapshots: Cramer-Rao bound
(dashed) from [22], proposed method (blue), maximum likelihood
[5] (red), and MUSIC method in [16](solid).

matrix and those of the estimated matrix for K = 3 and
K = 5.

Comparing these results, we can remark that when K
increases the estimation error increases. However, the esti-
mation is still small.

Figures 9(a), 9(b), 10(a), 10(b), 11(a), and 11(b) show
the localization results of the sources before and after the
preprocessing. Before the preprocessing, we use directly the
MUSIC method to localize the sources. Once the noise
covariance matrix is estimated with the proposed algorithm,
this matrix is subtracted from the initial covariance matrix of
the received signals, and then we use the MUSIC method to
localize the sources. The three simulated sources are 5◦, 10◦,
and 20◦ for Figure 9; 5◦, 15◦, and 20◦ for Figure 10; 5◦, 15◦,
and 25◦ for Figure 11. For Figure 10; the SNR value (10 dB)
is greater than those of Figures 9 and 11 (SNR = 5 dB).
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Figure 9: Localization of the three sources at 5◦, 10◦, and 20◦

without and with noise preprocessing for K = 3 and K = 5.

The comparison of the results of Figures 10 and 11 comes
to the conclusion that the MUSIC method cannot separate
the close sources without the preprocessing when the SNR
is low, so in Figure 10 we can only detect two sources before
preprocessing. And for each case we can note that there is an
improvement in the results obtained with the preprocessing.
Comparing the results of K = 3 with that of K = 5 for
each figure, we can also reconfirm that when K increases, the
estimation error increases on the estimated noise covariance
matrix, so we obtain better results with the preprocessing for
K = 3 than for K = 5.
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Figure 10: Localization of the three sources at 5◦, 15◦, and 20◦

without and with noise preprocessing for K = 3 and K = 5.

In order to evaluate the performances of this algorithm,
we study, below, the influence of the involved parameter K .

6.2. Performance of the Proposed Method versus Noise Spatial
Correlation Length. Figure 12 shows the variations of the
estimation error of the noise covariance matrix when the
spatial correlation length of the noise K is increasing from
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Figure 11: Localization of the three sources at 5◦, 15◦, and 25◦

without and with noise preprocessing for K = 3 and K = 5.

2 to N for two numbers of the sources P = 1 and P = 9
with SNR = 10 dB and N = 15. This error is defined by,
EE = ‖Γsimulated

n − Γestimated
n ‖F .

These results show that independently of the P-value the
estimation error is null until K = 3 and increases with K
value. This increasing estimation error is larger for greater
values of P.

To study the influence of K on the localization, we draw,
see Figure 13, according to the spatial correlation length K
of the noise, the variations of the bias of estimate of the
azimuths in the case of three sources localized at 5◦, 10◦ and
20◦.
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Figure 12: Estimation error of the covariance matrix of the noise
according to its spatial correlation length with P = 1 and P = 9.
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Figure 13: Bias of the direction estimate according to spatial
correlation length of the noise.

We define that the bias of the P estimated directions of
the arrival of the sources is calculated by

Bias = 1
P

P∑

p=1

bias
(
p
)
, (15)

where

bias
(
p
) = E

[∣∣
∣θ
(
p
)− θ̂

(
p
)∣∣
∣
]
= 1

T

T∑

i=1

∣∣
∣θ(i)− θ̂(i)

∣∣
∣ (16)

with the number of trials T = 500.
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The experimental results presented in Figure 13 show
that the correlation length also influences the estimate of the
DOA values.

The spatial correlation length K authorized by the
algorithm is a function of the number of sensors and the
number of sources. Indeed, the number of parameters of the
signal to be estimated is P2, and the number of parameters
of the noise is Nber(K). In order to estimate them it is
necessary that N2 ≥ P2 + Nber(K) and that K ≤ N . In the
limit case: P = N − 1, we have Nber(K) ≤ 2N − 1, which
corresponds to a bidiagonal noise covariance matrix. If the
model of the noise covariance matrix is band-Toeplitz [5, 21],
the convergence of the proposed algorithm is fast, and the
correlation length of the noise can reach N .

7. Experimental Data

The studied signals are recorded during an underwater
acoustic experiment. The experiment is carried out in an
acoustic tank under conditions which are similar to those in
a marine environment. The bottom of the tank is filled with
sand. The experimental device is presented in Figure 14(a).
A source emits a narrow-band signal ( fo = 350 KHz). In
addition to the signal source a spatially correlated Gaussian
noise is emitted. The signal-to-noise ratio is 5 dB. Our
objective is to estimate the directions of arrival of the
signals during the experiment. The signals are received on
one uniform linear array. The observed signals come from
various reflections on the objects being in the tank. Generally
the aims of acousticians is the detection, localization and
identification of these objects. In this experiment we have
recorded the reflected signals by a single receiver. This
receiver is moved along a straight line between position
Xmin = 50 mm and position Xmax = 150 mm with a step
of α = 1 mm in order to create a uniform linear array (see
Figure 14(b)).

Two objects are placed at the bottom of the tank and
the emitting source describes a circular motion with a step
of 0.5◦ by covering the angular band going from 1◦ to 8.5◦.
The signals received when the angle of emission is θ = 5◦

are shown in Figure 15. This figure shows that there exists
two paths, which may correspond to the reflected signals
on the two objects. The results of the localization are given
in Figure 16. We note that in spite of the presence of the
correlated noise our algorithm estimate efficiently the DOA
of the reflected signals during the experiment.

Figure 16(a) shows the obtained results of the localiza-
tion using MUSIC method on the covariance matrices. The
DOA of the reflected signals on the two objects are not
estimated. This is due to the fact that the noise is correlated.

Figure 16(b) shows the obtained results using our algo-
rithm. The two objects are localized.

8. Conclusion

In this paper the problem of estimating the direction of
arrival (DOA) of the sources in the presence of spatially
correlated noise is studied. The spatial covariance matrix
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Figure 14: The experiment.

20

30

40

50

60

70

80

In
de

x
of

hy
dr

op
ho

n
e

8500 9000 9500 10000 10500 11000 11500 12000

Number of measurement points

Figure 15: Received signals.

of the noise is modeled as a band matrix and is supposed
to have a certain structure. In the numerical example, the
noise covariance matrix is supposed to be the same for all
sources, which covers many practical cases where the sources
are enclosed.
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Figure 16: Localization results.

This algorithm can be applied to the localization of the
sources when the spatial-spectrum of the noise or the spatial
correlation function between sensors is known. The obtained
results show that the proposed algorithm improves the
direction estimates compared to those given by the MUSIC
algorithm without preprocessing. Several applications on
synthetic data and experiment have been presented to show
the limits of these estimators according to the signal-to-
noise ratio, the spatial correlation length of the noise, the
number of sources, and the number of sensors of the array.
The motivation of this work is to reduce the effect of the
additive spatially correlated noise for estimating the DOA of
the sources.
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