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This paper proposes a novel human motion capture method that locates human body joint position and reconstructs the human
pose in 3D space from monocular images. We propose a two-stage framework including 2D and 3D probabilistic graphical models
which can solve the occlusion problem for the estimation of human joint positions. The 2D and 3D models adopt directed
acyclic structure to avoid error propagation of inference. Image observations corresponding to shape and appearance features
of humans are considered as evidence for the inference of 2D joint positions in the 2D model. Both the 2D and 3D models
utilize the Expectation Maximization algorithm to learn prior distributions of the models. An annealed Gibbs sampling method
is proposed for the two-stage method to inference the maximum posteriori distributions of joint positions. The annealing process
can efficiently explore the mode of distributions and find solutions in high-dimensional space. Experiments are conducted on the
HumanEva dataset with image sequences of walking motion, which has challenges of occlusion and loss of image observations.
Experimental results show that the proposed two-stage approach can efficiently estimate more accurate human poses.

1. Introduction

Human pose reconstruction, also called human motion
capture, is one of the most popular research topics in com-
puter vision and machine learning. Reconstructing human
poses can be used to analyze and recognize human behav-
iors in many image understanding applications, including
human-computer interaction, human-robot interaction, and
visual surveillance. Traditionally, motion capture systems use
(electro-magnetic or color blob) markers attached to human
body to obtain human poses. However, it is uncomfortable
and restricts human’s freedom to move. In addition, high
cost and obtrusion are two major drawbacks of these systems.

Recently, researchers focus on markerless approach
which adopts computer vision to analyze human 2D or 3D
human poses according to the observations from images [1].
It has the potentiality to provide an inexpensive, non-
obtrusive solution and non-restrictive user environment
for the estimation of human poses. The complexity of 3D
human pose estimation is higher than that of 2D human

pose estimation, because 3D human poses constitute a
high-dimensional search space for the computation. Some
papers utilize multiple cameras to reconstruct 3D human
poses due to that depth information can be obtained
to ease the problem. However, reconstructing 3D human
poses from monocular image sequences is more attractive
because it has many advantages such as convenient to use,
less restrictions and no computational loading of camera
calibration. The challenge of this approach is to infer 3D
poses of a highly articulated, self-occluding human gesture
from 2D motion sequences without depth information.
It is an ill-posed problem because different 3D human
poses can have the same 2D projection in the image space
due to the occlusion problem of human body such as
hidden hands and lower limbs occluded by other body
parts.

Model-free (or discriminative) and model-based (or
generative) methods are two kinds of approaches for mark-
erless monocular human motion capture. Different from
model-free method that searches approximate human pose,
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model-based method provides more exact estimation result
of human pose details. Bayesian network is one of effi-
cient ways in model-based approaches. Bayesian network
approach can model the kinematics of body configura-
tion with probabilistic graphical networks. It constitutes
a function mapping from features in images to 3D poses
of human body. The estimation of 3D poses is achieved
by inferencing posteriori distribution of human body parts
from belief propagation in the probabilistic graphical net-
works. Although Bayesian network may solve the occlusion
problem, an efficient inference algorithm has to be discov-
ered.

Previous works inference 3D human poses from monoc-
ular image sequences directly by image observations. How-
ever, human motions with high-degree freedom usually
cause self-occlusion and unpredictability. The function
mapping from image observations to 3D poses is highly
complex.

Rather than the classical algorithms, in this paper,
the function mapping is decomposed into two stages.
The two-stage model includes a 2D pose and a 3D pose
belief propagation networks. The first stage will estimate
2D poses from image observations, and the second stage
reconstructs 3D poses from the estimated 2D results. The
adding of 2D human pose information can decompose the
indirect causal relationship between image observations and
3D human poses. More accurate inference results can be
obtained by reducing the computational complexity of the
3D pose estimation problem. Especially, an annealed Gibbs
sampling method is proposed for the inference of the two-
stage model. The inference algorithm adopts an annealing
process for the sampling of posteriori distributions and can
efficiently reconstruct 3D poses. The proposed algorithm has
lower cost in computing time than that of Gibbs sampling
methods.

Figure 1 sketches the proposed two-stage pose estima-
tion method. The method includes three important steps
that are feature extraction, 2D pose estimation, and 3D
pose estimation. The feature extraction step obtains image
observations, such as silhouette and appearance features of
human. The 2D pose estimation step inferences 2D human
poses via these image observations by an annealed Gibbs
sampling algorithm. The result of 2D pose estimation step
is used to be the observations of the 3D pose estimation step.
Both the 2D and 3D models are trained by the Expectation
Maximization (EM) algorithm before estimation process.
The training features in 2D model training block are the
visual features obtained by the feature extraction block. The
training features adopted in the 3D model training block
include 2D inference results and parts of visual features that
can provide 3D information.

The remainder of this paper is structured as follows.
Section 2 reviews earlier related work. Our approach is
presented in Sections 3 and 4. In Section 3, a formal descrip-
tion of the proposed two-stage probabilistic framework is
presented. This is followed in Section 4 by the extraction of
image observations of the human poses. Experimental results
are reported in Section 5 to discuss the performance of the
approach. Section 6 concludes the paper.

2. Review of PreviousWork

Model-free approach [2–7] is one kind of monocular
pose estimation approach that establishes a direct relation
between image observation and human motion. It recovers
the kinematics configuration of a person whose appearance
in images varies due to different clothing and lighting condi-
tions. This approach exploits model variations in pose con-
figuration, human shape, and appearance, without assuming
human body model. Agarwal and Triggs [8] proposed an
algorithm to estimate 3D human model from silhouette of
single view using nonlinear regression to model the relation
between histograms of shape contexts and human pose. They
[9] also used histograms of gradient orientations over a
grid of small cells with nonnegative matrix factorization to
gain a set of basis vectors corresponding to local features of
body parts. Bowden et al. [10] extracted 2D silhouette of a
moving human and the corresponding 3D skeletal structure
to be image observations and adopted a non-linear point
distribution model (PDM) to fit them. Silhouette is a good
feature to help recover 3D poses since it is insensitive to
the variations in color and texture [9]. Rohr [11] used
edge lines to replace edges in order to partially get rid
of silhouette noise. Although all these model-free methods
provide interesting results, the robustness of these methods
will suffer since articulated relationship of human body parts
is not incorporated to solve the occlusion problem.

The goal of model-based approach is to construct the
function that gives the likelihood of the image, given a set
of parameters which include body configuration parameters,
body shape and appearances. The approach usually adopts
an articulated model to represent the relationship among
human body parts as a kinematics tree, consisting of
divisions linking by joints. The prior knowledge describing
kinematic properties by shape, texture and appearance has
been used to make the problem tractable. One of the
fundamental representations is the Johansson’s moving light
displays [12]. It adopted a relatively simple representation of
the human body called the stick figure that consists of line
segments linked by joints. It was demonstrated that relatively
little information (motion of a set of selected points on the
body) is needed for humans to perform reconstruction of
the body configurations. Pose estimation is challenging due
to its non-rigid nature, self-occlusion, variable appearance,
and high degree of freedom. By incorporating articulation
knowledge, model-based approaches are able to overcome
these problems to a great extent and are actively explored by
many researchers.

In decades, many papers addressed that a probabilistic
stick figure represented by belief propagation networks can
successfully recover human pose configurations. Belief prop-
agation network has two main subclassifications: Markov
network and Bayesian network. Markov networks organized
by undirected acyclic graph are probabilistic propagation
models that the linking edge between two nodes has no
direction. Every node obtains probabilistic feedback from
their neighbors. Human models defined by Markov networks
consider that body parts and joints are estimated from their
neighbor parts [13, 14] estimated human motion and poses
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Figure 1: Flowchart of the proposed method.

using Nonparametric Belief Propagation and particle filters.
Hua et al. [15] exploited a data driven belief propagation
Monte Carlo algorithm with importance sampling functions
building from bottom-up visual cues for efficient inference.
Using Markov network has the advantage that every node
would influence their neighbors and converges to a stable
result. However, errors may be easily propagated to all nodes
in the network.

In Bayesian network models, nodes have directed arcs
linked to other nodes, which are also called a directed
acyclic graph (DAG). These arcs represent the relation of
cause and effect between nodes. Parent nodes in DAG are
not influenced by their child nodes. Human body parts
with stable movement, such as torso, are usually considered
to be the root node and/or parent node. Child nodes
represent the body parts with high freedom of movement
that have large location variations and can also represent
image features [16–18]. Leonid and Darrell [19] used a
generative appearance model defined by Bayesian networks.
The Bayesian generative appearance model is similar to
[20] for 3D articulated tracking and [21] for modeling
the interactions of multiple independent moving objects.
Compared with Markov networks, Bayesian network is more
efficient when there are stable visual features assistant for the
finding of body parts. Another advantage is that estimation
errors of specific body objects would not propagate to other
body elements.

Previous works of belief propagation approach pay atten-
tion on one-stage framework, which estimates 3D human
poses directly from image observations. However, obtaining
3D body pose from visual features can be considered as
a machine learning problem that approximates a function

mapping of a given data space to targeted pose space. This
function seems to be highly complex. Since same visual
features can represent different body pose configurations
and same body configurations can generate different visual
features due to clothing and view-point, it makes the ill-
posed problem more difficult. Therefore, the search of
posterior distributions in high-dimensional state space from
sparse learning data is still intractable. Motivated partly by
these issues, a two-stage framework with an annealed Gibbs
sampling inference algorithm which can increase estimation
accuracy and reduce computation time is proposed in this
paper.

3. The Two-Stage Framework for
Pose Estimation

This section will give a two-stage Bayesian network frame-
work including 2D and 3D articulated human models for the
estimation of human poses. The proposed Bayesian network
is a belief propagation network using an annealed Gibbs
sampling algorithm to estimate 2D and 3D human joint
positions.

3.1. The Probabilistic Graphical Networks for Articulated
Human Modeling. The articulated human model is defined
by a set of reference points. The 3D and 2D articulated
human models consisting of 15 distinctive points are shown
in Figures 2(a) and 2(b). Those points include a reference
point of head and 14 joint points. Figure 2(c) overlays a
particular 2D model on the human in the corresponding
image. Figure 2(d) illustrates all 2D joint positions we need
to estimate.
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Figure 2: Articulated human model. (a) 3D model and joints, (b) 2D model and joints, (c) projected model on the image, (d) joint positions
mapping to the human body.

Directed graph is used for the abstraction of the artic-
ulated human models. The human pose is defined as a
node set H = {H2D,H3D}, where H2D = {h2d,1, . . . ,h2d,15},
H3D = {h3d,1, . . . ,h3d,15}, and h2d,i and h3d,i are the 2D and
3D positions of the ith joint. Shown in Figures 3(a) and
3(b) are the graphical model of humans. According to the
directed graphical model, each node is affected only by its
parent node.

The representation of 2D and 3D poses is a probabilistic
stick figure with joint positions but not joint angles. The
disadvantage of joint angle representation is that more body
parameters such as limb length and global orientation of

body have to be given for pose estimation. On the other hand,
joint position can uniquely encode the pose of human.

A Bayesian network is a directed acyclic graph
−→
G =

(V ,
−→
E ,C) defined by a set of nodes V, a set of directed edges−→

E , and an edge cost function C defined as C : (i, j) →
R+ for all (i, j) ∈ −→

E . To encode probabilistic information
into the graph, each node is regarded as a random variable.
An edge indicates a probabilistic dependency between the
parent node and the child node. Besides the graph structure,
C is considered as a set of conditional probability distribu-
tions governing the probability of a particular value of a node
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Figure 3: Graphical model. (a) 2D graphical model, (b) 3D
graphical model.

given an instantiation of its parents. In other words, for each
node Vi with parents Vj ∈ pa(Vi), an edge (i, j) exists and
there is a conditional probability distribution P(Vi | Vj)
representing the edge cost function for the edge; for each
Vi without parents, there is a prior probability distribution
P(Vi).

We denote our 2D and 3D Bayesian networks as−→
G2D = (V2D,

−→
E 2D,C2D) and

−→
G3D = (V3D,

−→
E 3D,C3D),

where V2D = {H2D,O2D} and V3D = {H3D,O3D} are
two sets of random variables describing the joints and
observations of human body parts. The 2D observation set
O2D = { fk, 1 ≤ k ≤ n} consists of the visual features:
contour point set, normalized center, spatial distribution
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Figure 4: Comparison of one-stage and two-stage networks for
pose estimation. (a) The proposed hierarchy of causal relationship
among observations, 2D poses, and 3D poses, (b) one-stage
network directly linking observations and 3D poses.

of skin color, and corners, which will be discussed in
Section 4. The 3D observation set O3D = {O3d,1, . . . ,O3d,15}
is defined by O3d, j = {h2d, j ,wN ,L} includes not only
some visual features, but also the corresponding 2D joint
positions of the body parts h2d, j as the observations. The

directed edges
−→
E 2D = {(h2d,i,h2d, j), (h2d,i,O2D)} and

−→
E 3D =

{(h3d,i,h3d, j), (h3d,i,O3d,i)} can be categorized into two edge
sets. The edges (h2d,i,h2d, j) and (h3d,i,h3d, j) link joint nodes
and are illustrated in Figure 3. The edges (h2d,i,O2D) and
(h3d,i,O3d,i) link joint nodes and observation nodes and
are illustrated in Figure 4(a). It is the proposed two-stage
hierarchy which is different with usual one-stage networks
shown in Figure 4(b). The edge cost functions of 2D and
3D models, C2D = {P(h2d,i | pa(h2d,i)} and C3D =
{P(h3d,i | pa(h3d,i)}, are conditional distributions obtained
by EM learning algorithm. The proposed two-stage hierarchy
decomposes the direct function mapping of visual features
to 3D poses into two steps: first mapping visual features to
2D poses, and then mapping 2D poses and visual features
to 3D poses. The method can increase accuracy since the
exploration space in each stage is smaller than that in the
direct function mapping.

The proposed DAG encodes the cause-effect and con-
ditional independence relationships among variables into
a probabilistic reasoning system. The directions of links
represent causality. The links between the nodes, or variables,
represent the conditional probabilities of inferring the exis-
tence of one variable given the existence of the other variable.
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The proposed network structures specify two unique
joint probability distributions (JPD) P2D(V2D) and
P3D(V3D). They will be simply denoted as P(V) in the
following derivations since both distributions have the same
Markov property. P(V) reflects the properties of the network
and can be factorized into the product of all conditional
probability distributions

P(V) =
n∏

i=1

P
(
Vi | pa(Vi)

)
, (1)

where n is the number of all nodes in the network.
This factorization of the JPD comes from a local Markov
property called Markov blanket [22]. Namely that each
variable is independent of its nondescendents in the graph
given the state of its parents. The conditional independence
property can reduce, sometimes significantly, the number
of parameters that are required to characterize the JPD of
the variables. This reduction provides an efficient way to
compute the posterior probabilities given the evidence.

There are two problems for the computation of human
poses H: the parameter learning of the conditional distri-
butions P(Vi | pa(Vi)), and the inference of the posterior
probabilities of H given the evidence O, P(H | O). Details
will be given in next two subsections.

3.2. Parameter Estimation by EM Algorithm. Learning pro-
cess is important for Bayesian network. The training data
consisting of human poses and observations is incomplete
and sparse. The learning algorithm of Bayesian network has
to be built on a high-dimensional solution space and solve
the local maxima problem. In this paper, we use the EM
algorithm [23] to train the 2D and 3D graphical models.

In the proposed Bayesian network, the local probabil-
ity distribution for each node is formulated by P(Vi |
pa(Vi), θ, Sh), where θ is the parameter vector of probability
distribution, and Sh is the topology of the 2D or 3D
Bayesian network. Parameter learning is used to find a good

approximation parameter θ̂ for θ that can be explained by
the training data set D = {D1, . . . ,DN}, where N represents
the number of training samples. Dl = {V1[l], . . . ,Vn[l]} is
the lth training sample. A log-likelihood function LD(θ) =
log(P(D | θ)) is formulated based on the independence
assumption of training samples and can be decomposed into
the product of all conditional distributions according to the
conditional independence property:

LD(θ) = log

⎧
⎨
⎩

N∏

l=1

P(V1[l], . . . ,Vn[l] | θ)

⎫
⎬
⎭

=
n∑

i=1

N∑

l=1

logP
(
Vi[l] | pai(Vi(l)), θ

)
.

(2)

We obtain the parameter θ̂ by the Maximum Likelihood

Estimation (MLE) method: θ̂ = arg maxθ LD(θ)0.

However, the training data D is incomplete because of
self-occlusion of body parts. That is, the variables Vi[l] or
parents of the variable Vj[l] ∈ pa(Vi[l]) in (2) are hidden
and missing. The partial observability induces the so-called
incomplete data problem. Hence, MLE can not be directly
utilized for the training. The EM algorithm is a common
method solving the learning of incomplete data.

Assume D is incomplete. We can claim D = Y ∪ U ,
where Y is an observed data set and U is the missing data
set. The EM learning algorithm guesses a probable initial
θ(0) at the start of learning process, and then proceeds to
repeatedly generate θ(t) iteratively by Expectation-step and
Maximization-step.

The Expectation-step computes the conditional expecta-
tion of the log likelihood function with a given Y and the
current parameter θ(t):

Q
(
θ | θ(t)

)
= Eθ(t) =

[
logP(D | θ) | θ(t),Y

]
. (3)

The Maximization-step updates the t + 1 step parameter
θ(t+1) from current parameter θt under the assumption that
the Expectation-step computes a correct θt:

θ(t+1) = arg max
θ

Q
(
θ | θ(t)

)
. (4)

The Expectation-step and Maximization-step are repeated
until the difference of LD(θ(t+1))− LD(θ(t)) converges.

3.3. Posterior Inference by Annealed Gibbs Sampling. Esti-
mating human poses given a set of observations can be
formulated as a probabilistic inference problem. Let the
observed data be O′ = O − U , where U is the set of
hidden variables that are unobservable due to occlusion. The
best estimated pose is a vector H∗, which is defined as the
pose with the maximum probability given O′. The posterior
probability P(H | O′) is maximized over all possible pose
space according to Bayes’ rule and marginalization as follows:

H∗ = arg maxP(H | O′)

= arg max
∫

u∈U
P(H ,u | O′)du

= arg max
∫

u∈U
P(H ,O′,u)du,

(5)

with the assumption that the prior distribution P(H) is
uniform. The function P(H ,O′,u) is a specific case of the full
JPD P(V) because V = H∪O′ ∪U . Substituting (1) into (5)
we obtain the inference formulation:

H∗ = arg max
∫

u∈U

∏

i=1,...,n

P
(
Vi | pa(Vi)

)
du. (6)

It states that given the Bayesian network specified the
JPD in a factored form, we can estimate poses by evaluating
all possible inference queries by marginalization, that is,
integrating out over hidden variables.
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The direct way for the full integration over continuous
variables is called exact inference that can obtain precise
inference results when querying the Bayesian network.
Although the high-dimensional JPD is factored into the
product of low-dimensional conditionals, it still takes high
computational complexity and known to be an NP-hard
problem. Some algorithms, such as junction tree and mes-
sage passing algorithms, can efficiently inference H∗ only in
restricted classes of networks.

Approximate inference methods [24] have also been
proposed in the literature, such as the loopy belief prop-
agation, variational methods, and Markov chain Monte
Carlo (MCMC) sampling methods. Approximate inference
methods have low computational complexity. MCMC [25]
is attractive because it solves the integration problem in
high-dimensional space by gradually improving estimates as
sampling proceeds. A variety of standard MCMC methods,
including the Metropolis-Hastings algorithm and the Gibbs
sampling, were used for approximate inference.

The MCMC sampling methods obtain samples of the
target distribution P(V) by Markov chain. A sample vector v
is defined as a sample of the random vector V . At t iteration,
a candidate vector v∗ is sampled from v(t−1), the sample
vector of V obtained at t − 1 iteration, and a proposal
distribution q(v∗ | v(t−1)). The candidate is accepted
as the new state v(t) with a probability α(v(t−1), v∗) =
min(1, p(v∗)q(v(t−1) | v∗)/p(v(t−1))q(v∗ | v(t−1))). This
generates a Markov chain (v(0), v(1), . . . , v(k), . . .), as the tran-
sition probabilities from v(t−1) to v(t) depends only on v(t−1)

and not (v(0), v(1), . . . , v(t−2)). Following a sufficient burn-in
period (of, say, k steps), the chain approaches its stationary
distribution and samples from the vector (v(k+1), . . . , v(k+n))
are samples from P(V). The Monte Carlo integration
method can then be applied to solve (5). However, the
sampling of P(V) is still not efficient if V is in a high-
dimensional space.

In this paper, a Gibbs sampling method with annealing
process is proposed for the inference of the Bayesian network.
The key to the annealed Gibbs (AG) sampler is that we only
consider univariate conditional distributions sampled with a
stochastic process controlled by simulated cooling process.
The AG sampler is first proposed by S. Geman and D.
Geman [26] for Markov random fields with Gibbs field. Here
the sampler is revised for the proposed two-stage Bayesian
network.

We define an expression of full conditionals as P(Vj |
V− j) = P(Vj | V1, . . . ,Vj−1,Vj+1, . . . ,Vn) where V− j denotes
a vector containing all of the variables but Vj . It follows by
the Markov blanket property [25] that the full conditionals
can be simplified as follows: P(Vj | V− j) = P(Vj |
pa(Vj))

∏
k∈ch(Vj )P(Vk | pa(Vk)), where ch(Vj) denotes the

children nodes of Vj . That is, we only need to take into
account the parents, the children, and the children’s parents.
Sampling from the full conditionals, with the AG sampler,
lends itself naturally to the construction of general purpose
MCMC.

We define the samples of Vj , the jth variable of V , as vj .
The samples vj are drawn from the distribution P(Vj | V− j).

Thus, to obtain the v(t)
j , that is, vj in the tth iteration of the

sampling process, we draw from the distribution

v(t)
j ∼ P

(
Vj | v(t)

1 , . . . , v(t)
j−1, v(t)

j+1, . . . , v(t)
n

)
. (7)

Therefore, the AG sampler adopts the proposal distribution
for j = 1, . . . ,n

q
(
v∗ | v(t)

)
=

⎧
⎪⎨
⎪⎩

p
(
v∗j | v(i)

− j

)
if v∗− j = v(t)

− j

0 otherwise.
(8)

If the probability of the move for v(t)
j is α(v(t)

j , v∗) =
min(1, p(v∗)q(v(t)

j | v∗)/p(v(t)
j )q(v∗ | v(t)

j )) = 1, it becomes

a Gibbs sampler. However, the AG sampler is proposed to
improve the iteration process. It is similar to Metropolis
sampling but has different probability α of a move given by

αAG = min

⎛
⎜⎝1,

⎛
⎝ p(v∗)

p
(
v(t)
j

)

⎞
⎠

1/T(t)
q
(
v(t)
j | v∗

)

q
(
v∗ | v(t)

j

)

⎞
⎟⎠. (9)

The idea is that when we initially start sampling the space,
we will accept a reasonable probability of a down-hill move in
order to explore the entire space. As the process proceeds, we
decrease the probability of such down-hill moves. Function
T(t) is called cooling schedule and the particular value of T
at any point in the chain is called the temperature. Typically,
T0 is start time and Tf is the final cool down temperatures
over n step. A typical setting of geometric decline for the
temperature is given by

T(t) = T0

(
Tf

T0

)t/n

. (10)

The AG sampler adopts a stochastic iterative algorithm
that converges to the set of points which are the global
maxima of the given function. The annealing process can
find the maximum of complex distributions with multiple
peaks where standard hill-climbing approaches may trap the
algorithm at a less optimal peak.

The advantage of the AG sampler is its efficiency com-
pared to the Gibbs sampler. Instead of wanting to approx-
imate P(V), we want to find the global maximum, that is,
the ML estimate of posterior distribution. We could run a
Markov chain of invariant distribution P(V) and estimate
the global mode by H∗ = arg maxV (t),i=1,...,N

∫
u∈U P(V (t))du.

However, this method is inefficient because the random
samples only rarely come from the vicinity of the mode.
Unless the distribution has large probability mass around the
mode, computing resources will be wasted exploring areas of
no interest.

This annealing process involves simulating a non-
homogeneous Markov chain whose invariant distribution
at iteration t is no longer equal to P(V), but to Pt(V) ∝
P1/T(t)(V), where limt→∞T(t) = 0. The reason for doing this
is that, under weak regularity assumptions on P(V), P∞(V)
is a probability density that concentrates itself on the set of
global maxima of P(V). The simulated annealing involves,
therefore, just a minor modification of standard MCMC
algorithms.
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(a)

(b) (c)

Figure 5: Human silhouette. (a) Original image, (b) extracted contour of the human, (c) uniformly sampled points of the extracted contour.
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Figure 7: Spatial distribution of skin color. (a) Skin color detection, (b) noise removal and pixel grouping by morphology, (c) region
segment, (d) the spatial distribution of skin color in (c).

Figure 8: Corners of silhouette.

4. Feature Extraction

Image features, such as edge, color, and silhouette, are
observations of a pose. The extraction of image features
constitutes evidence nodes of the articulated human model
for the inference in the Bayesian network. Single human
feature is not enough to inference 3D human position since
different 3D poses can exhibit similar 2D observations in
the images. Therefore, we devise 4 kinds of features in the
proposed method: human silhouette, normalized center of

human body, spatial distribution of skin color, and corners
of human body.

4.1. Human Silhouette. Human silhouette is a useful feature
with highly resistance to the change of appearance and illu-
mination. Silhouette features contain full body information,
including head, torso, and limbs. Figure 5(a) is an original
image from HumanEva I database [27, 28]. The subject
image is segmented from background and transformed to
a binary image. Figure 5(b) is the contour image extracted
by topological structural analysis. The extracted contour is
then uniformly sampled into a contour point set, which is
depicted in Figure 5(c).

4.2. Normalized Center. Normalized center is proposed to
normalize position-dependent features, such as silhouette.
However it cannot be readily obtained because human’s
shape varies frame by frame due to its nonrigid characteris-
tics caused by limbs motion. A normalized width wN , instead
of width of subject contour boundary, has to be calculated.
We use the normalized width to reduce the effect of limbs
motion. As shown in Figure 6(a), we calculate the profile
along x coordinate and denote the accumulation value in the
profile as hx. The wN is defined as wN = xR−xL, where xL = x
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(a) (b)

Figure 9: Sample images of the walking sequences used in our experiments.

if hx � threshold and hx−1 < threshold for x = 1 → w,
and xR = x if hx � threshold and hx+1 < threshold for
x = w → 1. The threshold is determined by empirical study
from experimental results.

As we get wN we can obtain the normalized boundary
rectangle shown in Figure 6(b). We calculate the center of
normalized boundary rectangle that is called normalized
center Nc as shown in Figure 6(b). Assume that the left top
point of normalized boundary rectangle is called p. We can
define the x and y coordinates of the normalized center
Nc as xN = xp + 0.5wN , yN = yp + 0.5L, where L is the
boundary length of subject. Both wn and Nc will be used as
the observations in the two-stage Bayesian network.

4.3. Spatial Distribution of Skin Color. Appearance feature
which is proposed in this paper is called spatial distribution
of skin color. We use the Gaussian Mixture Model (GMM)
to obtain skin color regions [29]. The GMM uses multiple
Gaussians to model the probability of skin color pixels in
the image. EM algorithm is utilized to find the parameters
of the GMM. A 2D histogram of the skin color pixels is then
computed to describe to the spatial distribution of those skin
color pixels.

Figure 7(a) presents extracted skin color regions of
Figure 5(a) by the GMM method. Shown in Figure 7(b) is the
result of morphology that is adopted to remove noises and fill
in connected components. The minimum bounded area of
the subject is then equally divided into several smaller blocks,
which are illustrated in Figure 7(c). Accumulated number
of skin color pixels in each block is calculated. Figure 7(d)
illustrates the ratio of skin color pixels of each block to total
skin color pixels in the image, which is the 2D histogram,
describing the spatial distribution of skin colors.

4.4. Corners of Human Body. Corners of human shape have
strong relationship to joints of body parts. It can be exploited
by Bayesian networks as good observations for the finding
of 2D human body parts. We use the level curve curvature
method [30] that defines corners as areas. These areas have
level curves multiplied by the gradient magnitude raised to
the power of 3 which can intensify the level curves and help

the search of local maximum. Figure 8 shows the extracted
corners.

The four visual features complement each other. The
silhouette feature can well describe the localization of human
shape, but is prone to occlusion. Normalized center is helpful
for estimating proximal and distal joints of torso. Never-
theless, simply using the feature is not appropriate because
the high-degree freedom of limbs influences the boundary’s
width. Skin color distribution is the feature sensitive to the
change of illumination, but offers good indications of the
positions of face and limbs. Corners potentially indicate joint
locations of human. The locations of knees and feet that we
are interested in have high probability close to corners of
human silhouette, because they are joints of human.

5. Experimental Results

5.1. Experimental Setup. The proposed method has been
evaluated to demonstrate its effectiveness. Experiments are
carried out to compare the proposed method with the Gibbs
sampling method. The method is implemented with C and
C++, and experiments are conducted on a PC with 2.4 GHz
Pentium 4 CPU and 1 GB memory.

We presents experimental results conducted on the image
sequences in the HumanEva dataset [27, 28]. It is a dataset
including both video and ground-truth 3D motion captured
by multiple cameras and a calibrated marker-based motion
capture system. The image sequences are captured with a
resolution of 644 × 488 pixels and a frame rate of 120 Hz.
Human activities in the dataset are played by multiple
subjects performing a set of predefined actions with a
number of repetitions. The dataset has been divided into
separate training and testing sets.

The motion capture data given by the HumanEva dataset
will be used to train our model and test as ground truth data.
The motion capture data provides 3D position information
about the location of a set of markers roughly corresponding
to a subset of major human body joints. 3D marker positions
are projected into 2D marker positions by perspective
geometry.

We have run our experiments on the circular walking
sequences in the dataset. Subjects walked in an elliptical path
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Figure 10: Results of estimated 2D pose projected onto images. Green dotted lines are the ground truth and yellow lines represent estimation
result of our method. (a)–(d) Subject 1. (e)–(h) Subject 2.

three times at the edge of the capture space. The walking
sequences contain a full 180◦ turn that induces the challenges
of occlusion of body parts and loss of visual features.
Some example images are shown in Figure 9. Note that
to demonstrate the method’s ability of occlusion handling
with monocular images, only the image sequences from
single camera are adopted for the experiments. No depth
information is utilized. Also, other image sequences such
as running and jogging are not tested in our experiments
because fast-motion gestures are only critical to tracking

problems which is not the concern of this work. The Bayesian
network proposed in this paper is used to the detection of
reconstructed poses.

5.2. Performance Evaluation. This subsection will give com-
parison results between the proposed two-stage method and
classical one-stage method. We first illustrate the results of
the two-stage method by super-imposing the estimated 2D
poses and ground truth onto the image. Selected frames
are presented in Figure 10. It can be seen that our method
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Figure 11: Continued.
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Figure 11: Results of estimation result in 3D space. (a)–(h) The left figures are ground truth, and the estimated results are shown in the right
figure. The units of axes in all figures are centimeter.
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Figure 12: Performance comparison between the two-stage and one-stage methods. Both the Gibbs sampling and the annealed Gibbs
sampling algorithms are implemented for the two methods. (a) Average distance errors, (b) average computing time.
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can estimate joint parts that are out of our vision because
they are occluded by other body parts. Some local errors,
mostly due to the lack of visual features and occluded parts,
can be observed. For example, the local error of left arm in
Figure 10(a) is produced because the left arm is occluded by
torso. The head positions are sometimes less accurate when
skin area of face becomes invisible. However, the estimates
are still fairly consistent among these results.

Figure 11 presents the estimation results of 3D human
structure in 3D space. Our method can simulate the hidden
body part to solve the occlusion problem and reconstruct
the human pose approximately. On this challenging set of
images, the overall 3D pose estimation is fairly satisfactory. It

has to be noticed that no tracking algorithm is incorporated
in our method. The presented results are obtained frame
by frame from monocular images. The local errors can be
alleviated by further exploiting pose tracking from multiple
cameras, or introducing more accurate feature descriptor.

To quantitatively examine the performance of the pro-
posed method, a measurement is defined by a distance
error of poses between estimated results and ground truth.
Suppose H = {h1,h2, . . . ,hM}, where hm ∈ R3 (or xm ∈ R2

for the 2D body model), is the position vector of the body
pose in the world (or image, resp.). The error in estimated
pose H∗ to the ground truth pose H can then be expressed as
the average absolute distance between individual body parts,

D(H ,H∗) =
M∑

m=1

∣∣hm − h∗m
∣∣

M
. (11)

For N sequences of T frames we can compute the average
distance error using the following:

ξ = 1
NT

N∑

n=1

T∑

t=1

D
(
Ht,n,H∗

t,n

)
. (12)

Figure 12 shows the average error and computation time
of 3D estimation results obtained by 40 iterations and 12-step
burn-in period. We observe that the AG sampler performs
better than the Gibbs sampler, and the two-stage approach
performs better than classical one-stage approach, with lower
distance error. It demonstrates that the annealed two-stage
method is able to resolve the occlusion and hidden feature
problem with increased accuracy. It seems that the two-stage
approach requires more computational time, because more
nodes need to be explored in the approach. However, the
AG sampler takes less inference time for exploration. We
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Figure 14: Average distance errors of the proposed two-stage method with respect to different burn-in numbers. (a) 3D distance errors, (b)
2D distance errors.

attribute this largely to that the sampler only explores the
mode of the likelihood function, but not the entire likelihood
space. Finally, the annealed two-stage method can achieve the
best performance.

Algorithmic comparison was evaluated with the Bayesian
framework of sequential importance resampling and
annealed particle filtering, which is the baseline algorithm
provided in the HumanEva for evaluation and comparison.
An average distance error of 68 mm was obtained. Compared
to the 51 mm average distance error of the proposed method,
the annealed two-stage method can get better performance.

The behaviors of the two-stage method with respect
to the iteration number and burn-in parameters were
investigated. Figure 13 shows the effect of changing iteration
parameter from 10 to 50. We observe that increased iteration
number reduces distance errors. The decrease of distance
errors converges at the 40 iterations. Different values of burn-
in were also tested. Figure 14 shows the average distance error
of 3D and 2D poses with respect to the burn-in periods with
40 iterations. In general, the performance of the proposed
two-stage method is not sensitive to burn-in values. The
errors for both Gibbs sampler and the AG sampler are
fairly stabilized for 3D and 2D estimations. However, in all
these burn-in parameters the estimation of AG sampler is
consistently more accurate than that of Gibbs sampler.

6. Conclusions

We have presented a novel approach to solve the problem
of 3D pose estimation from monocular image sequences.
The approach proposes a two-stage inference hierarchy
of Bayesian network. Visual features are extracted as the
observations in the first stage of the network for the inference
of 2D poses. The 2D poses along with assisted visual features
are then applied for the inference of 3D poses. The EM
algorithm is applied for the learning of network parameters.

The advantages of the two-stage approach are twofold:
First, it can improve the accuracy of 3D poses estimation;
Second, both 2D and 3D poses are obtained by the same
computational framework.

We introduce the use of simulated annealing as an
effective mechanism to improve inferences. An annealed
Gibbs sampler has been proposed for the inference of
the two-stage Bayesian network. The sampler adopts an
annealing process to explore the proposal distribution of
sampling. The exploration can concentrate on the mode
of the distribution and achieve more efficient computation.
Experimental results demonstrate that the annealed two-
stage approach has better accuracy and efficiency than one-
stage method.

The approach currently has two limitations, first, the
technique needs more accurate visual features to help the
exploration of inferences. Second, temporal and spatial
information are not incorporated into the approach to pre-
dict and smooth the inference result of each frame. Tracking
algorithm and multiple cameras can further improve the
estimation.
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