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A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize
nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence
of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The
Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The
behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method
leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal
levels on their input/output law.

1. Introduction

Various classical analog audio effects fall into the category of
nonlinear effects such as compression, harmonic excitation,
overdrive, or distortion for guitars. Digital emulations of
nonlinear audio effects can be obtained when using a suitable
nonlinear model. Such nonlinear models are available in the
literature, for example, Volterra model [1], neural network
model [2], MISO model [3], NARMAX model [4], hybrid
genetic algorithm [5], extended Kalman filtering [6], or
particle filtering [7].

A new method for the identification of nonlinear
systems, based on an input exponential swept-sine signal
has been proposed by Farina et al. [8, 9]. This method
has been recently modified for the purpose of nonlinear
model estimation [10] and allows a robust and fast one-
path analysis and identification of the unknown nonlinear
system under test. The method is called Synchronized Swept
Sine method as it uses a synchronized swept sine signal for
identification.

A nonlinear effect can be modeled either by a simple
static nonlinear input/output law, where each input ampli-
tude is directly mapped to an output amplitude (nonlinear

system without memory), or on a more complex way by
nonlinear laws which take memory into account, meaning
that the memoryless nonlinearities and the linear filtering
are mixed. Moreover, several nonlinear audio effects include
amplifiers, the gain of which is automatically controlled
by the level of the input signal [11]. In other words, the
performance of nonlinear systems with memory may also
depend on parameters of the input signal, such as its level
or its past extrema, as for the hysteretic systems [12].

This classification of nonlinear systems according to the
influence of the input signal parameters on the input/output
law leads to a similar classification of the identification meth-
ods. The methods for identification of static nonlinearities
indeed do not require the same level of model complexity as
methods used for nonlinear systems with memory or with
gain control.

In this paper, it is shown that the Synchronized Swept
Sine method is suited to analyze, classify, and synthesize the
nonlinear systems under test. In the frame of this work,
two different overdrive pedals have been tested; the first one
exhibiting a strong influence of the input signal level on
its input/output law and the second one exhibiting a weak
influence of this input signal level.
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In Section 2, Synchronized Swept Sine method is shortly
presented. This method leads to a nonlinear model (Sec-
tion 3), made up of several branches, each branch consisting
of a nonlinear function and a linear filter. The nonlinear
functions are chosen as a power series that makes the
model equivalent to a Generalized Polynomial Hammerstein
(GPH) model. Next, the measurements on overdrive pedals
are presented in Section 4. The behaviors of both systems
are illustrated through model-based resynthesized signals.
Finally, in Section 5, we propose a criterion based on the
GPH model to classify the nonlinear systems according to the
importance of the influence of the input signal parameters on
the input/output law of the system under test.

2. Analysis of Nonlinear Systems

The nonlinear system identification method used in this
paper is based on an excitation by a swept-sine signal
(also called chirp) exhibiting an exponential instantaneous
frequency fi(t). This so-called Synchronized Swept-Sine
method allows the identification of a system in terms of
harmonic distortion at several orders. This identification is
conducted in several steps.

First, an exponential swept-sine signal xs(t) is generated
and used as the input signal of the nonlinear system under
test. The excitation swept-sine signal xs(t) is defined as

xs(t) = As sin

{
2πL

[
exp

(
f1t

L

)
− 1

]}
, (1)

where

L = Round

(
T̂ f1

ln
(
f2/ f1

)
)

, (2)

f1 and f2 being start and stop frequencies, and T̂ being
the time length of the swept-sine signal. The rounding
operator is necessary to synchronize the swept-sine signal
for higher-order contributions with linear component as
depicted in Figure 1. This condition is necessary for the
model identification and for a proper reconstruction of the
output signal.

Then, the distorted output signal ys(t) of the nonlinear
system is recorded for use in the so-called nonlinear convo-
lution [8]. Next, the signal denoted x̃s(t) is derived from the
input signal xs(t) as its time-reversed replica with amplitude
modulation in such a way that the convolution between xs(t)
and x̃s(t) gives a Dirac delta function δ(t). The signal x̃s(t) is
called the inverse filter [8].

Finally, the convolution between the output signal ys(t)
and the inverse filter x̃s(t) is performed, leading to

ys(t)∗ x̃s(t) =
∞∑
i=1

hi(t + Δti), (3)

where hi(t) are the higher-order impulse responses and Δti
are the time lags between the first and the ith impulse
response. Since the result of convolution ys(t)∗ x̃s(t) consists
of a set of higher-order impulse responses that are time
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Figure 1: Swept-sine signal xs(t) in the time domain (b), with the
time length chosen according to the instantaneous frequency fi(t)
(a).

shifted, each partial impulse response can be separated from
each other.

The set of higher-order nonlinear impulse responses
hi(t) can also be expressed in the frequency domain. The
frequency response functions of the higher-order nonlinear
impulse responses hi(t) are then defined as their Fourier
transforms

Hi
(
f
) = FT[hi(t)]. (4)

The frequency responses Hi( f ) represent the frequency
dependency of the higher-order components. Hi( f ) may be
regarded as the system frequency response, when considering
only the effect of the input frequency f on the ith harmonic
frequency of the output. The theoretical background of the
Synchronized Swept-Sine method is detailed in [10].

3. Model Identification

In this section, the frequency responses Hi( f ) described in
the previous section are used for a nonlinear model based
on a multiple-input single-output (MISO) model [3]. The
structure of this model is shown in Figure 2. It is made up of
N parallel branches, each branch consisting of a linear filter
An( f ). The input signals gn[x(t)] are known as linear and/or
nonlinear functions of x(t) chosen by the user.

The output signal y(t) of the nonlinear system can then
be expressed as

y(t) =
N∑
n=1

∫∞
−∞

gn[x(τ)]an(t − τ)dτ, (5)
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Figure 2: MISO model for nonlinear system identification with the
input signals gn[x(t)] and the linear filters An( f ), n ∈ [1,N].

where N is the number of the input signals of the MISO-
based nonlinear model, and where an(t) is the impulse
response related to the nth branch of the MISO based
nonlinear model

an(t) = FT−1[An
(
f
)]
. (6)

The linear filters An( f ) (or equivalently the impulse
responses an(t)) have then to be identified, using the
previously estimated Hi( f ). This identification consists in
solving a linear system of N equations using the least-squares
method. First, the coefficients cn,k of Discrete Fourier Series
of the functions gn[x(t)] are calculated as

cn,k = 2
M

M−1∑
m=0

gn

[
sin
(

2π
M

m
)]

exp
(
− j

2π
M

km
)

, (7)

for an input signal being a discrete-time harmonic signal of
length M. Next, the following set of linear equations with
unknown An( f ) is solved

Hi
(
f
) = N∑

n=1

An
(
f
)
cn,i + Res

(
f
)
, (8)

for i ∈ [1, I] (I being the number of harmonics taken into
account), n ∈ [1,N], and Res( f ) being the residue. As I ≥ N ,
there can be more equations than unknowns. To solve the set
of equations (8) for I > N , the least-squares algorithm [13]
is applied, minimizing the residue Res( f ).

If the functions gn[x(t)] are improperly chosen and/or
if at least one of the input signals is missing, the value of
the residue increases drastically, which makes Res( f ) an a
posteriori criterion for the choice of the input signals gn[x(t)].

If one of the nonlinear functions gn[x(t)] produces high
harmonic distortion components, nonlinear aliasing [14]
can appear. This can be avoided by choosing the nonlinear
functions gn[x(t)] according to any mathematical series. The
most used series is the one based on the power series, such as

gn[x(t)] = xn(t). (9)
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Figure 3: Generalized Polynomial Hammerstein (GPH) model
(power series nonlinear model) for nonlinear system identification.

A model with inputs chosen as power series is equivalent
to the Generalized Polynomial Hammerstein (GPH) model
[15] with N branches. In such a case, the nonlinear aliasing
can be controlled by the frequency range. The highest
frequency must not exceed fs/(2N), where fs is the sampling
frequency. The lowest frequency limit is as well given by the
highest power function N . The filters An( f ) are indeed valid
only in the frequency band [N f1, f2]. For that reason, the
model should be preceded by a bandpass filter as shown in
Figure 3. The amplitude limitation is as well given by the
excitation signal xs(t) used for the analysis. As the nonlinear
system is tested using an excitation signal xs(t), the level
of which does not exceed the amplitude As, the nonlinear
system is valid only for an input signal not exceeding As.

4. Experimental Measurements:
Analysis and Synthesis

In a previous work, the Synchronized Swept-Sine method has
been used to model the limiter part of a dynamic processor
[10]. Results have shown the ability of the method to estimate
very hard distortions with a good accuracy within the whole
frequency range. In this section, the same method is tested
on two real-world analog audio effects devices exhibiting
weak distortions. Both devices under test are overdrive effect
pedals. The first one is an Ibanez Tube Screamer ST-9
[16], the second one is a home-made overdrive pedal, the
electric circuit diagram of which being depicted in Figure 4.
These pedals exhibit different nonlinear performances, as
investigated below.

The experimental measurement consists of two steps: (a)
identification of the nonlinear system under test through
the GPH model as described in the previous section and
(b) comparison of the output signals of both the nonlinear
system under test and the GPH model when excited with the
same signal.

For the first step, the measurement setup is as follows: the
sampling frequency used for the experiment is fs = 192 kHz
and the excitation signal xs(t) is sweeping from f1 = 5 Hz to
f2 = 10 kHz with a maximum amplitude As = 1 V. The filters
An( f ) of the GPH model are then estimated.

The second step is the validation of the model for several
input levels. To analyze the accuracy of the GPH model, the
following test is performed. An input signal is provided to
the inputs of both the real-world analog effect device and its
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Figure 4: Circuit diagram of the home-made overdrive effect pedal.

corresponding GPH model, and both outputs are compared
in the time and frequency domains. The input signal x(t)
is a sine-wave with frequency f0 = 500 Hz and amplitude
A0 that varies from 0.1 V to 1 V with step 0.1 V. Regarding
distortion measurements, we choose to test the accuracy of
the method through the weighted harmonic distortion (HI-
2) that takes into account the higher-order components more
than the classical harmonic distortion [17].

4.1. Computing Complexity versus Accuracy. The choice of
the number of branches N of the GPH model is a key param-
eter which may influence the accuracy of the identification.
The higher the value of N the higher the accuracy but the
higher the computing complexity. To choose an optimal
value of N , the Ibanez Tube Screamer is firstly tested for
different values of N . Then, the HI-2 is calculated for both
output signals, the output of the real-world system and the
GPH model-based output, when excited with a sine wave
with frequency f0 = 500 Hz and amplitude A0 = 1 V.

Both the HI-2 difference, noted ΔHI-2 and given in dB,
and the relative computing complexity CC are presented in
Table 1. The CC is defined as the computational time needed
to generate the output of the GPH model with N branches,
normalized by the computational time needed to generate
the output of a GPH model for N = 1 (linear system case).
(The simulation is made in Matlab for fs = 192 kHz and for
a signal with a number of samples equal to fs.)

As shown in Table 1 (for the nonlinear system under test),
the choice N = 7 is a good candidate for an optimal value
between the accuracy and the computational time. Increasing
N does indeed not increase the accuracy of the model, but
increases the computational time. As the model is made
up of parallel branches (each branch including the same
computing complexity), the computational time is directly
proportional to N .

4.2. Ibanez Tube Screamer Overdrive Pedal. The first nonlin-
ear system under test is an overdrive effect pedal Ibanez Tube

Screamer [16] (pedal 1). The pedal has been configured as
follows: Drive = 4/10, Level = 6/10, Mid Boost = 0/10, and
Tone = 3/10. Driving input level is attenuated by 25 dB before
exciting the nonlinear system under test.

The outputs corresponding to an input sine wave with
f0 = 500 Hz and A0 = 1 V are shown in Figure 5, in both
time and frequency domains. The HI-2 is −21.14 dB for the
real-world output and −21.17 dB for the model output (N =
7), that illustrates a very good accuracy of the identification
method.

The HI-2 for both model and real-world system are
compared in Figure 6, when measured with increasing input
signal level A0 (from 0.1 V to 1 V). The HI-2 fits only for the
maximum input level A0 = 1 V, corresponding to the level As

of the signal used for the estimation of the An( f ). For other
levels A0 < 1 V, discrepancies between the HI-2 spread from
4 to 8 dB. For example, the responses of the GPH model and
the real-world device to a sine wave, the amplitude of which
is A0 = 0.5 V, is given in Figure 7, in both time and frequency
domains. The regenerated output signal, based on the GPH
model estimated forAs = 1 V, does not fit with the real-world
output signal. The HI-2 is−28.0 dB for the real-world output
and −34.6 dB for the model output.

As a consequence, the nonlinear system under test
(Ibanez Tube Screamer) can be seen as a nonlinear system
whose input/output law is driven by the input level A0.
Nevertheless, when the amplitude A0 of the input signal is
the same as the amplitude As used for the identification of
the nonlinear system, the GPH model-based output fits well
with the real-world output. This is illustrated in Figure 8 for
the case As = A0 = 0.5 V. The HI-2 is then −28.0 dB for the
real-world output and −27.9 dB for the GPH model-based
output.

4.3. Home-Made Overdrive Pedal. The second nonlinear
system under test is a home-made overdrive pedal, noted
pedal 2, exhibiting lower dependency on input level. The
circuit diagram of the pedal 2 is presented in Figure 4.
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Table 1: Effect of the number of branches N of the GPH model on the weighted harmonic distortion difference ΔHI-2 and on the relative
computing complexity CC.

N 1 2 3 4 5 6 7 8 9 10 11

ΔHI-2 [dB] −∞ 39.8 1.9 1.9 0.31 0.31 0.03 0.03 0.03 0.03 0.03

CC [−] 1.0 2.0 3.1 4.2 5.4 6.5 7.5 8.6 9.7 10.7 11.9
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and frequency (b) domains, for a sine wave excitation with f0 = 500 Hz and A0 = 1 V. The GPH model is estimated using a swept sine signal
with amplitude As = 1 V. For the sake of clarity, the output of the real-world device in the frequency domain is shifted to the right.
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The same configuration and analysis as those described in
Section 4.2 have been setup.

The outputs corresponding to an input sine wave of f0 =
500 Hz and A0 = 1 V are shown in Figure 9. The HI-2 is
−29.56 dB for the real-world output and −29.45 dB for the
GPH model output. As for the case of pedal 1, it illustrates a
very good accuracy of the identification method. The outputs
corresponding to an input sine wave of f0 = 500 Hz and
A0 = 0.5 V (Figure 10) show also a good agreement even if
the amplitude A0 of the input signal differs of the amplitude
As = 1 V used for the identification of the nonlinear system.
The HI-2 is−45.0 dB for the real-world output and−43.2 dB
for the model output.

As illustrated in Figure 11, the difference ΔHI-2 between
both HI-2 is less than 2.5 dB for all the input levels A0.
Thus, such a nonlinear system represents a system whose
input/output law is not driven by the input level A0. For such
a nonlinear system, the presented identification method with
GPH model can be used for both analysis and synthesis.

5. Classification of Input Level
(In)Dependent Nonlinear Systems

In the previous section, two real-world nonlinear systems,
exhibiting different nonlinear behaviors have been identi-
fied thanks to the Synchronized Swept Sine method. The
input/output law of the first system under study (pedal 1)
is driven by the input level A0, while the input/output law of
the second one (pedal 2) is independent of this input level. In
the following, we call “input level dependent” the first kind of
nonlinear system and “input level independent” the second
one.

A key point of the method of identification presented
in this paper is its capacity to distinguish both kinds of
nonlinear systems through its ability to synthesize the output
signals from any given input signal. Then, the classification
of nonlinear systems in these two categories (input level
dependent and input level independent) is performed here
thanks to the Synchronized Swept-Sine method. A criterion
based on the analysis of impulse responses an(t) of GPH
model is used to perform this classification.

More specifically, we show that analyzing only the first
branch (linear part) of the model is sufficient to classify both
kinds of nonlinear systems. The linear impulse response a1(t)
is firstly estimated for N = 7 and for several input levels As ∈
[0.1, 1] V, noted a1,l(t); l denoting the input of the index
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Figure 7: Comparison between the real-world output of pedal 1 (blue-dashed) and the GPH model-based output (red-solid) in time (a)
and frequency (b) domains, for a sine wave excitation with f0 = 500 Hz and A0 = 0.5 V. The GPH model is estimated using a swept sine
signal with amplitude As = 1 V. For the sake of clarity, the output of the real-world device in the frequency domain is shifted to the right.
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Figure 8: Comparison between the real-world output of pedal 1 (blue-dashed) and the GPH model-based output (red-solid) in time (a)
and frequency (b) domains, for a sine wave excitation with f0 = 500 Hz and A0 = 0.5 V. The GPH model is estimated using a swept sine
signal with amplitude As = 0.5 V. For the sake of clarity, the output of the real-world device in the frequency domain is shifted to the right.

level. Then, if the nonlinear system under test is an “input
level dependent” one, the impulse responses are expected to
be different from each other. On the contrary, if the nonlinear
system under test is an “input level independent” one, the
impulse responses a1,l(t) are expected to be very close each
other.

In Figures 12 and 13, the impulse responses a1,l(t) of the
first branch of the nonlinear model are depicted for different
input levels, for the case of pedals 1 and 2 respectively.
Using these results, we propose to define the following
relative squared error (RSE) based criterion for classifying
the nonlinear systems under test,

RSEl =
∫ {

a1,l(t)− 〈a1(t)〉}2
dt∫ 〈a1(t)〉2dt

, (10)

where 〈a1(t)〉 is the average impulse response,

〈a1(t)〉 =
∑10

l=1 a1,l(t)
10

. (11)

The RSE measures the mean-squared distance between
the average impulse response 〈a1(t)〉 and the impulse
responses a1,l(t).

For the case of pedal 1, we have max(RSEl) = 10%, whilst
for the case of pedal 2, max(RSEl) = 1.3%. This order of
magnitude between both values clearly allows to classify the
input level dependent and input level independent nonlinear
systems under test.

6. Conclusions

In this paper, a recently proposed method [10] is tested
for classifying, analyzing, and synthesizing two nonlinear
systems (overdrive effect pedals) exhibiting different nonlin-
ear behaviors. The method for identification of nonlinear
systems is based on synchronized swept-sine signal and
allows the identification of nonlinear system under test in a
one-path measurement.

The classification is indispensable for distinguishing
nonlinear systems whose input/output law is driven by input
level, and nonlinear systems whose input/output law is
independent of the input level.

Two nonlinear systems have been tested: the first one
corresponding to a nonlinear system whose input/output
law is driven by the input level and the second being
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a nonlinear system whose input/output law is independent
of the input level. For the latter (pedal 2), the results
show that the method is useful for both analysis and
synthesis. The comparison between the synthesized and
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Figure 12: Impulse responses a1,l(t) of the first branch of the
nonlinear model (N = 7) depicted for different input levels (pedal
1).

real-world signal shows very good agreement in both time
and frequency domains. The same agreement is shown
by comparing the weighted harmonic distortion HI-2
[17].
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Figure 13: Impulse responses a1,l(t) of the first branch of the
nonlinear model (N = 7) depicted for different input levels (pedal
2).

In the case of input level dependent nonlinear system
(pedal 1), it is shown that when the identification is carried
out from a signal with input level As, the model is very
accurate only when the amplitude of the input signal to
be synthesized is A0 = As. Thus, for a whole analysis of
such a system, the frequency responses Hi( f ) have then to
be estimated for different input levels As, leading to 2D
frequency response functions (FRF) Hi( f ,As).

Works are now in progress to implement the FRF
Hi( f ,As) into the nonlinear model in order to synthesize
such systems for any input signals.
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