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We describe a method that can detect specific human behaviors even in crowded surveillance video scenes. Our developed system
recognizes specific behaviors based on the trajectories created by detecting and tracking people in a video. It detects people using
an HOG descriptor and SVM classifier, and it tracks the regions by calculating the two-dimensional color histograms. Our system
identifies several specific human behaviors, such as running and meeting, by analyzing the similarities to the reference trajectory of
each behavior. Verification techniques such as backward tracking and calculating optical flows contributed to robust recognition.
Comparative experiments showed that our system could track people more robustly than a baseline tracking algorithm even in
crowded scenes. Our system precisely identified specific behaviors and achieved first place for detecting running people in the

TRECVID 2009 Surveillance Event Detection Task.

1. Introduction

There have been many studies of human motion recognition
through video content analysis. This work has gained
widespread interest for both academic and industrial pur-
poses [1]. These techniques can be applied to motion-based
video searches or to man-machine interfaces that use human
gestures, for example.

To achieve these goals, some fundamental technologies
have to be established. For recognizing human motions,
the capability to detect and track humans in video is
essential. A human detector and tracker based on feature
points as represented by the Kanade-Lucas-Tomasi Feature
Tracker (KLT tracker) has been studied [2, 3]. Moreover,
gradient-based features as represented by histograms of
oriented gradient (HOG) are currently being used for human
detection [4, 5].

In addition, the rapid spread of surveillance cameras
has increased demand for cameras that can not only track
people but can also automatically identify their specific

motions. A number of technologies identify specific motions
by detecting a particular image feature value that is unlike
the other major features. For example, Shiraki et al. have
developed a technology to detect a specific motion from a
video sequence using cubic higher-order local auto correla-
tion (CHLAC) image features [6]. However, many of these
technologies assume relatively simple videos in which it is
relatively easy to detect and track people. A great deal of
work has been done analyzing human behavior in simpler
datasets (KTH [7], Weizmann [8]) where the motions are
performed in controlled situations [9-12]. The features used
in these algorithms are corner points, optical flows, and
shape. These are not enough available due to the occlusion,
different lighting conditions, or varying object sizes. Practical
algorithms that can be applied to complicated sequences
such as surveillance video from train stations or airports are
required [13, 14].

Although some studies have targeted crowded surveil-
lance video sequences, they have been limited to tracking
human objects or detecting the overall motion of a great



number of people [15-17]. No technology has been estab-
lished that can robustly detect specific behaviors within
crowded sequences in real videos.

We describe a method that can detect specific human
behaviors, such as running and meeting, even within
crowded sequences. Although tracking all human objects in
a crowded scene is a difficult problem, it could be possible
to detect specific human behaviors by searching for a certain
unique feature value from major normal feature values. The
trajectory of a moving person contains rich information
about the person’s behaviors, such as velocity or travel
distance, so we used this trajectory for recognizing human
behaviors. No previous technology has recognized human
behaviors based on their trajectory in crowded scenes.

For tracking people in complicated sequences, we used a
HOG and a support vector machine-(SVM-) based human
detection algorithm [18, 19] that is known to be relatively
robust. In addition, we used a Kalman filter based tracking
algorithm that contributes to robust tracking, even with
occlusion, by predicting the position of the person.

Our system recognizes specific behaviors by analyzing the
similarities to the reference trajectory of each specific behav-
ior in the trajectory feature space. The feature space was
generated from ten-dimensional features that were extracted
from a trajectory based on principal component analysis
(PCA) [20]. Our system can sensitively detect particular
behaviors from minimal evidence using the feature space.
Though it sometimes incorrectly identifies nontargeted
behaviors as the targeted behaviors, most of these so-called
false detections are rejected by the verification process. This
verification technique is one of the unique features of our
system.

We compared our method with a baseline tracking
algorithm using two different datasets: the KTH dataset and
the TRECVID dataset [21]. The results of these comparative
experiments showed that our method more robustly tracked
people even in crowded scenes. In addition, the TRECVID
2009 surveillance event detection task showed that our
system recognized several specific behaviors precisely and
that it was highly effective.

We introduce conventional techniques in Section 2,
describe our motion recognition method in Section 3, show
results of several experiments in Section 4, and conclude in
Section 5.

2. Conventional Techniques

Many researchers have studied human appearance and
motion recognition in the field of computer vision [1]. In
particular, studies detecting specific motions using surveil-
lance cameras have increased with the number of crimes and
instances of terrorism.

Most conventional techniques that recognize particular
objects or human motions follow a two-step process: (1) cut
out objects or human shapes precisely or calculate low-level
image features from a video, (2) apply the cutout objects
to detailed shape or motion models prepared beforehand
[22-25]. These methods can track people or detect human
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motions with a low error rate and can precisely recognize
even small motions, such as hand waving and jumping, by
considering kinematic models or spatio-temporal images. To
cut out human shapes, advanced background subtraction
methods and contour definition methods have also been
developed for precise segmentation of the human shape
(26, 27].

However, most of this work has assumed simple situ-
ations in which large images of people appeared in front
of a smooth background as in the KTH dataset [7] and
the Weizmann dataset [8], as shown in Figures 1 and
2. Therefore, these techniques are limited to the target
video sequences, and it is difficult to apply them to actual
video sequences. An autosurveillance system that can detect
specific behaviors in practice has not yet been developed.

The KTH motion sequences have been frequently used
in motion recognition papers. The dataset consists of 2391
low resolution videos (160 x 120,25 fps) showing six types
of human motions each performed 4 times by 25 persons.
The motions are walking, jogging, running, boxing, hand
waving, and hand clapping. Only one person appears in each
sequence, which is shot by an almost-fixed camera in front of
a smooth background, as shown in Figure 1.

The Weizmann dataset is 90 low-resolution video
sequences (180 x 144,25 fps) showing nine different people,
each performing 10 natural motions such as running,
walking, skipping, jumping, and hand waving. Though this
set contains somewhat more complicated situations such
as occlusions, the sequences are controlled, with only one
person per sequence, and they were shot by a fixed camera
as shown in Figure 2.

In contrast, the TRECVID dataset contains video
sequences of real situations. The dataset for the surveillance
event detection task was shot in a crowded airport with five
different angled surveillance cameras as shown in Figure 3.
The video is in PAL format (720 X 576, 25 fps). It consists of
100 hours of video sequences for development and 44 hours
of video sequences for evaluation.

The TRECVID is a workshop for evaluating information
retrieval technologies using a common video corpora. It is
organized by the US National Institute of Standards and
Technology (NIST) [28]. Once a year, participants, such as
research groups from universities and companies, are invited
to the evaluation. The participants compete at tasks specified
by the TRECVID. The submitted results are evaluated
and compared by the TRECVID organizers. The principal
tasks are high-level feature extraction, copy detection, and
surveillance event detection.

The surveillance event detection is a task to detect
sequences of specific human motions. The ten required
specific motions are called PersonRuns, CellToEar, Object-
Put, PeopleMeet, PeopleSplitUp, Embrace, Pointing, Eleva-
torNoEntry, OpposingFlow, and TakePicture. Participants
should output detection results for any three events from
the required set. NIST annotated the videos with the correct
human motion data.

We used complicated videos for detecting specific human
behaviors using the TRECVID dataset. We devised a sensitive
method for detecting human behaviors by evaluating the
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Ficure 1: Samples of KTH dataset.
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FIGURE 2: Samples of Weizmann dataset.

trajectory of a person. Though this method also misidentifies
many nontargeted behaviors, most of these are then rejected
during the verification process. This approach has not been
studied in the past.

3. Proposed System

3.1. Overview. We propose a system that can recognize
several human behaviors even in a crowded scene. We mainly
focused on human behaviors associated with traveling, such
as PersonRuns and PeopleMeet. Figure 4 shows the system
configuration. We use the term human region to refer to any
region in an image that contains one person.

In the training phase, the functions of human region
detection and human behavior recognition are created from
human region images and video sequences from fixed
cameras. We describe human region detection in Section 3.2
and human behavior recognition in Section 3.4. In the
operation phase, the system automatically detects specific
behaviors from a video sequence shot by the same camera
as the training phase. As input, we assume digitized video
files that can be played repeatedly. The system outputs a file
that has a time sequence of detected specific behaviors. The
beginning time and ending time of the specific behaviors are
written in the file. Though our system needed to be trained
in advance, it could be applied to any surveillance video
sequences without any camera calibration.

The method for recognizing specific human behaviors
consists of four steps, as shown in Figure 5. Step 1 is human
region detection. The system detects the regions that contain
a human from the input image using HOG descriptors and
an SVM classifier. Step 2 is human region tracking. The
system tracks a region by evaluating a two-dimensional color
histogram in the region. It robustly tracks human regions
using a Kalman Filter. Step 3 is human behavior recognition.
The system judges behaviors on the basis of the trajectory of
the human region. It recognizes behaviors by analyzing the
similarities to a reference trajectory of each specific behavior.
Step 4 is human behavior verification. The system verifies
the detected human behaviors by analyzing the followed

FIGURE 3: Samples of TRECVID dataset.

trajectory or optical flows. In the following subsections, we
describe the processing of each step in detail.

3.2. Human Region Detection

3.2.1. Processing Flow. The system follows the flow in
Figure 6 to detect human regions. The preprocessing and
postprocessing are performed before and after this human
detection processing. The preprocessing (changed area detec-
tion) contributes to reducing the total processing cost and
noise objects by limiting the area searched. The postprocess-
ing (clustering) contributes to stabilizing the human region
tracking.

3.2.2. Changed Area Detection. If the system searched for
human regions in all ranges of the input image, the
processing cost would be extremely high. In addition, the
noise objects interrupt robust detection of human regions.
Therefore, it searches for human regions only where there
are frame differences or luminance differences from the back-
ground. Figure 7 shows a sample of background subtraction.
The system can detect even a standing person by referring
to the image. Frame differences are used for detecting the
changed areas when a background subtraction image cannot
be used because of the illumination change.

3.2.3. Human Detection Processing. Our human detector
searches for human regions by calculating image features
around the changed region. We used a human detector that
combines the histograms of oriented gradient (HOG) feature
descriptors and a support vector machine (SVM).

HOG descriptors are used for object detection. Many
studies have reported that the HOG is suitable for detecting
human regions because it is robust to a wide range of
variations of poses [4, 5]. The technique counts occurrences
of gradient orientation in localized portions of an image.
It computes on a dense grid of uniformly spaced cells and
uses overlapping local contrast normalization for improved
performance.

We normalized all target regions at 25 X 50 pixels. The
HOG descriptor is calculated by shifting a block by one cell.
We defined a cell as 5 X 5 pixels and a block as 3 x 3 cells,
so 81 (9 directions X 9 cells) dimensional histograms of
gradient directions are obtained in a block. The cells and
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blocks concept is shown in Figure 8. The normalization is
performed for 24 blocks (3 horizontal x 8 vertical blocks)
so that a 1,944-dimensional descriptor (24 blocks x 81
dimensions) is obtained for each target region.

The human detector (SVM classifier) uses the HOG
descriptor to determine whether a target region contains
a person. We trained the classifier with about 1,000 HOG
descriptors in human regions (positive data) and about
2,000 HOG descriptors in other regions (negative data) for
every camera of the TRECVID dataset. All sample data
were extracted manually from the development datasets. The

e
Madmpe|

1 block:
3 x 3 cells

1 cell:
5 x5 pixels

FiGure 8: Cells and blocks.

detected regions were treated as candidate human regions. A
scheme for detecting candidate human regions is shown in
Figure 9.

3.2.4. Clustering Human Regions. More than one candidate
human region is usually detected around one person. The
system should detect one human region for each person
in order to track robustly and recognize human behaviors
accurately. Therefore, the system clusters the candidate
human regions and determines a representative human
region for one person from each of the candidate human
regions in each cluster. This function stabilizes the tracking
of human regions.

The similarity of candidate human regions is evaluated
by calculating two distances: (1) the simple Euclidean



EURASIP Journal on Advances in Signal Processing

Learning data

!*!"*ﬂ%

Human regions (positive data)

\_ Other regions (negative data)

Input image

Changed area
detection

Z l Target regions x/

HOG HOG HOG
descriptor| [descriptor descriptor

S

Human region
detector
oG )
descriptor (SVM)
Posmve Negatlve

R

\Hdil*

Candldate human regions
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distance between the centers of gravity of two human
regions and (2) the Bhattacharyya distance between two
color histograms of candidate human regions [29]. First,
the system calculates a simple distance d by (1). (x1, y1)
and (x,, y2) represent the centers of gravity of two human
regions in (1). After that, the distance of the color histogram
is calculated only for nearby candidate human regions

d= \/(x1 —x)* + (n - )/2)2- (1)

We used HSV color space for creating color histograms.
HSV stands for hue, saturation, and value. The hue and
saturation are intimately related to the way human eye
perceives color, so they are suitable as components of the
histogram. The value is the brightness of the color. A
histogram that is influenced by luminance should not be
used because it changes depending on the positions of
people. We used two-dimensional (2D) color histograms
of HSV color space (H, S). The sum of a histogram is
normalized to deal with the difference of the size of target
regions.

Figure 10 shows samples of visualized 2D color his-
tograms corresponding to the left target region. The hori-
zontal axis shows hue, and the vertical axis shows saturation.
The figure indicates that 2D color histograms differ accord-
ing to colors in a target region.

The similarity of the 2D color histograms is calculated by
Bhattacharyya distance, which is normally used to measure
the separability of classes in classification. The distance is
calculated from a Bhattacharyya coefficient that shows the
similarity of two normalized histograms (3). The coefficient
is calculated by (2) from normalized color histograms p and
q. The p, m, and Dy denote the Bhattacharyya coefficient,
the number of color components, and the Bhattacharyya
distance

m

p= D Apx)qx), (2)

x=0
= 4/1-p. (3)

A candidate human region located in the center of its
cluster is selected as the representative human region of the
cluster.



Target region 2D color histogram

Target region 2D color histogram

F1GURE 10: Target regions and 2D color histograms.

3.3. Human Region Tracking

3.3.1. Processing Flow. A human region is tracked following
the flow of Figure 11. The system tracks human regions by
searching for a similar human region in previous image
frames. The similarity is evaluated by a simple Euclidean
distance and a Bhattacharyya distance of 2D color histograms
in the same way as the clustering process in human region
detection.

If a similar human region is detected, the same ID as the
past frame is set to the current human region. Otherwise, a
new ID number is set. By connecting the center positions of
the same ID region from past frames to the current frame,
we can obtain the trajectory of the human region. Figure 12
shows sample trajectories of human regions.

It is difficult for a motion vector-based tracker to track
all human regions in a crowded area because large numbers
of the same motion vectors are detected. In our system, each
human region can be tracked relatively robustly, even in a
crowded scene, because of the 2D color histograms.

3.3.2. Prediction Processing. That approach, however, does
not necessarily give the position of the human region in
every frame. Detections can fail when an occlusion occurs
in a crowded scene. Therefore, we supplemented the system
with a prediction-based retrack function. The prediction
continues even after a detection failure, so it is possible to
pick up the human region again after it passes through an
area where extraction is difficult.

A Kalman filter [30, 31], which assumes uniform
straight-line motion, is used for prediction. It estimates
the state of a linear dynamic system from a sequence of
measurements that contain noise. It predicts the vectors X,
Y, and P for each frame using

X =FX; 1 +v,
Y[ = HXt +wy, (4)

P; = FP,_FT + Q..

Here ¢ is a frame number, and matrix FT expresses the
transposition of matrix F. X = [x, y,x/, y’]T is the state
estimation vector that consists of the position coordinates
and speed, and P is the covariance matrix of the prediction
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error. F is the state propagator matrix whose elements express
uniform straight-line motion for the linear prediction. v is a
covariance matrix of the process noise (p(v) ~ N (0,Q)),
and w is a covariance matrix of the observation noise
(p(w) ~ N (O,R)).

Furthermore, if the system extracts a region, the process
updates X, P, and the Kalman gain K using

X' = X + K(Y - HX),

P’ = (1 - KH)P, 5)
-1
K= PHT(HPHT + R) .

where Y = [ps py]T is the measurement state (detected
position coordinates), and X" and P’ are updated values
of X and P. H is a matrix that converts a state vector
into a measurement vector. R is the covariance matrix of
the measurement error. When the tracking goes wrong, the
diagonal elements of P become large values, and when it
succeeds, the elements become small. Therefore, the process
controls the size of the image area searched for people on the
basis of the values of P.

There usually exist many missing trajectories due to
occlusion in crowded scenes. When a trajectory disappears,
the system estimates the speed and moving direction of
the missing person and predicts the future position of the
person by calculating X frame by frame. The system matches
the 2D color histogram information of the missing human
region with any new human regions around the predicted
position. If a match succeeds, the system connects the new
detected position with the missed trajectory. This prediction
processing contributes to robust tracking of human regions.
Figure 13 shows a sample of retracking. Though two people
crossed and an occlusion occurred at the center of the image,
both people were extracted again and retracked after they
separated.

3.4. Human Behavior Recognition

3.4.1. Normalization of the Length of Motion Vector. A tra-
jectory of detected human regions contains rich information
about human behavior, such as moving speed and travel
distance. Our system recognizes specific human behaviors
from their trajectories. However, the length of the motion
vector differs depending on the detected position in the
image coordinates. For example, the motion vectors of
people who are detected at positions near the camera are
large, and the motion vectors of people who are detected at
a distance are small. To address this, we devised an average
velocity map to normalize the motion vectors.

The average velocity map is created by calculating the
average velocities of the small blocks in the image coordinates
using (6). Motion vectors (v, v,) at the center of gravity of a
person about 170 cm tall were gathered automatically and the
average velocity V;; in each block was calculated. The variable
n is the number of motion vectors gathered in block i, j. The
concept of generating an average velocity map is shown in
Figure 14. The lengths of motion vectors are accumulated
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FIGURE 13: Retracking after occlusion.

in blocks, filled in dark in the figure. The average velocity
for each block is calculated by averaging the length of all
accumulated motion vectors during a certain period of time
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FiGURE 14: Concept of calculating an average velocity map.

We created average velocity maps from four hours of
video sequences for each camera of the TRECVID dataset.
A sample of an average velocity map is shown in Figure 15.
In the figure, each number indicates the average velocity
in the block. The values of the average velocities at the
bottom are large because the motion vectors in the blocks
were large. The values become smaller toward the top.
The system found no human regions in any of the top
row blocks, so the average velocities in these blocks are
Zero.

By referring to this average velocity map, the system
can normalize an input motion vector, so it can treat all
trajectories equally regardless of their detected position in
the image. This technique does not need any calibration or
positional information of the camera, so it can be applied to
every video sequence shot by a fixed camera.

The system can normalize the motion vectors more
accurately when the blocks are set to be small. However, the
suitable block size depends on the resolution of the video,
the distance from the camera to people, and the number
of motion vectors used for training. If the resolution was
low, the camera was near people, and the training sample
vectors were poor, block size should be large, because the
average velocity might be influenced by unusual motion
vectors.
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3.4.2. Feature Extraction from a Trajectory. We extracted the
following ten-dimensional features from a trajectory.

(1) first detected position (x, y),
(ii) last detected position (x, y),
(iii) total vector (x, y),
(iv) travel distance,

(v) average velocity,
(vi) acceleration,

(vii) linearity.

The total vector is calculated by accumulation of the
motion vectors of each frame in a trajectory. The feature
indicates the direction of the trajectory. The system calculates
the vector horizontally (x) and vertically (y). The travel
distance means the distance from the first detected position
to the last detected position. The distance is normalized in
the same way as the motion vectors. The average velocity
is the average length of motion vectors in a trajectory. The
acceleration is a shift in velocity. We can calculate this feature
by differentiating velocities. The system can detect a person
who stopped or started suddenly with this feature. The
linearity is the average distance from each detected position
to a regression line. If a person has moved straight ahead, the
linearity is close to zero.

If the system extracts these features from the full length
of a trajectory, the features fade away by averaging them.
Therefore, we divided the trajectories of an ID by every one
second. Figure 16 shows the relations between a detected
human trajectory and its features.

Generally, it is difficult to precisely estimate the moving
speed and direction. However, the system can calculate these
features as suitable for recognizing the specific behaviors
from a human region trajectory that has been normalized
with the average velocity map.

3.4.3. Detecting Behaviors from the Trajectory Feature Space.
To cluster trajectories, we projected each trajectory onto a
trajectory feature space that was generated using principal
component analysis (PCA) [20]. We calculated eigenvalues
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and eigen vectors from the ten-dimensional features of each
trajectory. We narrowed down the dimensions from ten to
five. The first principal component was strongly influenced
by the average velocity and the travel distance, the second one
was influenced by the vertical position and the total vector,
and the third one was influenced by the horizontal position,
the total vector, and the acceleration.

Figure 17 shows a scatter diagram of trajectories in the
trajectory feature space of the axis of primary components
one to three. Each point denotes one trajectory in the video
sequences for training. Almost all of the normal trajectories
gathered at the original point in the feature space and specific
trajectories tended to be plotted far from the original point.

In addition, trajectories of the same behaviors tended
to be plotted near each other. So, we created classes called
PersonRuns, PeopleMeet, and ObjectPut by calculating their
average positions p and standard deviations ¢ in the feature
space. Ellipses denote classes of specific behaviors, and their
radii denote standard deviations. A large bias is seen at the
trajectories of the specific behavior PersonRuns. This showed
that the PersonRuns behavior could be reliably detected
from this feature space. On the contrary, the ObjectPut class
was positioned near the original point and its variance was
large. This showed that it is difficult to detect the ObjectPut
behavior from only features of a trajectory.

The system detects specific behaviors by calculating
the Mahalanobis distance from the position of an input
trajectory x to each behavior class [32]. The Mahalanobis
distance Dy (x) is calculated with the following:

Du(x) = (x — )21 (x - ), 7)

where p is an average position of a behavior class in the
trajectory feature space. X is a covariance matrix of each class.

The system sets decision scores according to the closeness
for each behavior class. If a decision score exceeds the
particular threshold for the motion, the system recognizes
that the specific behavior might occur in the ID that contains
the trajectory. The threshold is experimentally decided for
each camera during the learning process. However, the
system does not identify the behavior immediately. It verifies
whether the behavior truly occurred by a verification process
that we describe in the next section.
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3.5. Human Behavior Verification

3.5.1. Verification of Fast Motion by Backward Tracking. Peo-
ple move in various ways in the surveillance video sequences.
The movements can be roughly classified into three types:
(1) fast motions that have large motion vectors such as
PersonRuns, (2) big motions associated with traveling such
as PeopleMeet and PeopleSplitUp, and (3) small motions
not associated with traveling such as ObjectPut, TakePicture,
and CellToEar. Our proposed system uses several methods to
verify behavior depending on the motion type.

The system sometimes makes a mistracking, especially
when the motion is fast, because of the large motion vectors.
In addition, false detections for PersonRuns frequently
occurred when the system misextracted a distant region
because the motion vectors also tended to be large at
greater distances. Thus, the system verifies the trajectory
by searching backward after the PersonRuns behavior is
identified in forward tracking. Tracking results between
forward tracking and backward tracking are different in a
crowded scene because the predicted positions of persons in
each frame are different for forward and backward tracking,
so the system tends to extract different regions.

Figure 18 shows a timeline of backward tracking. Once a
PersonRuns event is detected in forward tracking (¢f1), the
system starts backward tracking from the frame when the
forward tracking finished (¢,). The system tracks the person
in the same way as in forward tracking. If the PersonRuns
behavior is detected in backward tracking as well, the system
identifies a PersonRuns event (t3;). If the behavior could not
be detected over the time when forward tracking was started
(tro), it rejects the event by decreasing the decision score
(tp2). After that, the system restarts the processing from the
time the tracking finished in forward tracking (¢,).

Figure 19 shows sample images of the backward tracking.
A PersonRuns event was detected by both forward and

backward tracking. This technique reduces the number of
false detections.

3.5.2. Verification of Big Motion by Following Trajectories.
Continuing to follow a trajectory after a behavior is detected
can be used to verify big motions, such as PeopleMeet and
PeopleSplitUp. Our system does not stop tracking a person
even after detecting a big motion with the human behavior
recognition process. If a followed trajectory does not match
one or more of the criteria decided experimentally in the
training phase, our system rejects the occurrence of the
behavior by decreasing the decision score. For example, if a
trajectory with a travel distance greater than T, was extracted
just after detecting a PeopleMeet event as (8), our system
rejects the behavior because most people do not walk far
away immediately after meeting someone. T} is the threshold
decided in the training phase, (x,,y;,) is the position of
the detected PeopleMeet event, and (x., y.) is the current
position of the person in (8). This technique contributes
to reducing false detections in the same way as backward
tracking

\/(xc—xp)2+(yc—yp)2 > Ty. (8)

3.5.3. Verification of Small Motion by Optical Flows. It is
difficult to detect small motions from only a trajectory,
because a trajectory contains little information about small
motions. Thus, it is hard to distinguish the trajectory from
other normal trajectories in the trajectory feature space.
Therefore, the system also uses optical flows [33] in the
human region as a local feature for detecting small motions.
We tried to detect the ObjectPut behavior using optical
flow. After a person stops moving (the motion can be
detected from a trajectory), the system calculates optical
flows within the detected human region. If the average of
the vertical flows v, was large and more downward than a
threshold T', that we set experimentally as (9), the system
detected the ObjectPut behavior. The variable n in (9)
denotes the number of optical flows in the human region.
Figure 20 shows a sample of the optical flows in an ObjectPut
scene. Though we can also apply this method to other small
motions, particular criteria have to be set for each behavior

1 n
— < T,. 9
nizzl"yx< p 9)

4. Experiments

4.1. Comparison of Tracking Accuracy. We compared the
tracking accuracy of our system with a baseline method that
was created based on the KLT tracker. The KLT tracker is an
algorithm that selects and keeps track of feature points that
are optimal for tracking. It is widely used in visual feature
tracking and the method can be used with the OpenCV video
library [34]. The KLT tracker detects motion vectors around
moving objects; motion vectors that have the same length
and direction tend to be detected around one person. Thus,
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FiGure 18: Timeline of backward tracking.

FiGure 20: Optical flow in ObjectPut sequence.

TABLE 1: Success rate of two methods with different datasets.

KTH TRECVID
Baseline method 84.03% 33.9%
Proposed method 86.21% 47.62%

the baseline method uses motion vectors to cluster human
regions.

We used two different datasets for the experiment; the
KTH dataset and the TRECVID event detection dataset. The
KTH motion sequences have been used in many motion
recognition studies. The dataset contains sequences of a
person walking in front of a smooth background, and only
one person appears in each sequence. We used 100 sequences
of walking people for the experiment. The TRECVID event
detection dataset is a series of video sequences from five
surveillance cameras set at different angles in an airport. A
large number of people appear in each sequence and many
occlusions occur. We used 14 sequences of the TRECVID
dataset in which 120 people appeared.

F1GURE 21: Tracking samples of baseline method using KTH dataset.

Table 1 lists the tracking accuracy results of the two
methods using the two different datasets. The success rate S
was calculated by

NSI]CCCSS

S = .
N, detect

(10)

Niuceess 18 the number of trajectories that were successfully
tracked, and Nyetec is the total number of trajectories that
the system detected. People in both datasets appeared for 3—
5 seconds on average. Thus, we considered it a success when
the system tracked a person correctly for more than 75 frames
(3 seconds).

The baseline method was slightly worse than the pro-
posed method for the KTH dataset. This is because the KTH
dataset was not shot by completely fixed cameras, so motion
vectors appeared even in the background as well as around
people. However, both success rates of the two methods
in the KTH dataset were quite high, indicating that both
methods are accurate enough to track human regions in
simple video sequences. Figure 21 shows samples of tracking
results with the baseline method using the KTH dataset.

We can see the differences in the two methods in the
results of the TRECVID dataset. Our method was 13.72%
better than the baseline method. This indicates that our
method can track human regions relatively robustly even in
crowded scenes.

Both methods were sensitive to detect human regions so
there were few false negative errors. Thus, the overwhelming
majority of errors were false positive. To clarify the factors
of the false positive error, we conducted another experi-
ment using the TRECVID dataset. We defined two types of
errors.
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TaBLE 2: Comparison of two methods.

Error .

. . Processing speed

Mistracking  False alarm
48.31% 17.80%

38.10% 14.29%

Baseline method 219 msec/frame

Proposed method 429 msec/frame

(1) Mistracking: tracking a human region for less than 75
frames (includes tracks jumping from one person to
another).

(2) False alarm: tracking a noise region that does not
contain a human for more than 75 frames.

Table 2 shows that mistracking occurred more frequently
than false alarm. The baseline method tracks human regions
based on motion vectors. It identifies objects based on the
lengths and the directions of the motion vectors. Because
many people walk in the same direction at approximately the
same speed in a crowded scene, the tracking method tended
to mistrack people because of the difficulty of distinguishing
between adjacent or overlapping human regions. To over-
come this, our method clusters human regions considering
color histograms so that it can track human regions relatively
robustly even in crowded scenes. In addition, our prediction
process helped prevent a tracking region from shifting from
one person to another. Consequently, our system had 10.21%
fewer tracking errors than the baseline method.

The baseline method also had many false alarms. The
method was very sensitive not only to human regions but
also to other objects, such as shadows or baggage, because it
does not distinguish people from other objects. On the other
hand, our classifier can identify whether a region contains
people or not because it was trained using supervised
machine learning on examples of regions containing people
(positive) and examples of regions not containing people
(negative). This is one reason that our error rate of false
alarm was 3.51% better than the baseline method.

At the same time, the processing time of our method
could be a disadvantage. Table 2 shows that the proposed
method takes about twice as long as the baseline method. The
data is calculated by averaging the processing time for about
2 hours in the TRECVID dataset. Although the proposed
method is slower due to the complexity of the processing,
the performance improvement outweighs the disadvantage.

In addition, the baseline method is easier to apply to a
new video sequence than our method because it does not
need to learn human regions. The proposed method needs
much prior knowledge such as background information
and an average velocity map. However, most of the data
is calculated automatically in the training phase, so the
proposed system does not require much preparation.

4.2. Effectiveness of Verification Process. Our system has fewer
false detections of specific behaviors than other systems
because the verification process reduces this type of error.
To confirm this fact, we conducted an experiment. Table 3
lists the number of false detections with and without the
verification process for three behaviors. The false detections
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TaBLE 3: Occurrence of false detections.

The number of

false detections The number of

. false detections ~ Reduction
without . . .
. . with verification rate (%)
verification
process

process
PersonRuns 1572 440 72.01
PeopleMeet 2198 1124 48.86
ObjectPut 37275 754 97.98

were extracted from about 16 hours of video sequences in the
TRECVID dataset. The table also lists the reduction rate with
the verification process.

The verification process for the PersonRuns behavior
reduced false detections to less than one third, from 1572
to 440. This indicates that backward tracking avoided two
of three false detections. The process was effective for the
PeopleMeet behavior as well. The false detections were
reduced from 2198 to 1124.

These results show the effectiveness of the verification
process. Even though the process restricts our system to not
being able to be applied in real time, the accuracy rather than
the processing speed should be emphasized.

Though false detections were reduced to only about 2%
of the first decision for the ObjectPut behavior, the detecting
accuracy of the behavior was low. We should also search for
effective features for identifying small motions.

4.3. Recognition Accuracy of Specific Behaviors. We evaluated
the recognition accuracy of our system for specific human
behaviors in the TRECVID 2009 surveillance event detection
task. We trained our detecting, tracking, and recognition
algorithm using 100 hours of a development dataset. NIST
evaluated our algorithm from submission data that was made
using 44 hours of evaluation dataset.

We tried to detect three specific behaviors: PersonRuns,
PeopleMeet, and ObjectPut using fast motion, big motion,
and small motion. Table 4 shows the results. Detection cost
rate (DCR) was used to evaluate the system performance.
It was calculated using missed detection probability Phiss
and false alarm rate Rpa as shown in (11). The Costy;ss, the
Costra, and the Rrurge are constants with values set by NIST

DCR(60) = Pwmiss(0) + B * Rea(0),

Nuiss (0 Npa(6
Pri(®) = 20 () - FinlO),
Targ Source
(11)
/3 _ Costpp
Costymiss * RTarget ’
C()StMiss =10, COStFA =1, RTarget = 20,

where Ny (0) is the number of missed detections at decision
score 0, Nrurg is the number of event observations, Nga(0) is
the number of false alarms at decision score 6, and Tsource 1S
the total duration of the video segments in hours.

The results indicate that many false detections and
missed detections occurred. However, our system performed
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TABLE 4: Results in TRECVID 2009 event detection task.
Event Reference Our system Correct FalseAlarm Miss Rga Phiss DCR
PersonRuns 107 354 15 339 92 22.234 0.860 0.971
PeopleMeet 449 960 55 905 394 59.355 0.877 1.174
ObjectPut 621 488 19 469 602 30.760 0.969 1.123
TaBLE 5: Comparison with other systems. An important technique for detecting the PersonRuns
behavior is robust tracking of fast moving objects. The
Average of all (Sital.ld?rd Kalman filter based prediction process accomplished this.
eviation of Our DCR Our rank

DCR Al DCR The process set the search area for a tracked person
depending on the speed of the person and the tracking
PersonRuns 2,651 2.700 0-971 113 situation so that our system could track running people
PeopleMeet  2.349 1.705 1.174 4/8 robustly even if an extraction failure occurred in a few
ObjectPut  1.186 0.292 1.123 6/8 frames. The recognition process also contributed to good
results. We could confirm a large bias on the axis of the first
principal component in the trajectory feature space. The first
' ' ' ' principal component weighed heavily on the features of the
999 | | average velocity and the travel distance. These features could
be sufficiently extracted from a trajectory. Thus, our system
99.5 - . was able to detect the PersonRuns behavior. In addition to
gz i ] the above two processes, our verification process was also

o5 | | effective in helping reduce false detections.
S b | Our system could not detect the PersonRuns behavior
2 when a person ran temporally (for less than one second)
& SOy ] because the averaged velocity tended to be low in that case.
60 1 | It was particularly difficult to detect temporal dashing by
children. However, the time length of trajectories can be
40 - ] configured freely so that we can set an appropriate length

20 L i depending on the target person.

b i For the PeopleMeet behavior, our result was fourth place
5 : ; ; ; out of eight systems. The average DCR of all systems was
0.01 0.1 1 10 100 1000 2.349. Our DCR was 1.174, so our system detected the

Rga (events/hour)

® PersonRuns
¥V PeopleMeet
ObjectPut

FIGURE 22: Results of our system in DET curve.

better than other systems developed by participants for the
TRECVID 2009 surveillance event detection task.

Figure 22 shows the detection error tradeoff (DET) curve
for each behavior. The DET curve plots a series of event-
averaged missed detection probabilities and false alarm rates
that are a function of a detection threshold, 6. This 9 is
applied to the system’s detection scores, meaning the system
observations with scores. The 6 is declared to be the set of
detected observations. If the Py and the Rpa are low, the
line is drawn around lower left in the figure. Filled points on
the lines show the DCR.

Table 5 compares our results to systems developed by
other participants. Our system was first place out of thirteen
systems for the PersonRuns behavior. Our DCR (0.971) was
much better than the average DCR of all systems (2.651).
This shows that our system is reliable and effective.

PeopleMeet behavior relatively accurately compared to the
other systems.

The places where one person can meet another are
limited, because people do not stop where traffic density is
high. Before meeting someone, a person tends to slow down
his walking speed before stopping. A slight bias in the third
principal component was confirmed in the trajectory feature
space. The third principal component weighed heavily on the
features of position and acceleration. So, we could divide the
trajectory of a suspected PeopleMeet behavior from people
who are moving without stopping. However, the distance
from the center of major normal trajectories to this behavior
class was relatively small in the trajectory feature space,
causing many false detections. Even though the verification
process reduced the number, the recognition accuracy was
worse than for the PersonRuns behavior.

For the ObjectPut behavior, our result was sixth place
out of eight systems. Our DCR was worse than the average
DCR of all the systems. Our system is not reliable for
detecting the ObjectPut behavior because that behavior is
small compared to the other two behaviors, and it was
difficult to recognize it from only a trajectory. In addition,
there are many potential actions that fall under the category
of ObjectPut. The behavior includes putting heavy baggage
on the floor, picking up money at a register, and leaning on
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a luggage cart. Though the system accounts for optical flows
in the human region, it considered only downward motion.
There is still room for improvement in the detection of small
motions. In future work, we should set assumptions more
strictly or extract more effective features for detecting small
motions.

5. Conclusions

We proposed a method that can detect specific human
behaviors even in crowded surveillance video sequences,
and we developed a system that detects the NIST-defined
behaviors PersonRuns, PeopleMeet, and ObjectPut. The
system recognizes these behaviors by identifying a human
region trajectory, which is created by detecting and tracking
areas that contain people, which we call human regions, in
video sequences. The system detects these human regions
using HOG descriptors and an SVM classifier and uses a
Kalman filter to track them robustly. The similarity of two
human regions is evaluated by the simple Euclidean distance
between them and the Bhattacharyya distance of 2D color
histograms.

The system determines an occurrence of a specific
behavior based on the distance from a trajectory to each class
of specific behaviors in the trajectory feature space created
using PCA. The system also has functions to verify detected
behaviors. For example, it uses backward tracking to verify
fast motions, and it calculates optical flows to verify small
motions. These functions contribute to robust recognition
of specific types of behavior.

We evaluated the tracking accuracy of our system by
comparing it with a baseline tracking method. Our system
was able to track human regions more robustly than the
baseline method even for crowded scenes. We also showed
that the verification process could reduce false detections
effectively. In addition, the results of the TRECVID 2009
surveillance event detection task showed that our system
could recognize human behaviors robustly; our recognition
capability won first place for detecting the PersonRuns
behavior.

The system is suitable for detecting fast motion and big
motions because it recognizes behaviors based on motion
trajectories, which contain rich information about these
motions. We plan to analyze local features, such as optical
flows, in detail to expand the range of human behaviors that
can be recognized.
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