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This paper proposes an image descriptor, Gabor Directional Binary Pattern (GDBP), for robust gaze estimation. In GDBP, Gabor
magnitude information is extracted firstly from a cropped subimage. The local directional derivations are then utilized to encode
the binary patterns in the given orientations. As an image descriptor, GDBP can suppress noises and robustness to illumination
variations. Meanwhile, the encoding pattern can emphasize boundary. We use the GDBP features of eye regions and adopt the
Support Vector Regression (SVR) to approximate the gaze mapping function, which is then used to predict the gaze direction with
respect to the camera coordinate system. In the person-independent experiments, our dataset includes 4089 samples of 11 persons.
Experimental results show that the gaze estimation can achieve an accuracy of less than 2° by using the proposed GDBP and SVR.

1. Introduction

In HCI (Human-Computer Interaction) scenario, eye gaze
means the pointer from the viewer’s two eyes to an
object, and gaze is a very useful natural input modality.
Combining with the sign language recognition or speech
recognition, eye gaze tracking can highly improve usability
for the disabled persons, and meanwhile it can be applied
in some special fields such as, ophthalmology, neurology,
and psychology. Many researchers in computer vision and
pattern recognition community have been focusing on this
topic, and some methods for gaze estimation can be found
in related literature. These methods, by their approaches to
represent the position of a pupil’s center in the eye socket, are
divided into two categories [1]: model-based methods and
appearance-based methods. Model-based solutions, such
as, Pirkinje image [2, 3] and limbus tracking [4], use an
explicit geometric eye model and the geometric features
to estimate the gaze direction. Appearance-based solutions
treat an eye image as a high-dimensional feature, instead
of using the explicit geometric characteristics [5]. These
appearance-based approaches are usually more robust in
experiments by better exploiting the statistical properties.
Sugano et al. [1] take the cropped eye region as a point in a

local manifold model and make gaze estimation by clustering
learning samples with similar head poses and constructing
their local manifold model. In the approach proposed by
Lu et al. [6], Local Binary Pattern (LBP) [7] represents the
“pupil-glint” vector information related to gaze direction
by obtaining the texture changes of eye images. In [8], an
appearance-based method, Local Pattern Model (LPM), is
presented. This model combines the improved Pixel-Pattern-
Based Texture Feature (PPBTF) and LBP texture feature.
Although the existing appearance-based methods have made
significant progress in gaze estimation, their accuracy and
robustness need to be further improved.

In this paper, we present an appearance-based gaze
estimation method based on a novel image operator, Gabor
Directional Binary Pattern (GDBP), and Support Vector
Regression (SVR) [9]. In GDBP, multiscale and multiorien-
tation Gabor wavelets are used to decompose an eye image,
followed by the Directional Binary Pattern (DBP) operator.
We use the GDBP operator to represent the texture changes
of the eye images caused by the pupil centers which keep
moving in the eye sockets, when people at a certain head
pose gazes in different directions. With the advantages of
Gabor filters [10] and the local directional differentiation
information, GDBP is not only robust to illumination



variances, but also with much discriminating power. In
applications, these patterns are useful in representing the
horizontal and vertical pupil movements. As appearance-
based features, GDBP is fed into SVR to approximate
the gaze mapping function. The output gaze direction is
represented in terms of Euler angles with respect to the
camera coordinate system. Our experimental results show
the validity of the proposed operator, and additionally we
have achieved an accuracy of less than 2°.

The rest of the paper is organized as follows. In Section 2,
we elaborate the computation of the proposed GDBP
operator in detail, as well as some analysis on its robustness
to the light variances and its different discriminating power
in different orientations. Gaze estimation with fixed front
head pose based on GDBP is presented in Section 3, fol-
lowed by experimental results with comparisons with other
approaches. In the last section, some brief conclusions are
drawn with some discussions on the further work.

2. GDBP Operator

In this section, we first define the Directional Binary Pattern
(DBP), and then extend it to GDBP, using multiscale
and multiorientation Gabor filters. Finally, we analyze the
robustness and discriminating power of the GDBP. The
details are given as follows.

2.1. Directional Binary Pattern (DBP). We define the texture
in a 3 x 3 pixels neighborhood of an image as a joint
distribution of the gray levels in the 9 pixels {Z;, Z,...,Z7}
(see Figure 1). Z, is the center pixel, around which are Zj,. . .,
and Z;.

Our operator is not only a gray scale texture operator, but
also an encoding of directional differential patterns, which
are given by the directional differential equations:

AI(Z0)g = 1(Z)) - 1(Z) (i —0,..., 7, 0= %) (1)
where 0 is the direction of the directional differentiation
and i is the corresponding pixel. In a given direction 6,
the directional differentiation information around Z. is
summarized in a Directional Binary Pattern (DBP):

DBPy(Z,) = {sign(AI(Zp)g), ... ,sign(AI(Z7)g)}, (2)
where

1 if AI(ZI)Q >0,
sign(AI(Zi)g) =
0 if AI(Z;)g <O0.

(3)

As stated above, eight neighbor pixels are used in the
differential results of the same direction, which can be
formed into a byte to represent 256 different modes. These
modes can be easily encoded as follows:

7
DBPy(Z,) = > sign(AI(Z;))2', (4)
i=0
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FIGURE 1: A 3 X 3 pixels neighborhood.

where (2) is used to compute a decimal value for an 8-bit
binary string as (4). By using this encoding method, we can
get a decimal number for each pixel corresponding to its
directional pattern. It ranges from [0, 255], and it is easy to
visualize it as a gray-level image. The directional differential
pattern is calculated in 0° (the x-coordinate direction) and
the formula is the following:

AI(ZC)O = I(Zc) - I(ZO) (5)

Similar to the eight-pixel neighborhood of Z. as shown
in Figure 1, the other directional derivatives are given by the
following:

AI(Zc)nM = I(Zc) - I(Zl)>
A(Zo) py = I(Ze) — I(Zy), (6)
AN(Z)3p = 1(Z:) — 1(Z3).

As shown in Figure 1, eight neighboring points around Z,
correspond to eight orientations. However, four directional
derivatives of 0 = {m,5n/4,3n/2,2n} are calculated when
the centers are Zy, Zs, Zs, and Z;. The whole DBP consists of
DBPgys at 4 directions:

T 371}. 7)

DBP(Z.) = { DBPy(Z =0,—, =, —
(z) = {DBRa(z) 16 - 0,5, 5.7

Similar to the LBP operator, DBP encodes the local
binary pattern. In addition, DBP also represents directional
differential information (see Figure 2). With these advan-
tages, DBP can be applied broadly.

2.2. Extending DBP with Gabor Filters. Gabor wavelets with
multiscale and multiorientation are widely applied in image
processing and pattern recognition. We extend DBP to GDBP
to enhance the capability of object representation. Gabor
wavelets (kernels, filters) are defined as y,,,(z) in [11]. Gabor
map is defined as

Guy(Z) = I(Z) * yu(Z), (8)

where Z = (x, y) denotes the image position and “*” is the
convolution operator. For frequency v in {0,1,2,3,4} and
orientation u in {0,...,7}, the directional differentiation of
G,,v(z) in direction 0 at location Z, is computed as
. in
AGu,v,G(Zc) = Gu,v(Zc) - Gu,v(Zi) (1 =0,1,2,3, 0 = Z)
9)
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FIGURE 2: A comparison of LBP and DBP. Bottom-left: the input image with the neighborhood of interest highlighted. Top-left: the binary

code by LBP. Right-4-rows: the binary codes by DBP.

and GDBP,,, ¢ can be written as

7
GDBP,,0(Z) = > sign(AG,,0(Z))2'. (10)
i=0

Finally, the whole directional differential patterns of
GDBP are formulated as

GDBP(Z) = {GDBRy0(Z) 10=0,5, 2,22 ()
4°2° 4

As stated above, a cropped eye image is encoded into
GDBP by the following procedures. (1) The image is normal-
ized and transformed to obtain multiple Gabor magnitude
maps in frequency domain by applying multiscale and
multiorientation Gabor filters. (2) The Directional Binary
Pattern (DBP) is extracted from these maps.

2.3. Robustness Analysis of the GDBP. We analyze the robust-
ness of the proposed GDBP because a good image represen-
tation should be robust to lighting variations. To evaluate
GDBP’s robustness to lighting variations, we compared the

' a

(a) (b)

FIGURE 3: Two eye images from the same subject with different
illumination.

histograms of six representations extracted from the two
images of the same eye with different lighting (see Figure 3).
In this paper, the parameters of GDBP aresetasv = 2,u =
7,and 6 = 0, 71/2 for a trade-off between speed and accuracy.
As shown in Figure 4, the six representations are, respectively,
the original image intensity, LBP of the image, DBPy_g /> of
the image, and GDBPy_¢ »/» of the image. Two white regions
of the same window size 16 x 16 pixel array as shown in
Figures 3(a) and 3(b) are, respectively, selected to extract
different histograms, and the results are shown in Figure 4.
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FIGURE 4: Robustness of the different histogram to images with lighting variation. GDBP (a, b), LBP (a, b), and DBP (a, b) mean that three
operators are, respectively, applied on the white regions of image a and image b (see Figure 3), and 6 is the direction of GDBP and DBP.
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TaBLE 1: Errors of three gaze directions under three lighting
variations (degree).

Feature
Gaze
LBP DBP GDBP
E.(u=0) 2.1+1.5 1.9+ 1.3 1.7+ 1.3
Eg(u +0) 2.0+ 1.7 20+14 1.7+ 1.4
E,(u=+o0) 2.1x1.6 1.8+ 1.4 1.6 1.2

We can see clearly that the histograms of GDBP (6 = 0, 7/2)
are the most similar. We also can see that GDBP has better
robustness properties than either of DBP or LBP. This implies
that eyelid representation of GDBP is robust to the lighting
variations, which can lessen the effect of reflections on eyelids
and benefit for gaze estimation.

In the off-line person-dependent gaze estimation, we use
three sets under different lighting conditions to evaluate the
performance of LBPs, DBPs, and GDBPs. Three data sets
are collected from three persons by the method described
in Section 3.1. Each set has the 742 samples, Set 1 with the
left lighting, Set 2 with the frontal lighting, and Set 3 with
the right lighting, as shown in Figure 5. Three sets are cross-
validated with each other in order to evaluate the robustness
of various features by estimation accuracy. When one is
used as a training set, the others are used as the testing
sets. The final estimation accuracy is calculated on three
cross-validated experiments. From Table 1, there is a similar
accuracy between LBP and DBP, while with the advantages of
Gabor filters [10], GDBP has the best robustness to lighting
variations.

GDBP is not only robust to the variations of imaging
condition but also with much discriminating power. GDBP
has the different discriminating power in different orien-
tations. A white region of the window size 16 x 16 pixel
array, as shown in Figure 3(a), is selected to extract the gray
histograms by GDBPg—¢ /2. As shown in Figure 6, we can
see clearly that the histograms of horizontal and vertical
GDBP contain different discriminative information. This
implies that the representation of GDBP can meet the special
requirements, namely, GDBP is useful in representing the
horizontal and vertical movement of the pupils for gaze
estimation.

3. Experiments

3.1. Experimental Data Collection. Gaze estimation aims to
calculate thedirection of subject’s attention from an image,
which isrepresented in terms of Euler angles between the gaze
vector v and three axes of camera’s coordinate system. In this
paper, we apply the proposed descriptor to estimate the gaze
direction with a basic assumption: head poses are fixed front
view. In order to gain the samples labeled by the accurate
Euler angles, a designed studio is setup (see Figure 7), which
contains a camera C for collecting the face images, a monitor
S as a gazed object and a localizer (a commercial FASTRAK
[12]) to calibrate the objects (user’s eyes, observed cursor on
the monitor, camera) of our studio.

The FASTRAK has a transmitter (the world coordinate
system OwXyw YwZw. The origin is located in the centre of
the transmitter) and four receivers, and only three receivers
are used in our data collection procedure (Each receiver
owns alocal coordinate system). Three receivers are mounted
on the head of the viewer, the camera, and top-left corner
of the screen, respectively. The data from a receiver is its
position and orientation related to the transmitter, which
are six values: X, Y, Z in c¢cm, and Azimuth, Elevation,
Roll in degree. And then our system can calculate the
receiver’s translation and rotation matrices related to the
transmitter’s coordinate system. In Figure 7, one receiver
is mounted on the top of the camera, and the output of
its translation and calculated rotation matrices are Tcam
and Ream = (™ 5% r5°™) related to the transmitter’s
coordinate system. rlcam (i = 1,2,3) are the axes of camera’s
coordinate system. Suppose that the translation and rotation
matrices from the receiver’s coordinate system to camera’s
coordinate system are T¢ = (0 y. O)Tand Re=1({Tis
a 3 X 3 unit matrix), respectively. The second receiver is
mounted on the top-left corner of the screen, and the output
of its translation and calculated rotation matrices are Ts., and
R, related to the transmitter’s coordinate system. For each
generated cursor as a gazed point, we assume the translation
and rotation matrices from the receiver’s coordinate system

to screen’s coordinate system are Ts = (x; ys 0)" and Ry
= I, respectively. The third receiver is mounted on top of
the viewer’s head, and the output of its translation and
calculated rotation matrices are Theaq and Ryeaq related to
his transmitter’s coordinate system. Assume that the centre
of the two eyes has a translation of Ty = (0, — 15, 8) in
cm related to the third receiver ((0, — 15, 8) is a statistical
average and the error of different centre can be ignored and
tested by the experiments). We keep the X direction of the
receiver paralleling to the line between the two eyes and the Y
direction upright, and the Z direction parallels the direction
of head pose.

As stated above, we have the translation and rotation
matrices from the three receivers. Then, the position of the
observed target is Tse + Rser T's, and the position of the centre
of two eyes is Thead + RueadTy with respect to the world
coordinate system OwXw YwZw. Therefore, the gaze vector
V is calculated by

v = TScr - THead + RSchS - RHeadTV
HTScr - THead + RSchS - RHeadTV H

(12)

Cam_(rcam cam .cam\T

Meanwhile the camera’s axes are r;*™ = (r{i" 51" r577) 7,
Cam cam .cam .cam\l Cam cam .cam cam\l
r; = (g™ 3" r59™), and r3 = (ri3™ 3" 55T

Therefore, gaze direction represented in terms of three Euler
angles (a, 8, y) of gaze vector v with respect to the camera
coordinate system is calculated by

o arccos (v, rlc"‘m)
B | = | arccos (v, r%am) . (13)
Y

arccos (v, rgam)

Our system synchronizes the image capturing and the
computation of gaze direction. In the data collection, the
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FIGURE 5: Samples under three lighting variations.
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F1GURk 6: Histograms of horizontal and vertical GDBP extract from
the white region image as shown in Figure 3(a).

distance between subject’s heads and the screen is around
600 mm. In this paper, in order to simplify the experiments,
we keep the head pose in front view by holding the Z
direction of receiver fixed on the top of head. In the data
collection, at each time only one of predefined 16 points
appears on the monitor and its world coordinate is calculated
from the screen coordinate by the translation and rotation
matrices. We provide a database for further research.

3.2. Gaze Estimation Based on GDBP and Experimental
Results. In our experiments, we use the GDBP operator
to encode the eye images as the appearance-based feature.
Our algorithm gets a captured image as input, and outputs
the gaze direction. In our method, the eye centers and the
contour points of the eyelids are located by the method
proposed in [13]. The eye image is then cropped among

b

Yw

Xw

FASTRAK’s transmitter

FiGure 7: Studio setup.

the outline points of the eyes (see Figure 8(a)). The cropped
two eyes image is divided into 16 nonoverlap rectangular
regions. Our experiments show that when a single eye is
divided into 8 regions and double eyes 16 regions, we achieve
the best accuracy; see Table 2. GDBP features are computed
(see Figures 8(b) and 8(c)), where the parameters are set as
v = 2andu = 7.The parameters are so set for a trade-off
between speed and accuracy. Gray histograms are computed
from each region. All histograms (256 bins) are used to
replace the classical “pupil-glint” vector. GDBP features, as
well as the histograms, are fed to SVR to predict the gaze
direction. In our experiments, we calculate GDBP features
only in horizontal and vertical directions (8 = 0,7/2) to
improve the computational efficiency.

In this paper, we use front view samples for training
and testing. The cropped eye sample distribution in the
gaze space looks like a net, which is a double unicom
space as shown in Figure 9. This implies that the eye gaze
is a successive movement and we use SVR to map the
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FIGURE 8: (a) Eye image (16 regions of double eyes). (b) Visualization of GDBPy. (c) Visualization of GDBP,,.

FiGure 9: The distribution of eye samples corresponding to the
different gaze directions.

TABLE 2: Errors of different regions (degree).

Gaze Regions
3x2 4x2 3X3 4x3
Fl N AW = B
- s T== TuEE
E.(u) 24 2.1 2.3 2.7
TaBLE 3: Errors of three gaze directions (degree).
Gaze Feature
GDBP DBP LBP
E,(u+0) 21=+1.1 24+15 25+1.7
Eg(p = 0) 22+1.5 2.7+ 1.7 2.8+ 1.8
E,(u+0) 20+ 1.6 25+1.9 26+1.8

model of nonlinear successive motion. Our sample dataset
consists of 4089 samples from 11 persons. It is divided into
three sets: Set 1 with 1666 samples from 4 persons, Set 2
with 1140 samples from 3 persons, and Set 3 with 1283
samples from 3 persons. Our off-line person-independent
experiment is cross-validated on the three sets. We compared
our GDBP and DBP operators to LBP operator by applying
each operator on the same datasets. From Table 3, we see
clearly that GDBP performs the best and achieve an accuracy
of less than 2°.

In real-time application, we can also map the gaze point
to the coordinate of the screen similar to the classic “glint-
pupil” methods. Our gaze estimation system operates in a
desktop environment, and a user sits in front of a PC monitor
away from 600 mm to 650 mm. Our system consists of a
camera (uEye-1540x) and a Windows PC with a monitor, a
3.0GHz CPU and 1GB memory (the localizer, FASTRAK,

192
a
Number of points

(Pixel)

F1GURE 10: Left red rectangle is 256 x 192 pixels whose center is (640,
480) of the monitor coordinate. Right histogram is a statistical result
on 9 subregions (small yellow regions).

is not used here). The camera is mounted on the top of
monitor. We only need an initial calibration that calculates
the range of sight related to the four corners of the monitor.
The distance of two eyes’ center is used as a parameter
according to the depth of field. The monitor is divided into
16 subregions and subjects gaze at the center of each sub-
region. The geometric errors are (4,0) 2.7° = 1.8°, between
the centers of the subregions and the estimated gaze points,
for all of the subregions. As shown in Figure 10, one of
16 subregions is in size of 256 X 192 pixels whose center
is (640, 480) of the monitor coordinate. Subjects gaze at
the center of this sub-region while his head pose is front
view for simplifying real-time experiment. The experimental
results of three subjects show that the accuracy is 85%
of the calculated points located in this rectangle, and the
points represent a Gaussian distribution. By utilizing the
off-the-shelf devices, gaze estimation is executed in 0.85
second from capturing an image to the output of the gaze
direction without little code optimizations. Although most
commercial gaze estimation solution provides the accuracy
less than 1 degree, they usually depend on the assistance of
LEDs, as shown in the head mounted EyeLink II [14]. Our
method is nonintrusive without any help of LED. The remote
monocular nonintrusive gaze estimation is a tendency of gaze
research.

In our experiments, the kernel function of SVR is the
Gaussian kernel function. The sixteen regions (4 X 2 X 2 =
16) of double eye images are used and the average error is
around 2°. It is important to note that our eye gaze method is
noninvasive, fast, and stable. It is stable due to the robustness
of our novel features to the light variances.

4. Conclusions

In this paper, a robust image descriptor, GDBP, is proposed
for gaze estimation. GDBP captures not only the local binary



pattern, but also the texture change information related to
the given directions. Other advantages of GDBP include
noise restrain and robustness to lighting variations. GDBP
features are finally fed into SVR to estimate the gaze direction
with respect to the camera coordinate system. In the future,
we will investigate how to match two GDBPs and how to
apply the discriminative capacity of the GDBP operator for
other tasks.
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