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A new member of the Cohen’s class time-frequency distribution is proposed. The kernel function is determined adaptively based
on the signal of interest. The kernel preserves the chirp-like components while removing interference terms generated due to the
quadratic characteristic of Wigner-Ville distribution. This approach is based on the chirplet as an underlying model of biomedical
signals. We illustrate the method using a number of common biological signals including echo-location and evoked potential
signals. Finally, the results are compared with other techniques including chirplet decomposition via matching pursuit and the
Choi-Williams distribution function.

1. Introduction

Many signals of biological origin are nonstationary in nature.
Examples include speech signals, bat calls as well as neu-
roelectric signals like electroencephalography (EEG) [1, 2],
heart rate variability [3], or event-related potentials (ERPs)
[4]. Time-frequency or time-scale representations, in recent
years, have found significant application in nonstationary
analysis of a wide-range of signals including biomedical sig-
nals [5–13]. Constructing a time-frequency representation
involves mapping a one-dimensional time-domain signal
x(t) into a two-dimensional function of time and frequency
or time and scale [14]. Time-frequency representations are
some of the main tools for nonparametric instantaneous
frequency estimation [14]. The position of peaks in the time-
frequency representation reveals the main components or
structures of the signal.

Among the most commonly used time-frequency distri-
butions are the so-called quadratic distributions. The spec-
trogram [15, 16] is one of the earliest proposed distributions
yet is still commonly used to this day. Nevertheless, the
spectrogram has severe drawbacks, both theoretically since
it provides biased estimators of the signal instantaneous
frequency and group delay [17], and practically since the
Gabor-Heisenberg inequality [15] makes tradeoffs between

temporal and spectral resolution unavoidable. To overcome
these shortcomings, other nonstationary representations
have been proposed. Among these include the Cohen’s class
[18] of bilinear time-frequency energy distributions. The
Wigner-Ville distribution [19], the Margenau-Hill distri-
bution [20], their smoothed versions [21–23], and others
with reduced cross-terms [24–27] are all members of this
class. Although Cohen’s class distributions tend to reduce the
interference between the various signal subcomponents, this
reduction can affect the precision by which the instantaneous
frequency is estimated. This is mainly due to the prede-
fined smoothing kernel functions which do not distinguish
between the signal components and the interference terms.
Hence, in the process of reducing or removing cross-
terms, the kernel also removes signal components. On the
contrary, signal-dependent kernels can provide improved
time-frequency representation and have been proposed for
various applications [28–31]. An extensive review of the
methods proposed for improving time-frequency resolution
can be found in [14].

The nonparametric methods of time-frequency anal-
ysis described above can be contrasted with parametric
approaches which attempt to model the underlying signal
[32, 33]. There has been much debate as to the ideal
choice of basis functions to use. Generally speaking, the
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more similar the basis function is to the signal, the more
compact is the decomposition. Many biological signals can
be thought of as a sum of more elementary components
each of which are relatively narrowband in nature. Common
examples include speech which consist of a number of
formant frequencies illustrating the resonance of the vocal
tract. In such a case, chirplets (or chirp signals of limited time
extent) can be thought of as a good model of the underlying
signal—any narrowband changes in instantaneous frequency
can be described mathematically to first order by linear
changes in the time-frequency plane [34–36]. We have been
working on ways to decompose biological signals into a
sum of chirplets [37]. A time-frequency representation can
be obtained from the decomposition by summing up the
individual contributions from each chirplet. This provides a
clear time-frequency picture of the signal without the cross-
term interference. While we have found that this method
yields excellent visualization of biomedical signals, there are
some significant challenges to overcome because chirplets
do not form an orthogonal basis set. In some earlier work,
we used matching pursuit to carry out the decomposition
process which we found to be prohibitive in terms of
computational cost. There is a need to find improved ways
to carry out this analysis.

This paper proposes a new class of time-frequency
distributions for which the kernel function is determined
adaptively based on the signal of interest. This approach can
be best characterized as a hybrid approach combining both
nonparametric and parametric methods using the chirplet
as an underlying model of the biomedical signal. The kernel
function preserves the chirping components in the signal
while eliminating the interference terms generated by the
quadratic characteristic of the time-frequency representa-
tion. The proposed method filters out the oscillatory cross-
terms and instead preserves the “true” signal components
which are of low spatial frequency.

2. ProposedMethod

2.1. Wigner-Ville Distribution and Multicomponent Signals.
Time-frequency representations via the wavelet [38], win-
dowed Fourier transforms and chirplet transform [39] are
computed by correlating the signal with a family of time-
frequency atoms. The time-frequency resolution of the
distributions is therefore limited by the resolution of these
atoms. In contrast, the Wigner-Ville Distribution (WVD)
defines signal energy density in time-frequency plane with no
restriction on resolution beyond the uncertainty principle.
The WVD is computed by correlating the signal with a time
and frequency translation of itself [40]:

WVf (t,ω) =
∫∞
−∞
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τ

2

)
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(
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)
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Due to the quadratic nature of the distribution, the
application of the Wigner-Ville distribution is limited by
the existence of interference terms. The interference can
be best illustrated by considering multicomponent signals.
We can think of a multicomponent signal f (t) as a sum

of more elementary monocomponents, f (t) = ∑
fk(t).

In Section 2.2, we will explore the specific case where
the monocomponents are Gaussian chirplet functions. The
WVD of a multicomponent signal consists of the summation
of auto- and interference terms (cross-terms) due to pairwise
interaction of components:
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where WVf ,k is WVD of the kth monocomponent autoterm.
Cross-terms may lead to an erroneous visual interpreta-
tion of the time-frequency representation and are also a
hindrance to pattern detection, since the interference can
overlap with the signal. Due to the marginal properties of the
WVD, i.e.,

∫
WVf (t,ω)dt = |F(ω)|2, and

∫
WVf (t,ω)dω =

2π| f (t)|2, the interference terms are oscillatory and zero-
mean if the individual components do not overlap at any
point in time and frequency [40]. The spatial frequency
of the oscillations depends on the distance between the
monocomponents in time-frequency plane; that is, the
farther apart the components, the higher the oscillation
frequency. Although these interferences can be attenuated by
time-frequency averaging, this will result in the loss of energy
localization.

The Cohen’s class distribution extends the Wigner-Ville
distribution by introducing a smoothing kernel [18]:

WVf ,θ =
∫∫∞

−∞
WVf (τ, ζ)θ(t − τ,ω − ζ)dτ dζ. (3)

Since convolutions can be more easily manipulated in the
transformed space, a two-dimensional Fourier transform of
WVf (t,ω) with respect to t andω yields what is known as the
ambiguity function. Based on (2), the ambiguity function of
a multicomponent signal can be expressed in terms of the
summation of two-dimensional Fourier transformation of
monocomponents and cross-terms:

As(Ω1,Ω2) =
N∑
k=1

Ak
c (Ω1,Ω2) + I(Ω1,Ω2), (4)

where Ak
c (Ω1,Ω2) is the ambiguity function of kth mono-

component and I(Ω1,Ω2) the ambiguity function of the
interference terms. While it is not always possible to
express I(Ω1,Ω2) in closed form, one can always work
with the expression numerically. The transform of (3)
gives the multiplication of the signal’s ambiguity function
with the transform of the kernel. That is, As,θ(Ω1,Ω2) =
As(Ω1,Ω2)·Aθ(Ω1,Ω2). An ideal kernel should preserve each
individual component and its localization in time-frequency
domain while removing the cross-terms, that is, As(Ω1,Ω2) ·
Aθ(Ω1,Ω2) =∑N

k=1 A
k
c (Ω1,Ω2).

2.2. The Wigner-Ville and Ambiguity Representation with
Gaussian Chirplets. Next we consider the specific case where
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the monocomponents of a multicomponent function are
approximated by Gaussian chirplets.

The chirp is one of the most fundamental signals in
nature. Many natural and man-made signals can be well
approximated using chirps including seismological signals,
radar systems, evoke potentials [37], ultrasound signals
[41, 42], and marine-mammal signals [43, 44]. A Gaussian
chirplet is a component whereby its instantaneous frequency
changes linearly over time and is localized in time by a
Gaussian envelop. A normalized Gaussian chirplet is defined
in the time domain as
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)1/4
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2
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× exp
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where α > 0 is time spread of the signal, t0 is center of
time, ω0 is center of frequency, and β is the chirp rate [39].
f (t) is normalized to have unit energy. The Wigner-Ville
distribution of f (t) can be expressed as

WVc(t,ω) = 2 exp
{
−α(t − t0)2

}

× exp
{
− 1
α

[
(t − t0)β − (ω − ω0)

]2
}
.

(6)

Furthermore, it is notable that when α → 0 the chirplet
becomes a chirp, e j[ω0+(β/2)(t−t0)](t−t0). Hence the WVD of a
chirp becomes

lim
α→ 0

WVc(t,ω) = 2πδ
[
(t − t0)β − (ω − ω0)

]
, (7)

which shows a precise localization of instantaneous fre-
quency and energy. Note however that this is not the case
if the changes in instantaneous frequency are not linear
[14, 45].

The ambiguity function of a Gaussian chirplet is
expressed as
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It should be noted that the ambiguity function of a Gaussian
chirplet is a zero-mean bivariate Gaussian density with
covariance matrix determined by the time spread (α) and
the chirp rate (β). Due to the oscillatory nature of the
cross-terms, the interference is located away from the origin
[25, 33]. For instance, consider the signal g(t) which is equal

to the sum of two chirplets, g(t) = A1c1(t,α,β, t1,ω1) +
A2c2(t,α,β, t2,ω2). The WVD of g(t) is expressed as
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where WVc(t,ω) is defined in (6). The ambiguity function is

I(Ω1,Ω2)

=
(
4πe−(Ω1−βΩ2)2/4αe−α(Ω2)2/4e− j[Ω1((t1+t2)/2)+Ω2((ω1+ω2)/2)]

)

∗ (δ(t1 − t2,ω1 − ω2) + δ(t2 − t1,ω2 − ω1)),
(10)

where δ(t,ω) is a two dimensional Dirac delta function, and
“∗” denotes the two-dimensional convolution operator. The
above equation shows that the interferences are concentrated
at (t1 − t2,ω1 −ω2) and (t2 − t1,ω2 −ω1) with the autoterms
near the origin. Please see Figure 1. This example can be
generalized to a sum of any number of chirplets with
arbitrary parameters and proves for the general case that
the interference terms are located away from the origin
[46]. This observation holds important application for the
determination of the adaptive kernel to be discussed in the
next section.

2.3. Optimal Kernel Determination. Equal density contours
for the autoterms of chirplets are defined mathematically
by ellipsoids. The direction and length of the principle axes
are functions of the chirp rate and the time spread. These
axes can be identified with a Radon transform. Analysis
of the Radon transform reveals information regarding the
monocomponent chirp rates (β) and time spreads (α).
Recall that the chirplet components lie at the origin of the
ambiguity space while the interference terms are located away
from the origin. The Radon transform of ambiguity function
of a normalized chirplet can be expressed as

Rc
(
ρ = 0, θ

)

=
∫∫∞

−∞
Ac(Ω1,Ω2)δ(Ω1 cos θ + Ω2 sin θ)dΩ1dΩ2

= 2π

√
π
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exp
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}
,
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where λ(θ) = (β + tan θ)2/4α + α/4. Based on the superposi-
tion property, the Radon transform will show peaks at values
of θ corresponding to the axes orientations of each of the
ellipsoids. In order to exclude the effect of the interference
terms in the calculation, the Radon transform is carried out
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Figure 1: (a) WVD of two chirplets (α1 = 0.01,β1 = 0.2, t1 = 20.05,ω1 = 32.08,α2 = 0.01,β2 = 0.025, t1 = 20.05, and ω2 = 24.06).
(b) Representation of chirplets in ambiguity space. Cross-terms are located between the chirplets in the WVD, while in ambiguity space
they are located away from the origin. (c) Radon transformation in the neighbourhood of the origin (ρ = 0). (d) Optimal kernel in the
ambiguity space. (e) Resulting time-frequency representation. (f) Smoothed pseudo-Wigner-Ville distribution of the signal. Reduction in
energy localization is noticeable in this representation.
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Figure 2: (a) Spectrogram of a frequency-modulated signal. (b) Wigner-Ville representation of the signal (negative energies discarded).
(c) Result of proposed method. (d) Choi-Williams representation of the signal. (e) Decomposition of signal in terms of seven
chirplets.
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Figure 3: Chirplet representations of a bioacoustical signal. (a) Time-domain representation of the large brown bat echo-location signal
(sampled at 0.14 MHz). (b) Spectrum of the signal (calculated with a 0.45 ms Gaussian window). (c) Time-frequency representation of the
signal. (d) Chirplet decomposition of the signal (represented by five chirplets). (e) Wigner-Ville distribution of the signal (negative energies
discarded).
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Figure 4: (a) Wigner-Ville distribution of a synthetic signal consisting of a sum of elementary signals [37]. (b) Resulting time-frequency
representation.

only in neighbourhood of the origin. This neighbourhood
is defined as the circular region around the origin which
includes 50% of the signal energy.

To eliminate artifacts due to sharp cutoffs from ker-
nel filtering (e.g., ringing), the edges of the kernel were
smoothed. The smoothing process can be carried out by
employing a tapering function like a Hanning or Gaussian
function. In Figure 1(d) we show the example of the use of a
two-dimensional Gaussian function. A “cleaned” ambiguity
representation is then obtained by multiplying the original
ambiguity function with the corresponding mask. Finally,
the time-frequency representation of the signal is generated
by calculating the inverse Fourier transform of the ambiguity
function.

If the signal of interest is not a sum of chirplets, the
steps outlined above will result in a representation where the
signal’s energy in the time-frequency plane is approximated
by a number of localized straight line segments. It should
be noted that for such signals, additional nonchirplet-
like interference terms will also appear. These interference
terms are often low frequency oscillations that overlap with
the signal in ambiguity space. For example, a frequency-
modulated signal and its Wigner Ville representation are
illustrated in Figure 2. Despite the nature of the signal, the
method proposed here can represent the signal in time-
frequency space with a high degree of localization. It can be
shown that the representation conserves 99% of the original
signal’s energy.

The Expectation-Maximization (EM) algorithm was
used for finding maximum likelihood estimation of chirplet
parameters in the time-frequency plane. All optimization
algorithms suffer from difficulties in parameter initialization
and in the selection of the number of parameters or
components. However, in this case we make use of the
parameters estimated from the Radon transformation in
ambiguity space. This significiantly reduces the time required
for optimization as well as improves the robustness of the
estimation. The number of components can also be set equal

to the number of peaks found in the Radon transformation,
and then adjusting the number of components from there to
minimize the total error.

3. Results and Discussion

Although biological signals can be found over a wide range of
frequencies, they are often narrowband in nature. Chirplets
are thus a suitable choice for modelling such signals [37].
The method proposed in this paper uses this property to
generate an interference-free time-frequency representation
by approximating the underlying time-frequency structures
of the signal by a linear approximation. The result provides
not only a clearer picture of the salient signal characteristics
but also provides a means for mathematically decomposing
signals into chirplets. An example of this is shown in
Figure 3, where a bat echo-location ultrasound signal is
represented as combination of four chirplets. We also show
results from synthetically generated signals—see Figure 4
where a signal consisting of a sinusoid, a windowed sinusoid,
Gabor logons, sawtooth, an impulse, and a chirplet is
analyzed by the same technique. This signal was adapted
from [37]. In both cases, the time-frequency visualization
is improved significantly and the main time-frequency
structures are easily identifiable.

We also provide one example where the time-frequency
representation is compared with that which was obtained
from chirplet decomposition with matching pursuit. Certain
dynamic brain mechanisms can be investigated through neu-
roelectrical brain responses called event-related potentials
(EPRs). The visual evoked potential (VEP) is an evoked brain
response generated in the visual cortex in response to the
presentation of a visual signal. Such signals are noisy and
are often averaged before processing. The VEP signal we
have analyzed here is equal to an average of 50 trails from a
single subject. Three chirplets are estimated for comparison
with the results calculated by Cui and Wong [37] using
the matching pursuit algorithm. As can be seen through
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Figure 5: (a) Wigner-Ville distribution of visual evoked response (negative energies discarded). (b) Resulting signal representation after
applying optimal kernel. (c) Result obtained by Cui and Wong through chirplet decomposition via matching pursuit [37]. (d) Three chirplet
decomposition by the method proposed here. (e) Spectrogram of corresponding signal.
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comparison of both figures, the results are quite similar. The
time-frequency representation was also verified through a
spectrogram.

A main challenge for chirplet decomposition is that
Gaussian chirplets do not form an orthogonal basis. One
solution is to employ suboptimal schemes like matching
pursuit. Figure 5 was generated by this particular approach.
While the underlying theory of matching pursuit is well
established, its numerical implementation in terms of
computational speed and accuracy comes at an enormous
cost. Matching pursuit requires that a large dictionary
of chirplet functions be generated in advance [47]. The
signal is decomposed iteratively by finding the best matched
dictionary component and then subtracted from the original
signal energy. This process continues until the residual
energy (error) becomes lower than a specified value. Finding
the best projection at each iterative step requires intensive
computational processing; maintaining a large dictionary
for good resolution and for long-enough signal lengths
involves steep storage requirements. In contrast, the method
proposed here does not rely on a dictionary and requires far
fewer computational steps. Note that chirplet decomposition
provides significant data compressibility. The VEP signal
shown in Figure 5 consisting of 480 samples can be well-
represented by as few as 15 parameters in terms of three
Gaussian chirplets.

Earlier it was shown that the cross-term interference
arising from a pair of monocomponents is located between
main components. Moreover, the interferences are oscilla-
tory in nature, and the spatial frequency of these oscillations
is a function of the distance between the components in
time and frequency. That is, the closer the two components,
the lower the oscillation frequency. In ambiguity space, this
would mean that the interference lies closer to the origin.
The low frequency interference also appears as a result of the
signal’s instantaneous frequency changing nonlinearly with
time. Due to the low frequency nature of these oscillations,
the cross-terms may not be completely removed by the kernel
due to overlap with signal components in the ambiguity
space. Although this interference can be removed at the post-
processing stage by (say) least-squares fitting to a Gaussian
density, it is important to remember that this interference
contributes to the signal’s overall energy distribution.
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