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The robust time-frequency distributions with complex-lag argument are proposed. They can provide an accurate estimation of
fast varying instantaneous frequency in the presence of noise with heavy-tailed probability density function. The L-estimate form
of this distribution is defined and it includes the L-estimate form of Wigner distribution as a special case. A modification for
multicomponent signal representation is proposed, as well. Theoretical considerations are illustrated by the examples.

1. Introduction

Nonstationary signals such as speech, radar, seismic, sonar,
and biomedical signals can be found in many practical
applications. Due to time-varying spectra of these signals,
time-frequency analysis has been used in their analysis. For
different types of signals, various time-frequency distribu-
tions (TFDs) have been proposed [1–5].

In real applications we deal with signals corrupted by
noise. If noise is additive with Gaussian probability density
function (pdf), the standard time-frequency distributions
represent a maximum likelihood (ML) estimate [6]. How-
ever, if the signal is corrupted by noise with heavy-tailed pdf
(usually caused by environmental or human-made activi-
ties), the standard TFDs produce poor results. Consequently,
the robust time-frequency distributions have been intro-
duced [6–12]. The simplest and the most commonly used
robust time-frequency representation is the robust short-
time Fourier transform (STFT). The marginal median robust
STFT has been introduced as an ML estimate of signals with
Laplacian noise [8]. This form can also be successfully used
for other types of heavy-tailed noises. The L-estimate robust
STFT is introduced for signals with a mixture of Gaussian
and impulse noises [9]. As in the case of the standard
STFT, the main drawback of the robust STFT is a poor
time-frequency resolution. In order to improve the time-
frequency concentration, the robust forms of the Wigner

distribution (WD) have been introduced [9–12]. They can
provide an ideal concentration for signals with a linear
instantaneous frequency (IF). However, for multicomponent
signals the cross-terms appear. The robust S-method that
combines good properties of the STFT and the WD has been
introduced to provide a cross-terms free representation [12].
However, it cannot provide good concentration for signals
with fast varying IF. Thus, the time-frequency distributions
with complex-lag argument have been used to estimate
nonlinear and fast IF variations [13–20]. Similarly as other
TFDs, these distributions provide poor signal representation
in the presence of heavy-tailed noise.

In this paper we propose a robust form of the Nth-
order complex-lag time-frequency distribution (CTD). An
arbitrary high concentration can be achieved by increasing
the distribution order N. The standard CTD has been defined
as convolution of the WD and the Fourier transform of
the higher order complex-lag moment, called concentration
function (CF) [17, 18]. Similarly, the robust CTD can be
obtained as convolution of the robust WD and CF forms.
Additionally, a cross-terms free robust complex-lag time-
frequency distribution is proposed for multicomponent
signals.

The paper is organized as follows. The elementary theory
behind linear and quadratic robust time-frequency repre-
sentations is presented in Section 2. The Nth order robust
time-frequency distributions with complex-lag argument are
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proposed in Section 3. The advantages of the proposed dis-
tributions are proven through various examples in Section 4.
Concluding remarks are given in Section 5.

2. Theoretical Background

2.1. Robust Short-Time Fourier Transform. Consider the
noisy signal x(n) = s(n) + v(n), where s(n) is a complex-
valued signal corrupted with complex-valued noise v(n).
The STFT can be obtained as a solution of the following
optimization problem:

STFT(n, k) = arg min
μ

Ns/2−1∑

m=−Ns/2

F(e(n, k,m)), (1)

where F(e) is the loss function, while e(n, k,m) is the error
function:

e(n, k,m) = x(n + m)e− j2πmk/Ns − μ. (2)

The number of samples within the window is denoted as Ns,
while μ represents complex-valued optimization parameter.
In the case of the loss function F(e) = |e|2, the standard
STFT is obtained:

STFTS(n, k)

= 1
Ns

Ns/2−1∑

m=−Ns/2

x(n + m)e− j2πmk/Ns

= mean
{
x(n + m)e− j2πmk/Ns ,m ∈

[
−Ns

2
,
Ns

2

)}
.

(3)

The quadratic loss function is the ML estimate of a signal
corrupted with Gaussian noise. Hence, the standard STFT
is applicable in this case. Nevertheless, when impulse noise
is present, the quadratic loss function yields poor results.
Therefore, other loss functions should be used. For instance,
it has been shown that the loss function F(e) = |e| exhibits
a robust behavior for heavy-tailed noise (e.g., Cauchy noise,
Laplacian noise) [6, 11, 21]. The implicit solution of the
optimization problem in (1) for F(e) = |e| requires a
computationally demanding iterative procedure. In order
to avoid such an iterative procedure, the marginal median
estimate, with the loss function F(e) = |Re(e)| + | Im(e)|,
has been introduced in [8]:

STFTM(n, k)

= median
{

Re
(
x(n + m)e− j2πmk/Ns

)
,m ∈

[
−Ns

2
,
Ns

2

)}

+ j ·median
{

Im
(
x(n+m)e− j2πmk/Ns

)
,m∈

[
−Ns

2
,
Ns

2

)}
.

(4)

If the signal is corrupted by a mixture of Gaussian and
impulse noise, the L-estimate robust STFT is used. It is
defined as [9]

STFTL(n, k) =
Ns/2−1∑

i=−Ns/2

ai
(
ri(n, k) + j · ii(n, k)

)
,

ri(n, k) ∈ R(n, k),

R(n, k) =
{

Re
(
x(n + m)e− j2πmk/Ns

)
,m ∈

[
−Ns

2
,
Ns

2

)}

ii(n, k) ∈ I(n, k),

I(n, k) =
{

Im
(
x(n + m)e− j2πmk/Ns

)
,m ∈

[
−Ns

2
,
Ns

2

)}
,

(5)

where the elements ri(n, k) and ii(n, k) are sorted in nonde-
creasing order as ri(n, k) ≤ ri+1(n, k) and ii(n, k) ≤ ii+1(n, k),
respectively. The coefficients ai are given as

ai=
⎧
⎪⎨
⎪⎩

1
Ns(1−2α)+4α

, for i∈[(Ns−2)α,α(2−Ns)+Ns−1],

0, elsewhere,
(6)

where Ns is even, while the parameter α takes values within
the range [0, 1/2]. For α = 0 and α = 1/2 the standard STFT
and the marginal median STFT are obtained, respectively.
Higher value of α provides an enhanced reduction of heavy-
tailed noise, while smaller value of α improves spectral
characteristics. Thus, depending on the application, the value
of parameter α should be chosen to provide good trade-off
between these requirements.

The robust spectrogram is obtained as

SPECh(n, k) = Re {STFTh(n, k)}2 + Im {STFTh(n, k)}2,
(7)

where STFTh may be STFTM or STFTL.

2.2. Robust Quadratic Time-Frequency Distributions. The
previous concept has been extended to the Wigner distribu-
tion. The WD can be obtained as a solution of the following
optimization problem:

WD(n, k) = arg min
μ

Ns/2−1∑

m=−Ns/2

F(e(n, k,m)),

e(n, k,m) = Re
{
x(n + m)x(n−m)e− j4πmk/Ns − μ

}
,

(8)

where x denotes the complex conjugate of x. For the loss
function F(e) = |e|2, the standard WD follows:

WDS(n, k) = mean
{

Re
{
x(n + m)x(n−m)e− j4πmk/Ns

}}
,

m∈
[
−Ns

2
,
Ns

2

)
.

(9)
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The median-based robust WD has been defined in [8] as a
solution of optimization problem in (8), for the loss function
F(e) = |e|:

WDM(n, k)=median
{

Re
{
x(n + m)x(n−m)e− j4πkm/Ns

}}
,

m ∈
[
−Ns

2
,
Ns

2

)
.

(10)

The L-estimate robust WD can be written as [9]

WDL(n, k) =
Ns/2−1∑

i=−Ns/2

airi(n, k),

ri(n, k) ∈ R(n, k) =
{

Re
(
x(n + m)x(n−m)e− j4πmk/Ns

)}
,

m∈
[
−Ns

2
,
Ns

2

)
,

(11)

where the elements ri(n, k) are sorted in nondecreasing order
as ri(n, k) ≤ ri+1(n, k), while the coefficients ai are defined by
(6). The marginal median WD follows for α=1/2.

The WD can be calculated by using STFT:

RWDh(n, k) =
Ns/2−1∑

l=−Ns/2

STFTh(n, k + l)STFTh(n, k − l),

(12)

where STFTh can be the median-based STFT or the L-
estimate STFT.

The robust S-method has been introduced in order to
reduce or remove cross-terms in the robust WD. It can be
written in the following form [12]:

RSMh(n, k) =
L∑

l=−L
P(l)STFTh(n, k + l)STFTh(n, k − l),

(13)

where P(l) is a frequency domain window with its width
equal to 2L + 1. For L = 0 and L = Ns/2 the robust
spectrogram and the robust WD are obtained, respectively.
More details about parameter L selection can be found in [5].

3. Robust Complex-Lag Time-Frequency
Distributions

The time-frequency distributions with complex-lag argu-
ment have been introduced for signals with fast varying
instantaneous frequency. The general form of the standard
Nth-order complex-lag time-frequency distribution can be
written as [18]

CTDN (n, k) =
Ns/2−1∑

m=−Ns/2

x(n + m)x(n−m)c(n,m)e− j(2π/Ns)Nmk

=
Ns/2−1∑

l=−Ns/2

WD(n, k + l)CF(n, k − l),

(14)

Table 1: Spread factors for some time-frequency distributions.

Distribution Spread factor

CTD2, that is,
WD (N = 2)

Q(t, τ) = φ(3)(t)
τ3

223!
+ φ(5)(t)

τ5

245!
+ · · ·

CTD4 (N = 4) Q(t, τ) = φ(5)(t)
τ5

445!
+ φ(9)(t)

τ9

489!
+ · · ·

CTD6 (N = 6) Q(t, τ) = φ(7)(t)
τ7

667!
+ φ(13)(t)

τ13

61213!
+ · · ·

CTDN
Q(t, τ) =
φN+1(t)

τN+1

NN (N + 1)!
+φ2N+1(t)

τ2N+1

N2N (2N + 1)!
+· · ·

where the standard WD is given by (9), while CF(n,k) is the
Fourier transform of the complex-lag signal moment:

c(n,m) =
N/2−1∏

p=1

xwN ,p

(
n + wN ,pm

)
x−wN ,p

(
n−wN ,pm

)
, (15)

where N is an even number, representing the distribution
order, while the quantity wN ,p = e j2πp/N , p = 1, . . . ,N/2− 1
defines the equidistant roots on the unit circle. It has been
shown [17–19] that the distribution defined by (14) can
provide an arbitrarily high concentration by increasing N.
Namely, the complex-lag distributions significantly reduce
the spread factor produced by higher phase derivatives. For
example, the fourth-order distribution:

CTD4(n, k)

=
Ns/2−1∑

m=−Ns/2

x(n + m)x(n−m)x− j
(
n + jm

)

× x j
(
n− jm

)
e− j(2π/Ns)4mk

(16)

contains the number of spread terms that is twice smaller
than for the WD (Table 1). Furthermore, the sixth-order
distribution is obtained for the roots {w1,w2} = {1/2 +
j
√

3/2, −1/2 + j
√

3/2}:

CTD6(n, k)

=
Ns/2∑

m=−Ns/2

s(n + m)s−1(n−m)×(s(n + w1m)s−1(n−w1m)
)w∗1

× (s(n + w2m)s−1(n−w2m)
)w∗2 e− j(2π/Ns)6mk,

(17)

and its spread factor is also given in Table 1. Note that,
in general, the first term in the spread factor is of order
(N+1).
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In order to obtain c(n,m), the signal with complex-lag
argument x(n ± wN ,pm) is calculated by using the concept
of analytic extension as follows:

x
(
n±wN ,pm

)

=
Ns/2−1∑

k=−Ns/2

XS(k)e j(2π/Ns)(n±wN ,pm)k

=
Ns/2−1∑

k=−Ns/2

XS(k)e∓(2π/Ns)wiN ,pmke j(2π/Ns)(n±wrN ,pm)k,

(18)

where wrN ,p = Re{wN ,p},wiN ,p = Im{wN ,p}, while XS(k)
is the standard Fourier transform. The coordinate m is
multiplied by wrN ,p. The influence of this term can be such
that an additional oversampling (or interpolations) of signal
x(n) is required.

By analogy with the standard CTD, the robust CTD can
be defined as

RCTDN (n, k) =
Ns/2−1∑

l=−Ns/2

RWD(n, k + l)RCF(n, k − l), (19)

where RWD is the robust WD, while robust CF (RCF) is
obtained as a solution of the optimization problem:

CF(n, k) = arg min
μ

Ns/2−1∑

m=−Ns/2

F(e(n, k,m)),

e(n, k,m) = c(n,m)e− j(2π/Ns)Nmk − μ,

(20)

for the loss function F(e) = |e|. The robust WD calculation
has been already presented, while the robust CF can be
obtained as a solution of nonlinear equation:

RCF(n, k)

= 1
∑Ns/2−1

m=−Ns/2(1/|e(n, k,m)|)

×
Ns/2−1∑

m=−Ns/2

1
|e(n, k,m)| c(n,m)e− j(2π/Ns)Nmk,

e(n, k,m) = c(n,m)e− j(2π/Ns)Nmk − RCF(n, k).

(21)

The iterative procedure for the nonlinear equation (21)
is even more demanding than in the cases of robust STFT
and robust WD calculations [6, 11]. Namely, to calculate
c(n,m), the robust form of (18) has to be used. It requires
an additional iterative procedure. Hence, the CF calculation
requires nested iterative procedures, inappropriate for prac-
tical realization.

3.1. L-Estimate Form of the Robust CTD. The marginal
median and the L-estimate approach can be used to over-
come disadvantages of iterative procedure for the robust
CTD calculation. In the sequel, only the L-estimate approach
is considered, since the marginal median follows as a special

case of the L-estimate forms for α=1/2. Also, the L-estimates
exhibit enhanced performance in the presence of mixture of
Gaussian and impulse noise, common to real applications.
Thus, the L-estimate approach is used to define the robust
CTD.

Having in mind (19), the L-estimate robust CTD can be
obtained as a convolution of the L-estimate robust WD and
the L-estimate robust CF. By analogy with the robust WD, the
L-estimate approach is used for the robust CF calculation, as
follows:

RCFL(n, k) =
Ns/2−1∑

i=−Ns/2

ai
(
cri(n,m) + j · cii(n,m)

)
, (22)

where cri(n, k) and cii(n, k) are the elements of

R(n, k) = Re
{
rc(n,m)e− j(2π/Ns)Nmk,m ∈

[
−Ns

2
,
Ns

2

)}
,

I(n, k) = Im
{
rc(n,m)e− j(2π/Ns)Nmk,m ∈

[
−Ns

2
,
Ns

2

)}
,

(23)

respectively. They are sorted in nondecreasing order:
cri(n, k) ≤ cri+1(n, k) and cii(n, k) ≤ cii+1(n, k). The
coefficients ai are given by (6), while rc(n,m) represent the
robust complex-lag signal moment:

rc(n,m) =
N/2−1∏

p=1

crp(n,m)cip(n,m),

crp(n,m) = e jwrN ,pangle(x(n+wN ,pm)/x(n−wN ,pm)),

cip(n,m) = e jwiN ,p log |x(n−wN ,pm)/x(n+wN ,pm)|.

(24)

The numerical realization is simplified by using the angle
and log | · | functions. Namely, for a signal in the form x(t) =
Aejφ(t), the amplitude modulation terms that may appear
in the calculation of crp(n,m) and cip(n,m) are eliminated,
[18]. Also, calculation of signal raised to power j is avoided by
using the exponential with log | · | function, [14]. The signal
with the complex-lag argument is obtained as

xL
(
n±wN ,pm

)
=

Ns/2−1∑

k=−Ns/2

XL(k)e j2π(n±wN ,pm)k, (25)

where XL(k) represents the L-estimate of Fourier transform:

XL(k) =
Ns/2−1∑

i=−Ns/2

ai
(
ri(k) + j · ii(k)

)
, (26)

where ri(k) ∈ R(k),R(k) = {Re(x(n)e− j2πkn/Ns),n ∈ [0,Ns −
1)} and ii(k) ∈ I(k), I(k) = {Im(x(n)e− j2πnk/Ns),n ∈
[0,Ns − 1)} are such that ri(k) ≤ ri+1(k) and ii(k) ≤ ii+1(k).

Finally, the L-estimate of complex-lag time-frequency
distribution is:

RCTDN
L (n, k) = WDL(n, k)∗kRCFL(n, k), (27)

where WDL represents the L-estimate robust WD.
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Figure 1: Time-frequency representations for signal x1(n) by using (a) the standard WD, (b) the L-estimate WD, (c) the standard CTDN=4,

(d) the marginal median RCTDN=4, and (e) the L-estimate RCTDN=4.
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3.2. Robust CTD Form for Multicomponent Signals. Note that
the robust CTD form (defined by (27)) can be used for
monocomponent signals. However, in the case of multicom-
ponent signal: x(n) = ∑Q

q=1 sq(n) + v(n), the cross-terms
appear. Thus, it is necessary to modify (27). The robust
S-method, as a cross-terms free distribution, will be used
instead of the robust WD, while a modification providing
a cross-terms free robust CF should be introduced. In that
sense, the signal with complex-lag argument is separately
calculated for each component. The component separation is
performed by using the robust STFT. Namely, the qth signal
component is obtained as

xL
(
n±wN ,pm

)
q

=
Wq∑

k=−Wq

STFTL

(
n, k+kq(n)

)
e j(k+kq(n))(n±wN ,pm),

(28)

where kq(n) = arg{maxkSTFTL(n, k)} is the position of the
qth signal component maximum in the L-estimate robust
STFT. It is assumed that the q-th signal component is of
2Wq+1 width; that is, it is within the region [kq(n)-Wq,
kq(n)+Wq]. Observe that the cross-terms will be avoided,
if the distance between signal components is higher than
2Wq (see [14] for details). After the first signal component is
obtained, the values of STFTL(n,k) within the region [kq(n)-
Wq, kq(n)+Wq] will be set to 0. Then, this procedure is
repeated for other components.

Furthermore, for the qth signal component the complex-
lag signal moments cr(n,m)q and ci(n,m)q are

cr(n,m)q

=
N/2−1∏

p=1

crp(n,m)q =
N/2−1∏

p=1

e jwrN ,pangle(xL(n+wN ,pm)q/xL(n−wN ,pm)q),

ci(n,m)q

=
N/2−1∏

p=1

cip(n,m)q =
N/2−1∏

p=1

e jwiN ,p log |xL(n−wN ,pm)q/xL(n+wN ,pm)q|.

(29)

For all signal components we have cr(n,m) =∑Q
q=1 cr(n,m)q

and ci(n,m) = ∑Q
q=1 ci(n,m)q. By using the L-estimate

approach, two corresponding robust CFs can be defined as

RCFrL(n, k) =
Ns/2−1∑

i=−Ns/2

ai
(
vri(n,m) + jvii(n,m)

)
,

RCFiL(n, k) =
Ns/2−1∑

i=−Ns/2

ai
(
uri(n,m) + juii(n,m)

)
,

(30)

0

10

20

30

40

50

60

Standard WD
L-estimate robust WD
Standard CTD

Median CTD
L-estimate RCTD

Figure 2: MSE of instantaneous frequency estimation in the
presence of heavy-tailed noise.

where vri(n, k) and vii(n, k) (sorted in nondescending order)
are elements of:

Rv(n, k) = Re
{
cr(n,m)e− j(2π/Ns)Nmk,m ∈

[
−Ns

2
,
Ns

2

)}
,

Iv(n, k) = Im
{
cr(n,m)e

− j(2π/Ns)Nmk
,m ∈

[
−Ns

2
,
Ns

2

)}
,

(31)

respectively. Similarly, uri(n, k) and uii(n, k) are elements of:

Ru(n, k) = Re
{
ci(n,m)e− j(2π/Ns)Nmk,m ∈

[
−Ns

2
,
Ns

2

)}
,

Iu(n, k) = Im
{
ci(n,m)e− j(2π/Ns)Nmk,m ∈

[
−Ns

2
,
Ns

2

)}
,

(32)

where uri(n, k) ≤ uri+1(n, k) and uii(n, k) ≤ uii+1(n, k).
The cross-terms free robust CF is:

�RCFL(n, k) =
L∑

l=−L
P(l)CFrL(n, k + l)CFiL(n, k − l). (33)

Finally, the L-estimate robust CTD for multicomponent
signals can be written in the form:

RCTDN
L (n, k) =

L∑

l=−L
P(l)SML(n, k + l)�RCFL(n, k − l).

(34)

The role of window P(l) is same as in the S-method.
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Figure 3: Time-frequency representations for signal y(n) by using: (a) the L-estimate WD, (b) the L-estimate RCTDN=4, and (c) the L-
estimate RCTDN=6.

4. Examples

Highly nonstationary signals with fast varying instantaneous
frequencies are considered. The signals are corrupted with
heavy-tailed noise. The standard and the robust forms of
CTD are considered and compared with corresponding
forms of the Wigner distribution.

Example 1. Consider a noisy signal:

x(n) = e2 j(6 cos(πn)+2/3 cos(3πn)+2/3 cos(5πn)) + ξ(n), (35)

where ξ(n) is heavy-tailed complex valued noise (cube of
Gaussian noise):

ξ(n) = 0.5ξ3
1 (n) + 0.5 jξ3

2 (n), (36)

where ξ1(n) and ξ2(n) are mutually independent Gaussian
noises (zero mean with variance equal to 1). The time
interval t ∈ [−2, 2], with sampling rate T = 1/128, is used.
The Gaussian window of Ns = 128 width is applied in all
cases.

The L-estimate forms are calculated by using param-
eter α = 3/8 for all distributions. Namely, this value
provides satisfying trade-off between noise reduction and
distribution concentration. For a given signal, the stan-
dard WD, the L-estimate WD, the standard CTDN=4, the
marginal median RCTDN=4 (obtained according to (27)
with α=1/2), and the L-estimate RCTDN=4 are shown in
Figure 1. Since the signal x1(n) has a fast varying IF, both
the standard WD (Figure 1(a)) and the L-estimate WD
(Figure 1(b)) yield poor results. The fourth-order CTD is
introduced to improve concentration. However, as expected,
the standard CTDN=4 (Figure 1(c)) contains significant
disturbances, due to the presence of strong heavy-tailed
noise. Furthermore, the robust complex-lag distribution
forms are considered. Thus, the results are improved by
using the median RCTDN=4 (Figure 1(d)), but the accuracy
of estimation is still not satisfactory. The best result in
this example, regarding representation and IF estimation
precision, is achieved by using the L-estimate RCTDN=4

(Figure 1(e)).
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Figure 4: Time-frequency representation for multicomponent signal x(n) by using (a) the standard SM, (b) the L-estimate SM, (c) the
standard CTDN=4, and (d) the L-estimate RCTDN=4.

The mean squared error (MSE) is used as a quantitative
measure of performance, for all distributions:

MSE = 1
Ns

Ns∑

n=1

∣∣ϕ(n)− ϕ̂(n)
∣∣2, (37)

where ϕ(n) is the true IF, while ϕ̂(n) is the estimated IF:
ϕ̂(n) = arg{maxkSTFT(n, k)}. The mean values of MSEs are
given in Figure 2 for 100 realizationsof noises. Note that the
L-estimate RCTDN=4 provides the lowest MSE.

In the presence of Gaussian noise, the performance of
L-estimate RCTDN=4 is similar to the performance of the
standard CTDN=4. The MSEs of IF estimation, calculated
as a mean value for 100 realizations of Gaussian noises, are
given in Table 2.

Example 2. This example aims to illustrate how the distri-
bution order has to be increased to achieve concentration

Table 2: The MSE of instantaneous frequency estimation in the
presence of Gaussian noise.

Distribution MSE

Standard CTDN=4 2.45

L-estimate RCTDN=4 2.56

improvement. Namely, in the case of signal with IF variations
that are faster than in the previous example, for example,

y(n) = e2 j(3 cos(1.5πn)+2/3 cos(7πn)+1/2 cos(5πn)) + ξ(n), (38)

the fourth-order distribution is no longer optimal. Thus,
the concentration can be improved by using the sixth-
order distribution. The noise ξ(n) is the same as in the
previous example. The L-estimate RWD, the L-estimate
RCTDN=4, and L-estimate RCTDN=6 are shown in Figure 3.
The parameter α = 3/8 is used in all cases.
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Table 3: The MSE of instantaneous frequency estimation.

Distribution MSE

L-estimate WD 51.83

L-estimate RCTDN=4 8.52

L-estimate RCTDN=6 3.45

As expected, the L-estimate WD is not suitable for
analysis. Significant improvements were obtained with the
L-estimate RCTDN=4, while the best results are achieved by
using the L-estimate RCTDN=6 in this example. The MSE
of instantaneous frequency estimation is given in Table 3
for 100 realizations of noises. Note that the lowest MSE is
obtained for the L-estimate RCTDN=6distribution.

Example 3. Consider a noisy multicomponent signal:

z(n) = e j(6 cos((3/2)πn)−(4/3) cos(7πn)+cos(5πn)+15πn)

+ e j(7,5π(0.5n4−0.8πn2−8,5πn)

+ 0.5ξ3
1 (n) + 0.5 jξ3

2 (n),

(39)

where ξ1(n) and ξ2(n) represent Gaussian noises. The same
parameters for time interval, window, and noise strength are
used as in the Example 2. The results for the standard SM,
the L-estimate SM, the standard CTDN=4, and the L-estimate
RCTDN=4 are shown in Figure 4.

Note that both the standard SM and the standard
CTDN=4 cannot provide satisfactory results due to the
presence of impulse noise. The L-estimate SM provides
good estimation for the component with slow varying
instantaneous frequency (Figure 4(b)). However, it cannot
follow the fast IF variationsfor the second signal component.
The L-estimate RCTDN=4 provides satisfying concentration
for both components (Figure 4(d)).

5. Conclusion

The L-estimate-based robust Nth-order complex-lag time-
frequency distribution has been proposed. It provides an
efficient estimation for nonstationary signals corrupted with
a mixture of Gaussian and heavy-tailed impulse noise.
Additionally, we proposed the modified L-estimate robust
CTD form that provides a cross-terms free representation for
multicomponent signals.

The L-estimate and standard distribution approaches
could be combined in some future work to reduce the
calculation complexity. Also, the future research could be
focused to generalize the proposed approach to the class of
complex-time distributions based on the ambiguity domain
[20].
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with application to the instantaneous frequency estimation,”
IEEE Transactions on Signal Processing, vol. 49, no. 12, pp.
2985–2993, 2001.
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