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We present an application of a modified Kalman-Filter (KF) framework for data fusion to the estimation of respiratory rate from
multiple physiological sources which is robust to background noise. A novel index of the underlying signal quality of respiratory
signals is presented and then used to modify the noise covariance matrix of the KF which discounts the effect of noisy data.
The signal quality index, together with the KF innovation sequence, is also used to weight multiple independent estimates of the
respiratory rate from independent KFs. The approach is evaluated both on a realistic artificial ECG model (with real additive
noise) and on real data taken from 30 subjects with overnight polysomnograms, containing ECG, respiration, and peripheral
tonometry waveforms from which respiration rates were estimated. Results indicate that our automated voting system can out-
perform any individual respiration rate estimation technique at all levels of noise and respiration rates exhibited in our data. We
also demonstrate that even the addition of a noisier extra signal leads to an improved estimate using our framework. Moreover,
our simulations demonstrate that different ECG respiration extraction techniques have different error profiles with respect to the
respiration rate, and therefore a respiration rate-related modification of any fusion algorithm may be appropriate.

1. Introduction

Estimation of respiratory rate from waveforms recorded
from passively breathing subjects is notoriously difficult,
due in part to the nonstationary nature of the signals and
in part the frequent nonstationary noise [1]. Methods for
recoding a time series of respiratory effort include impedance
pneumography (differential changes in capacitance recorded
at high frequencies), impedance plethysmograpy (stretch
sensors on the chest wall), and flow thermography which
measures the changes in temperature of air flow as it moves
in and out of the mouth and/or nose over a thermistor.
Of these methods, the impedance pneumogram (IP) is the
most common method employed in hospitals [2, 3], where
a current is passed between two ECG electrodes and the
differential change in capacitance due to air volume changes
is measured. It is also possible to automatically record
respiratory activity from accelerometers, laser-reflectivity,
ultrasound, or by audio or video processing. However,

such signals are not commonly recorded in most patient
monitoring scenarios.

Another class of respiratory signal sources comes from
measurement of indirect effects on cardiovascular physiol-
ogy. Respiratory information is present in other commonly
monitored physiological signals, such as the electrocardio-
gram (ECG) [4], photoplethysmogram (PPG) [5], arterial
blood pressure (ABP) [6], and the peripheral arterial tonom-
etry (PAT) waveforms.

Amplitude-based ECG-derived respiration (EDR) algo-
rithms have been reported to perform satisfactorily when
only single-lead ECGs are available, as is usually the case in
sleep apnea monitoring. When multilead ECGs are available,
EDR algorithms based on either multilead QRS area or
QRS-VCG loop alignment are preferable [7]. The reason is
that due to thorax anisotropy and its intersubject variability
together with the intersubject electrical axis variability, respi-
ration influences ECG leads in different ways; the direction of
the electrical axis, containing multilead information, is likely
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to better reflect the effect of respiration than wave amplitudes
of a single lead.

Although the IP waveform is usually more representative
of the air flow (but not volume), the IP is often unusable for
accurate respiration rate evaluation around 37% to 61% of
the time [8, 9].

Literature on deriving a respiratory signal from other
related signals is dense in the case of the electrocardio-
gram, but relatively sparse for other signals (such as the
photoplethysmogram and blood pressure waveform [10]).
The field of respiration rate estimation from respiratory
signals (whether derived or not) is scantily covered in the
public literature, particularly with respect to large data sets.
Key works by O’Brien and Heneghan [11], de Chazal et
al. [12], Ishijima [13], Park et al. [14], and Tarassenko
et al. [1] highlight the importance of modeling noise and
combining information from multiple ECG leads and sensor
modalities to compensate for noisy measurements. To our
knowledge, very little work has been published in the domain
of respiration signal quality estimation.

The approach detailed in this paper is based on our
earlier work related in the context of robust heart rate and
blood pressure estimation [15, 16]. Figure 1 summarizes
the proposed robust respiration rate estimation technique
using a signal fusion framework and signal quality indices.
Fusion is the processes of combining signals from multiple
instruments and sources in order to reduce measurement
noise and improve overall signal quality. The field of data
fusion in the context of physiological signals is described
elsewhere [15]. When applied to respiration in particular,
the key works of Mason [17] and Mason and Tarassenko
[18] form the basis for our approach. However, our key
innovation is the inclusion of a signal quality metric (as well
as the past behavior of each signal) to control the KF noise
covariance estimate and decide automatically how to weight
each source of information. This is in contrast to standard
industry approaches such as the work of Park et al. [14],
who developed a system for deciding which single channel
of ECG-derived respiration was the most informative. In
this article we present a method for combining all the
available information from every channel, even if it is noisy,
to produce a superior estimate.

Given that artifacts in the ECG, IP, and PPG or PAT do
not always manifest simultaneously, it is likely that fusing
respiratory rate data from each signal will result in an overall
improved estimate of this parameter [17, 18]. The difficulty
lies in determining which signal to trust, for if we add
parameter estimates from noisy signals to those from clean
signals, we may in fact degrade any one single parameter
estimate. We present a solution to this problem for accurate
robust estimation of the respiration rate using signal quality
indices (SQIs) and a modified Kalman Filter (KF) fusion
framework which uses the SQIs to adaptively update the KF
noise covariance estimate. The SQIs are derived in real time
and therefore no assumptions concerning the signal-to-noise
ratio (SNR) are required.

The paper is organized as follows Section 2.1 describes
the datasets used in this study. Section 2.2 introduces the
methods for deriving respiratory waveforms from the ECG
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Figure 1: The proposed robust respiration rate estimation tech-
nique using a signal fusion framework and signal quality indices.

and PAT signals, Section 2.3 provides an overview of a pre-
viously introduced ECG signal quality index and expounds
on the applicability of a newly developed signal quality
measure to assess the quality of the derived respiratory
waveforms, and Section 2.4 describes the utilized respiratory
rate extraction algorithm, followed by a discussion of the
proposed KF-based fusion framework in Section 2.5. In
Sections 3.1 and 3.2 we present the results of applying the
proposed respiratory rate estimation algorithm to simu-
lated data and real recordings from 30 subjects during an
overnight polysomnographic study.

2. Material andMethods

2.1. Simulations and Data Collection. Two datasets were
used for the analysis: one set of computer-simulated ECG
recordings with known respiratory signal modulation, and
a set of real recordings from 30 subjects during an overnight
polysomnographic study.

2.1.1. Simulated Data. Our simulated data were based on the
synthetic ECG generation framework described by Clifford et
al. [19], where we presented generalizations of our previously
published artificial models for generating multichannel
ECG to provide simulations of cardiac rhythms. Using a
three-dimensional vector-cardiogram (VCG) formulation,
we generated the normal cardiac dipole for a patient using
a sum of Gaussian kernels, fitted to real VCG recordings. The
RR interval time series were generated using our previously
described model whereby time- and frequency-domain heart
rate (HR) and heart rate variability (HRV) characteristics
could be specified. Furthermore, following Aström et al. [20]
we incorporated a model of respiratory sinus arrhythmia
(RSA) and RS-amplitude modulation to reflect influence of
respiration on ECG. All the ECG signals were generated
with a sampling frequency of 500 Hz and 16-bit amplitude
resolution. Finally, realistic noise consisting of a combination
of white noise (with SNRs of 10, 20, and 40 dB), baseline
wander, muscle artifacts, and electrode motion (obtained
from the MIT-BIH Noise Stress Test Database [21]) were
separately generated and added to the simulated ECG. This
simulation study has been used to compare breathing rate
estimates from individual respiratory waveforms as well as
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the combined breathing rate estimates using the proposed
KF-based fusion framework.

2.1.2. Real Data: Overnight Polysomnography. To evaluate
our methods on real data, we chose a database of 30 subjects
undergoing overnight polysomnogram analysis. Recorded
signals included one lead of ECG (V6), 4 channels of respi-
ratory waveform data (chest and abdomen plethysmograph,
nasal and oral thermistor, and nasal pressure), and one
channel of PAT (Itamar Medical, Israel). The PAT signal is a
pulsatile waveform recorded at the peripheral artery (finger-
tip), which is much like the ABP or PPG in morphological
appearance, and reflects the rapid changes in blood pressure
at the periphery from beat to beat. In particular, the PAT
waveform, rather like the ABP or PPG waveform, exhibits
amplitude fluctuations due to respiration.

All channels of data were recorded at 500 Hz, 16 bits, with
the exception of the PAT which was recorded at 100 Hz. The
length of each recording varied between 6 hours and 8 hours.
Subjects were enrolled in the study for screening for sleep
apnea, with an apnea-hypopnea index (AHI) ranging from
0 to 69.3 events/hour with a mean AHI of 14.0 events/hour.
Since the respiration rate was not scored by humans, no
gold standard measure of respiration rate was available.
To provide a gold standard, we used the highest quality
signal (the nasal and oral thermistor) and used the same
AR spectral estimation technique for rate estimation and the
signal purity for noisy section rejection.

2.2. Deriving Respiratory Waveforms. ECG beat detection
was performed using a combination of two open source QRS
detectors: Hamilton and Tompkins’ eplimited QRS detector
[22] and Zong’s wqrs algorithm [23]. Beat detection for
the PAT waveform was achieved using Zong’s wabp blood
pressure onset detector [24]. We considered three categories
of derived respiratory waveforms.

(1) ECG-Derived Respiration (EDR). We employed two
forms of EDR: QRS area summation (EDR G) and R-S
amplitude tracking (EDR RS) [4].

(2) RSA-Derived Respiratory Waveform. Respiratory Sinus
Arrhythmia (EDR RSA) is known to contain a strong
respiratory component, amongst other components [4].

(3) PAT-Derived Respiratory Waveform. The pulse amplitude
is known to be modulated by respiration. Therefore, if we
pick the onset and peak of each pulse (using an open source
algorithm wabp [24]), we may derive an oscillatory signal
indicative of the respiration effort.

Since normal range of breathing rates in adult humans
is between zero (apnea) and 60 breath/minute (extreme
hyperventilation), each respiratory waveform was resampled
to 4 Hz using a cubic spline method. Each respiratory
waveform was segmented into 20 s windows with 15 s overlap
from which the breathing rates were estimated—therefore,
after an initial delay of 20 s the breathing rate estimates were

updated every 5 s. These estimated values of the breathing
rate were the measurement inputs to the Kalman filter.

2.3. Signal Quality Metrics. We have described our approach
to determining the quality of the ECG previously [15,
16]. Briefly, we combine measures of abnormal statistics
and power spectral density distribution with measures of
QRS-detection mismatches to provide an overall quality
estimate (between 0 being poor and 1 being excellent)
for any given segment of ECG. The estimation of PPG
signal quality is described in Gil et al. [25, 26]. We have
extended these ideas to PAT and respiratory signal quality.
Fidelity of respiration rate extraction is directly related to
the periodicity of respiration waveform. A regular breathing
pattern produces a highly sinusoidal reparation waveform
with the dominant frequency at the frequency of breathing
rate. A power spectral-based respiration rate extraction
can be accomplished by identifying the most prominent
peaks in any of the respiration waveforms (PAT-derived
respiration, or ECG-derived respiration waveform). Each
peak is characterized by its frequency, amplitude, or its
relative coherence with respect to similar spectral peaks in
other respiratory waveforms. One measure of characterizing
spectral characteristics of a signal is through Hjorth descrip-
tors [26]. The nth-order spectral moment ωn is defined as

ωn =
∫ π

−π
ωnP

(
e jω
)
dω, (1)

where P(e jω) is the power spectrum of the signal as a
function of angular frequency: ω = 2π f , with f being
in units of cycles/second. A particularly useful descriptor
in the context of estimating the dominant frequency and
assessing the quality of a signal with periodic components
(such as respiratory waveform) is the so-called spectral purity
waveform and is defined as [27]

Γs(k) = ω2
2(k)

ω0(k)ω4(k)
. (2)

Here the term “purity” refers to the presence of a single signal
frequency, as we would expect in an ideal respiratory wave-
form. In the case of a periodic signal with a single dominant
frequency, Γs takes the value of one and approaches zero for
nonsinusoidal noisy signals. One of the attractive features
of Hjorth descriptors is the feasibility of their calculation in
time domain with low computational cost.

2.4. Deriving Respiratory Rates. The breathing rate extraction
method was based on the work of Mason and Tarassenko
[18], who utilized autoregressive (AR) modeling, a para-
metric spectral analysis technique. One advantage of AR
modeling of spectral analysis over the traditional Fourier
transform-based methods is its superior performance when
the number of available data points is small (<100 points).
The steps involved in extracting breathing rates from the
respiratory waveforms are as follow.

(i) Fit an all-pole model to each 20 s segment (use Akiake
Criteria [28] to decide on the right model order).
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(ii) Pick an accepted breathing range:

(a) lower: 4 breath/minute (0.066 Hz or 12 deg).

(b) upper: 55 breath/minute (0.917 Hz or 165 deg).

(iii) Exclude those poles not within the range.

(iv) Keep all the poles with magnitude of at least 95% of
the highest magnitude pole.

(v) Pick the pole with the smallest angle. The frequency
associated with this pole is the breathing frequency.

The window was advanced by 5 s and the above process
repeated so that a respiration rate was available every 5 s.

Figure 2 is an example of the respiration rate estimation
applied to a 300 s long record.

2.5. Kalman Filter Framework and Data Fusion. The KF is an
optimal state estimation method for a stochastic signal [29]
that estimates the state of a discrete-time controlled process,
x, with measurement data z, where x and z are governed by
the linear stochastic difference equations:

xk = Axk−1 + wk−1, (3)

zk = Hxk + vk. (4)

The random variables w and v are independent, white,
and possess normal probability distributions, p(w)∼ N(0,Q)
and p(v)∼N(0,R). The matrices A, B, and H are the state
transition, control input, and measure matrices, Q being the
state noise covariance, R the measurement noise covariance,
and u an optional control input to the state x. Further details
on the KF algorithm can be found elsewhere [29].

Previously we employed the KF to estimate the systolic,
mean, and diastolic blood pressure derived from ABP and
HR from the ECG [15, 16]. In order to more heavily weight
estimates derived from cleaner data, the SQI is used to adjust
the measurement noise covariance, R. When the SQI is low,
zk should be trusted less, and hence we force R to be large.
This is achieved by modifying R at the kth time-step as
follows:

Rk −→ Rke
(SQIk

−2−1), (5)

where SQIk is the signal quality of the kth segment of data
and may be replaced by various measures of the underlying
signal quality, such as the purity index defined in (2), that is,
SQIk = Γs(k). This nonlinear weighting function therefore
tends to unity as the value of SQIk tends to unity (at which
point the measurement noise covariance is no longer affected
by the SQI), forcing the KF to trust the current measurement
zk given the baseline measurement noise covariance matrix
Rk. At low values of SQIk, Rk tends to infinity (but in practice
is limited to a large value to deal with issues of convergence)
and therefore forces the KF to trust current measurements
less. This is the key factor in the modified KF framework;
we allow the KF to make a varying estimate of the noise
covariance using independent signal quality estimates based

upon domain knowledge of the underlying ECG, and not the
KF itself.

The SQI of each heart beat was calculated ±5 s around
each beat. Second-by-second ECG and PAT SQI were
acquired by calculating the median values of these beats
within a moving 20 s window with 50% overlap. Then, the
ECG and PAT features and SQI were used by the KF to obtain
the optimal breathing rate estimation on a 5 s-by-5 s basis.

2.5.1. Kalman Filter Initialization and Operation. Following
Tarassenko et al. [1] and Mason [17], we pick the simplest
form of the KF and set the state to be a scalar. We assumed
that the breathing rate at each moment is approximately
equal to the breathing rate at the next moment. After
neglecting the control input u, (3) then reduces to x̂−k =
x̂k−1. In order to initialize the KF, one must estimate Q, the
state noise covariance matrix, and R, the measurement noise
covariance. R was similarly initialized to unity, noting that it
is immediately modified by the SQI to reflect our trust in the
data. Q was empirically adjusted to have an initial value of
Q = 5 (±5 breath/minute). Values of Q < 5 lead to the KF
trusting the initial state estimate too little and not adapting
to the new initial observations. Values of Q > 5 lead to
the KF trusting the new observations too much, and simply
following the new values too closely. The filter can then be
run online with only a few iterations for convergence. The
Kalman residual is then given as rk = zk − x̂−k for every newly
available measurement. (Note that here a new measurement
is a new estimate of the respiratory rate from one of the
sensors as described in Sections 2.2 and 2.4.)

2.5.2. Merging of Multiple Kalman Filter Estimates. In order
to calculate a single estimate of the respiratory rate, estimates
from individual Kalman-filters must be fused in a manner
that takes into account the uncertainty associated with each
estimate. In general, it is possible to fuse any number
of independent Kalman filtered estimates, xk,s, using the
technique of Mason [17] and Tarassenko et al. [1] such that
the final estimate at the kth time-step is given by

Xk =
S∑

s=1

⎛
⎝

∏S
i=1,i /= kσ

2
k,i∑S

s=1

(∏S
j=1, j /= iσ

2
k, j

) · xk,s

⎞
⎠, (6)

where xk,s and σk,s are the independent estimate and the
associated uncertainty for the sth sensor at the kth time-
step, respectively. Here σk,s is taken to be the innovation or
the residuals, rk,s, associated with the Kalman filter estimate.
In a recent paper [30] we proposed a modification to this
approach where the SQI-scaled innovations are given by
σ2
k,s = (rk,s/SQIk,s)

2. In this way, when one channel, say s = 1,
is corrupted by artifact and the corresponding parameter
estimate (xk,1) is miscalculated, the SQI (SQIk,1) will be low
and the sudden change of xk,1 will make the residual error
(rk,1) large. The weighted innovation (σ2

k,1) will therefore be
large and the weighting for xk,1 (which would be σ2

k,2/(σ
2
k,1 +

σ2
k,2) for two channels) will be small. The estimation of Xk

will then rely more on xk,2 than xk,1.
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Figure 2: Respiratory rate estimation, from top to bottom: nasal thermistor (taken as the gold-standard), EDR RS (amplitude modulation-
based method), and EDR RSA (respiratory sinus arrhythmia-based method). The right panels are the estimated respiratory rates. The left
panels are the respiratory waveforms corresponding to the shaded area on the right (note that the original recording was 300 s long. Only the
respiratory waveforms corresponding to the shaded area on the right is presented on the left to enhance clarity). Each estimate (closed-circle
marks on the right) corresponds to a 20 s long window with 15 s overlaps between consecutive windows (thus estimates are updated every
5 s). For this example, within the shaded area the RSA method provided a better respiratory estimate than the RS method.

In theory, each of the xk,s estimates can be recorded
at different (or uneven) sampling frequencies. Adjustments
to the innovation update sequence can be made to adjust
for the differing sampling frequencies and the inherent
confidences in the different recording equipment. In general,
the innovation-based weighting function can be modified so
that [17]

σ2
k,s = rk,s

2(λs · SQIk,s)
−2, (7)

where 1 ≥ λs ≥ 0 is a “trust” factor for the sth channel
of data. For example, λs may be decremented to a value
of 0.5 for data derived from the ECG or pulse oximeter,
to account for the fact that the derived signal is often less
accurate for respiration rate estimation than the impedance
pneumogram. For the purpose of respiration rate estimation,
however, λs was set to unity for all channels.

3. Results

We compared seven respiration algorithms, three of which
were derived from the ECG (using RS amplitude, QRS area,
and RSA), one from the PAT amplitude oscillations, and
three KF-based fusion algorithms.

(i) Fusion 0 algorithm used no (or a constant) signal
quality adjustment. This was accomplished by setting
SQIk=1 in (5) for all cases.

(ii) Fusion 1 used the ECG SQI metric for ECG-derived
respiratory signals and the signal purity index for the
PAT-derived data.

(iii) Fusion 2 algorithm used the signal purity index (for
all derived respiration signals).

In the case of the real data, we report the performance
of all seven respiration algorithms, while for the simula-
tion studies only the ECG-based algorithms are considered.
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Figure 3: Simulation results at SNR = 20 dB. From top to bottom:
respiration rates based on RS, RSA, and QRS area-based method,
and KF-based fusion results with the purity signal quality index (the
fusion 2 algorithm).

Note that, fusion 0 algorithm is equivalent to the method
of Mason [17] which weights the individual respiratory
rate estimates proportional to the inverse of the square
innovations.

3.1. Simulation Results. In order to evaluate the respiration
rate estimation algorithm, we used the simulated ECG
data with varying respiration rates and under different
heart rates (60–100 beats/minute) and signal-to-noise ratio
scenarios (10, 20, and 40 dB). The heart rate dependence
was negligible; therefore the results that follow are the
average performances over all heart rates. Note that all values
reported in this work are in root mean square (RMS) breaths
per minute (BPM).

Results of these simulations (see Figure 3) indicate that
the RS method is the best estimator for breathing rates in the
range of 16–24 BPM, the RSA method is best for breathing
rates in the range of 8–12 BPM, while the QRS area method
is best for rates in the range of 16–24 BPM. At the lowest
SNR, the KF fusion algorithm provides a good estimate for
the rates of 8–24 BPM.

Table 1 summarizes the overall performance of each
algorithm individually as well as the fusion results using
the purity SQI. A comparison across a wide range of SNRs
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Figure 4: An example of the KF-based fusion method. From top to
bottom: respiration rates derived from RS, RSA, QRS area, and PAT-
based reparation waveforms, and the KF fusion results (black color)
with no signal quality (fusion 0; 5th panel) and with the purity
signal quality (fusion 2; 6th panel). The reference respiration rate
is superimposed for comparison (red color). Clearly, inclusion of
the signal quality improved fusion performance in the regions of
poor signal quality (indicated by a black arrow).

indicated that the fusion results remain fairly consistent
while performance of the individual algorithms may vary
(median RMS errors of 6.7, 6.4, and 5.0 BPM for SNR of 10,
20, and 40 dB, resp.).

3.2. Overnight Polysomnography Results. Figure 4 is an exam-
ple of the KF-based fusion algorithm using four different
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Table 1: Overall performance summary of each algorithm at SNRs of 10, 20, and 40 individually and the fusion results using the purity
signal quality indices. All figures are RMS error in BPM. Note that both EDR RS and the QRS-Area (EDR G) methods perform poorly at
low breathing rates, while EDR RSA performance degrades at higher respiratory rates.

Breathing EDR RS EDR RSA EDR G Fusion 2

Rate SNR = 10, 20, 40 SNR = 10, 20, 40 SNR = 10, 20, 40 SNR = 10, 20, 40

4 14.0 14.3 14.5 9.4 7.0 6.1 16.5 16.6 15.1 9.4 9.9 7.3

8 10.4 9.4 8.6 6.8 2.6 2.7 12.8 12.6 8.5 6.8 6.4 4.9

12 8.1 7.2 5.8 6.7 4.0 4.0 12.0 11.4 5.8 6.7 5.8 4.5

16 4.9 3.8 3.3 6.3 7.3 6.9 8.5 8.3 4.8 6.3 5.3 4.4

24 3.1 3.0 3.5 5.2 9.6 9.0 6.4 6.4 4.9 5.2 4.7 4.2

Median 8.1 7.5 7.1 6.7 6.1 5.7 12.0 11.0 7.8 6.7 6.4 5.0

respiration rate signals. The bottom plot is the fusion result
using the purity signal quality index, while the proceeding
plot (one to the bottom panel) shows the results of using
no signal quality (thus, using a fixed measurement noise
covariance matrix). In the 140–280 s region, where the
quality of the estimation is poor, the signal quality/KF-based
fusion method shows clear improvements in the estimated
respiratory rate.

Table 2 presents results of the average (RMS) error for
all 30 patients in the overnight polysomnographic database.
Four single channel algorithms and three fusion algorithms
were evaluated. The four single channel algorithms were
RS amplitude EDR RS, QRS area (EDR G), and RSA-based
methods (EDR RS) of deriving respiratory waveforms from
the ECG and the pulse amplitude modulation method
of deriving respiratory waveform from the PAT signal
(PDR). Respiratory rates and purity-based signal quality
indices were extracted from these waveforms using the AR
modeling method of Section 2.4 and signal quality metrics
of Section 2.3.

Note that the three fusion algorithms consistently per-
form better than any one single algorithm. In particular,
when the SQI is used, a greater improvement (lower RMS
error) is seen. Interestingly, results from our real data are
better than our simulations, even at high SNR, indicating
that even though the PAT derived respiration is particularly
poor, the inclusion of this signal still improves the overall
performance. This is because the PAT signal was occasionally
good quality at times when the ECG was noisy.

4. Discussion and Conclusions

In this work several respiratory rate estimation algorithms
have been presented which estimate a respiratory rate from
the respiratory waveforms derived from ECG or PAT. They
have been divided into three categories:

(1) EDR algorithms based on beat morphology, namely,
those based on ECG wave amplitude or QRS area
(EDR G),

(2) EDR algorithms based on HR information, that is,
respiratory sinus arrhythmia (EDR RSA),

(3) Algorithms based on pulse or PAT amplitude varia-
tions (PDR).

The choice of a particular EDR algorithm depends
on the application. In general, EDR algorithms based
on beat morphology are more accurate than those based
on HR information, particularly at high respiration rates
(>16 BPM) since the modulation of ECG by respiration is
sometimes too small or embedded in other parasympathetic
interactions. At all other rates the KF-based fusion approach
is superior.

Electrocardiogram-derived respiration algorithms based
on both beat morphology and HR may be appropriate when
only a single-lead ECG is available and the respiration effect
on that lead is not pronounced. Although not detailed here,
the power spectra of the EDR signals based on morphology
and HR can also be cross-correlated to reduce spurious
peaks and enhance the respiratory frequency [31]. However,
the likelihood of having an EDR signal with pronounced
respiration modulation is better when the signal is derived
from multilead ECGs; cross-correlation with the HR power
spectrum may in those situations worsen the results due to
poor respiratory HR modulation. This is particularly true
during active wakefulness [31].

The median value of the fusion based estimation only
diminishes by 1.7 BPM from an SNR of 40 dB down to an
SNR of 10 dB. The reason for such robust performance is
not only due to the effectiveness of the fusion technique
but also due to the good performance of the EDR RS and
EDR RSA in the presence of noise. This is because they only
rely on accurate detection of fiducial points on the ECG and
therefore are not affected by the presence of noise in the
other segments of the ECG (note that the R-peak location has
the largest SNR on the ECG trace and the S-point detection
can be fairly reliable given the location of the R-peak). It
should also be noted that the QRS area method’s effectiveness
in allowing respiration rate estimation is sensitive to the
size of the integration window, which was not optimized
in this study. Further improvements are therefore possible.
Specifically, the QRS integration window could be shortened
at higher heart rates (which is often correlated with higher
respiration rates) to compensate for shortening of the QRS
interval at these higher heart rates and elevated sympathetic
tone.

Our results on real subjects’ data recorded during sleep
indicate that although the PAT is often noiser that the
ECG and provides a poorer estimation of respiratory rate,
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Table 2: Overall performance summary of each algorithm individually and the fusion results using the signal quality indices. Fusion 0
indicates usage of no SQI (Γ = 1), Fusion 1 indicates usage of ECG SQI to determine the quality of the respiration estimates derived from
the ECG waveform, and Fusion 2 indicates usage of the purity index for the estimates derived from the ECG waveform. Note that the Hjorth
parameters are used for PAT SQI throughout. All values quoted are in RMS BPMs.

Subject EDR RS EDR RSA EDR G PDR Fusion 0 Fusion 1 Fusion 2

1 5.29 6.58 4.46 7.79 4.65 3.20 2.59

2 5.91 4.07 1.80 10.21 2.63 2.13 2.23

3 5.67 2.59 2.70 6.34 2.60 2.23 2.24

4 4.36 5.15 4.74 7.70 4.00 2.95 2.55

5 2.53 3.36 1.90 6.93 1.96 2.33 2.03

6 2.30 3.09 2.07 5.52 1.86 1.61 1.64

7 4.79 4.56 5.72 8.60 3.44 4.96 2.66

8 6.76 6.74 4.84 8.86 4.87 3.95 3.36

9 6.63 6.65 4.28 8.89 3.99 3.85 3.59

10 6.13 4.38 3.27 5.97 3.11 2.99 2.87

11 7.26 5.46 6.30 9.09 4.61 4.30 4.48

12 4.71 4.02 3.65 6.75 3.54 2.73 2.69

13 3.97 3.59 2.93 5.97 2.55 2.42 2.30

14 4.07 5.65 6.22 6.27 3.81 3.80 3.77

15 4.40 6.52 4.23 6.58 3.71 2.65 2.01

16 4.97 5.64 4.57 7.00 3.41 3.10 2.60

17 4.18 5.29 5.38 6.99 2.89 2.59 2.40

18 3.71 5.18 3.17 6.59 3.11 3.08 2.71

19 1.81 3.14 1.32 6.17 1.71 1.30 1.15

20 2.25 2.99 1.36 6.93 2.08 1.74 1.59

21 7.08 5.74 4.12 8.27 4.51 3.33 3.01

22 4.47 4.15 2.95 5.28 2.78 2.67 2.42

23 4.37 5.47 3.53 7.65 3.34 3.74 3.11

24 3.11 3.71 3.19 5.78 2.36 2.12 2.00

25 4.44 4.35 1.77 6.44 2.70 2.22 1.94

26 5.14 4.22 3.12 5.33 3.15 3.17 2.91

27 6.04 4.97 3.17 8.79 3.12 2.73 2.88

28 6.03 6.84 6.02 7.60 5.95 5.36 5.24

29 2.72 3.32 2.16 5.29 2.18 2.02 1.75

30 6.52 7.27 6.23 7.50 5.87 5.37 4.98

Mean 4.72 4.82 3.71 7.1 3.35 3.02 2.72

if included in our KF-based fusion framework, it still adds
value to the estimation process, particularly when an SQI
is used. Furthermore, our respiration signal quality index,
Γ, is superior to the use of the ECG- and PAT-specific SQI
metric in providing a trust metric to automatically discount
noisy data sources. In other words, testing the derived signal
for information content provides a better trust index of the
derived respiration rate than does an estimate of the quality
of the underlying data from which the respiration signal is
derived. This may be because a good quality waveform does
not always carry respiration information and may therefore
degrade the KF-based fusion algorithm if a postprocessing
quality metric is not used. It may of course be productive to
look at using both signal quality metrics.

Although our gold standard respiration rate is derived
from nasal thermistor, it is unlikely that the nasal thermistor
always provides a clean and representative signal, being

susceptible to movement artifact at least. If the nasal
thermistor provided a perfect evaluation of the respiration
rate, we would expect our results to be even better, with lower
error rates for all algorithms. However, we do not expect any
of our individual algorithms to improve substantially in such
a scenario, because the nasal thermistor is independent of the
other measurement methods. The improved results of our
KF-based fusion approach would not be invalidated in this
case, and perhaps improved.

We can use the results of our investigation to inform
a more intelligent combination of signals. By studying
Tables 1 and 2 we see that the RSA and QRS area-based
algorithms perform relatively weakly at higher respiration
rates (≥16 BPM), which suggests that we should weight
the RS amplitude more strongly when the latter algorithm
indicates high respiration rates. This can be incorporated
by making the trust factor, λk, respiration rate-dependent.
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The exact dependence could be calibrated for a particular
population or recording environment if sufficient data were
available.

There are still certain topics in the field of derived-
respiration which deserve further study. One is the robust-
ness of the derived-respiration algorithms in different phys-
iological conditions, robustness to long-term beat morphol-
ogy variations due to, for example, ischemia. The study of
multimodal respiratory patterns should be considered when
estimating the respiratory frequency from physiological
signals by techniques like, for example, spectral coherence,
particularly with wavelets to deal with nonstationarities.
Weighting of the individual algorithms based upon respi-
ration rate (through adjustment of λk in (7)) also requires
further exploration given our simulation results. Also, λk
may be adjusted to weight certain sensor measurements over
others which are less trustworthy by nature. For instance,
our results on the real data indicate that in general the PAT-
derived respiration may not be as reliable as the ECG-derived
respiration for our population. This may not be true (or
may be reversed) for other populations, such as neonates
for example. Therefore, demographics may inform the values
of λk.

Although our approach automatically rejects noisy sec-
tions of data, it may be further improved by using statistical
tests which can reject spurious frequencies that could have
appeared just by mere chance. This may be accomplished in a
nonparametric and nonstationary manner using a surrogate
analysis approach [32], for example.

The added computational burden of our fusion step
(see (6)) is negligible; being essentially a weighted average
it involves only a very few divides and adds. Generally
one would expect the derived respiratory waveforms and
respiratory rates to be already calculated. In fact, signal
qualities are generally computed in most monitors although
they are often not available to the standard user. Even in the
case that a signal quality is not available, the purity-based
signal quality method utilized in this work is calculated in
time domain using a finite-differencing approach (see [27])
and is therefore computationally very efficient. The majority
of the computation is in the standard ECG analysis, which
must be performed regardless.

The most important point to emphasize about our
approach is that it does not require any a priori knowledge
of the (changing SNR) of any input signal. Therefore our
approach is robust in a wide sense, weighting the best
estimators at any given epoch to provide a consistently
superior estimate to any single given technique.

It should also be noted that the method presented in
this paper is quite general and can be extended to any set
of sources that provide a respiratory-related oscillatory data,
such as the photoplethysmogram (processed in an almost
identical manner as PAT), an airway thermistor, a flow meter,
an impedance pneumogram, an accelerometer attached to
a patient’s chest, or an infra-red camera pointing at the
patient’s mouth and nose. Moreover, this robust KF-based
fusion framework is extensible to any set of independent (or
nearly independent) observations, providing that a suitable
signal quality parameter can be defined.
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