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This paper proposes audio coding using an efficient long-term prediction method to enhance the perceptual quality of audio
codecs to speech input signals at low bit-rates. The MPEG-4 AAC-LTP exploited a similar concept, but its improvement was not
significant because of small prediction gain due to long prediction lags and aliased components caused by the transformation
with a time-domain aliasing cancelation (TDAC) technique. The proposed algorithm increases the prediction gain by employing a
deharmonizing predictor and a long-term compensation filter. The look-back memory elements are first constructed by applying
the de-harmonizing predictor to the input signal, then the prediction residual is encoded and decoded by transform audio coding.
Finally, the long-term compensation filter is applied to the updated look-back memory of the decoded prediction residual to
obtain synthesized signals. Experimental results show that the proposed algorithm has much lower spectral distortion and higher

perceptual quality than conventional approaches especially for harmonic signals, such as voiced speech.

1. Introduction

The main objective of speech and audio coding algorithms is
to represent an input signal with as few bits as possible while
maintaining high perceptual quality; however their funda-
mental design concepts are somewhat different. The reason
can be found in the unique characteristics of input signal
to be encoded, and the application areas of each codec. For
example, speech coding that employs the voice production
mechanism is used for bidirectional communications, while
audio coding that utilizes the hearing mechanism is used
for one-way broadcasting services in general. Due to the
different design concept one method does not work well for
other type of input signals [1].

As the communication and broadcasting networks
are merging together, demands for developing a unified
speech/audio codec are rapidly increasing [2]. As a first
step toward this unification, MPEG standardized the MPEG-
4 audio which combines a large set of codecs covering
different signal characteristics and operating bit rates [3].
The 3GPP also standardized the adaptive multirate wideband
plus (AMR-WB+) codec that has the combined structure

with an ACELP technology and a transform-based coding
(TCX) scheme [4]. Recently, MPEG has initiated a new
standard to provide a unified coding tool for speech and
audio signals. In response to the Call for Proposal (CfP) on
the unified speech and audio coding (USAC), 8 candidate
systems have been submitted, and a reference model was
selected through a competitive evaluation process [5, 6]. The
reference model has a combined architecture containing two
separate coding branches: one comes from a modification of
advanced audio coding (AAC), and the other comes from
a traditional linear prediction-based coding especially the
AMR-WB+ [6, 7].

To design a unified speech and audio codec, it is
important to fully understand the signal characteristics of
input signal as well as the type of distortions related to the
codec used, that is, the effect caused by encoding speech
signals with audio codec and vice versa. It is well known
that transform-based codecs are inadequate to efficiently
express the speech input signals, especially at low bitrates [8,
9]. Among several interpretations to explain the distortion
of coded speech in transform based codecs, the smearing
effect coming from a loose tracking of pitch variation is



said to be one of the most significant reasons [10, 11].
In other words, relatively long transform analysis leads to
roughness, because the pitch is rather frequently varied in
the transform duration, and thus the harmonic components
in the frequency domain are not ensured to be preserved by
perceptual bit allocation. As an another aspect, it should be
also noted that each peak and valley coming from the pitch
harmonics might be independently coded in the transform
domain, thus it is less efficient to code them as much as to be
done by namely long-term prediction in many speech coders
[12].

The AAC-LTP introduced a concept to the transform
coder as an intention to remove the harmonic redundancy
where the prediction was designed to reduce the interframe
redundancy [13]. However, the quality improvement was
marginal because of its inherent structural limitation in the
encoding step, that is, a modified discrete cosine transform
(MDCT) with a time-domain aliasing cancelation (TDAC)
[14, 15]. Since the MDCT in AAC has a long frame size
and needs additional one-frame delay to reconstruct the
aliasing-free time domain signal, the lag of the predictor
should be very long. Therefore, the prediction gain becomes
low because it applies to less correlated signal. Obviously,
the method could not be applicable to speech input signals
having pitch harmonics, and rather it may be appropriate
to code very tone-like stationary musical solo signals such as
pitch-pipe and violin.

This paper proposes a new long-term prediction struc-
ture that can be integrated into transform-based audio cod-
ing algorithms. The harmonic components of input signal
are first reduced by a deharmonizing long-term predictor,
and then the predicted signal is encoded and decoded by a
transform coder. Finally the effect of the deharmonization
predictor is compensated by a long-term synthesis filter that
minimizes the overall quantization error between the input
and the synthesized signal. Since the look-back memory of
the compensation filter has been updated by the decoded
signal of the previous frame, it provides higher prediction
gain, which results in much lower perceptual distortion.
The performance of the proposed algorithm is verified by
implementing it with the Enhanced aacPlus (EAAC) codec
released by 3GPP [16]. Simulation results obtained from
objective and subjective tests confirm the superiority of the
proposed algorithm especially for speech and concatenated
signals.

2. Limitation oF AAC-LTP

The AAC-LTP has been designed to enhance harmonic
components of the input signal using a long-term predictor
[13].

Figure 1 shows the encoding blocks of AAC-LTP. In
addition to the typical T/F (time to frequency) transform
module with the psychoacoustic model, it includes a long-
term prediction (LTP) module. The residual signal remain-
ing after the LTP process is adaptively quantized in the
“Quantizer and Coding” block using the psychoacoustic
model, and the encoded bitstream is packetized depending
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on “Bitstream Encoder/Multiplexer” block. “Long-term syn-
thesis” and “F/T” blocks in the LTP module generate the
synthesized signal that is also used for updating the loop-
back memory of long-term prediction. The output of the
long-term prediction, $(n), is represented by a lag to the
previously synthesized signal, and a first-order prediction
coefficient, such as

bstn-N-d), n=0,...,d—1,
Sn) =

(D)
bs(n—-N-d), n=4d,...,N -1,

where N is the length of frame, b is a prediction coefficient,
d is a prediction lag, 5(n) is the previously synthesized signal,
and §'(n) is the aliased signal between s(n) and s(n — 2N)
as shown in Figure 2. Please note that the predicted samples
should be always taken from a delay of at least N samples,
and this filter has to employ the aliased part. Since the
audio codec uses the MDCT, it is not possible to obtain a
perfectly reconstructed signal without introducing one frame
delay to keep the time domain aliasing cancelation (TDAC)
characteristic [17]. The one frame delay has to be included
because it needs one frame data of a synthesized signal
when it is compared with original signal in the “Frequency
Selective Control” routines, which requires to compare the
encoding performance of the predicted signal to that of
the original signal in the transform domain. For example,
in case a current frame is predicted from the previous N
samples starting at S(np — N), we are not able to get the
samples between $(0) and 5(19 — 1) since they have not been
reconstructed yet.

Consequently, the pitch searching range of AAC-LTP
should be set between s(n — 2N) and s(n — N) as depicted
in Figure 2. Table 1 depicts examples of LTP performance to
speech input samples, which shows percentages of operated
frame rates and prediction gains. This simple experiment was
executed in original signal domain without quantization in
order to fairly examine the effect of prediction delay to the
prediction gain. The gains of the prediction, which works
on previous frame signals, are compared to those with no
delay. The operated frame rates show the ratio of frames
that LTP processing is applied. Though the speech samples
Speech 1 ~ Speech 4 include large portion of voiced regions,
the operated frame rate of selecting the AAC-LTP module is
under 10%. Please also note that the gains of the prediction,
obtained by the previous frame signals, are much lower than
those with no delay. In other words, the AAC-LTP does
not work properly for speech samples in general. Subjective
listening tests also showed that the AAC-LTP did not have a
good performance for speech samples [13].

3. Proposed Algorithm

3.1. Deharmonization Predictor and Harmonic Compensation
Filter. Figure3 shows the encoder block diagram of the
proposed algorithm consisting of the T/F encoder and a
new long-term prediction method. The key idea of the
proposed algorithm is to use a deharmonization predictor
and a compensation filter simultaneously to solve the
delay problem in the AAC-LTP. Figure 4 describes encoding
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LTP module
5
Long-term
T/F L F/T
- prediction N
s(n s(n)
S(n) T S(w)
Inverse frequency
selective switch
and inverse quantization
Input Frequency Quantizer Bitstream
signal+—> T/F selective and encoder/
S(n) S(w)| control |S(w)| coding St(w) | multiplexer
——>| Psychoacoustic model |_ Side information
FIGURE 1: Block diagram of the encoding process of AAC-LTP [13].
TaBLE 1: The prediction gain of AAC-LTP.
Speech 1 Speech 2 Speech 3 Speech 4 Speech 5 Speech 6
Operated frame rate (%) 4.0 1.9 2.9 22.1 28.9
prediction gain (dB) no delay 16.78 14.94 15.00 10.27 12.48 14.12
1 frame delay 3.23 4.16 3.62 2.60 2.46 5.97
st o time domain. Since one frame delay exists due to “T/F”
e N+d N and “F/T” processing [17], the next process depicted in
s Ny Figure 4(c) uses the delayed residuals, 7;_1(n). The final step
of the proposed algorithm is reminimizing the quantized
S(n—2N) §'(n—N) s(n) error of T/F encoder using the closed-loop-based long-term
synthesis, which generates the most similar output among
Aliased part

Pitch searching range

FIGURE 2: Pitch searching range of AAC-LTP.

buffers in each processing stage. At first, a residual r;(n),
where i indicates a frame index, is obtained through the
deharmonization predictor. We have

B(z) =1— > byyz %P, 2)

p=—m

where by, is prediction coefficients, dj, is a pitch lag, and
m depends on the filter order. By passing the input signal,
si(n), through this transfer function, the residual component,
ri(n), is obtained. To improve the efficiency of the prediction,
the analysis frame is divided into 4 subframes. By setting the
search range of pitch delay to cover the full range of human
being’s fundamental frequencies, that is, 93.75 ~ 960 Hz [18,
19], the optimal pitch lag that maximizes autocorrelation is
determined. After applying transformation to the residual
signal, the transformed coefficients are further encoded by
T/F encoder, and the quantized residual in the previous
frame, 7;_1(n), is obtained as shown in Figure 4(b). To
make the decoder suitable for performing an analysis-by-
synthesis structure, it essentially needs an inverse transform
module that converts the transformed coefficients back into

the decoded candidates. The synthesized candidate S ;_; (1)
is obtained as follows:

Seic1(n) = 71i21(n) + Z bepSi-1(n—dc+p), (3)
p=-m

where b, denotes candidates for optimal prediction coeffi-
cients, dc.denotes a candidate for an optimal pitch lag, and m
determines the filter order. The closed-loop predictor does
not invoke any additional delay for inner calculation. To
obtain an optimal pitch value, a criterion of mean square
error between the synthesized signal S, ;_;(n) and the input
signal s;_1(n) is defined as follows:

N-1

{doybomy- s bom} = argmin 3 {si1(n) =S ()},
{desbe—mswesbem } 1=0

(4)

where b,, denotes optimal prediction coefficients, and
d,denotes an optimal pitch lag. The variables b, , and d, are
given in (3). The optimal pitch related parameters computed
in the closed-loop synthesis process should be transmitted to
the decoding stage. The buffer of compensation filter is filled
with the final output, §;_;(n), for the next frame:

Sio1(n) = ri1(n) + Z bo,pSi-1(n —d, + p). (5)

p=-m
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(a) Deharmonization predictor
—2N -N 0 N
ri-2(n) | ri—1(n) | ri(n) ‘ Input

(b) T/F Encoder
—2N -N 0 N

| Si-2(n) | ri-1(n) ‘ Input

(c) Harmonic compensation filter

FIGURE 4: Encoder buffer of the proposed algorithm in each stage.

3.2. The Decoder of the Proposed Algorithm. The structure of
decoder consists of the T/F decoder and the long-term syn-
thesis block as shown in Figure 5. Figure 6 describes the two
blocks of memory buffer of the proposed algorithm in each
decoding stage. The T/F decoder works for the quantized

4
TaBLE 2: Additional bit allocation.

Parameter Ist sub-frame 2nd sub-frame 3rd sub-frame 4th sub-frame Total per frame
LTP-filtering 1 1 1 1 4
Pitch info. 9 6 6 6 27
Calibration 2 6 6 6 20
Total 51

(b) T/F encoder
Psycho-acoustic model
(a)
————
De-harmo ) A .
si(n) “nization ri(n) E Que:intlzj.tlon i&hased
predictor and coding Riji-1(k)
A \j
Harn/w’nic
Delay MSE vomp/ensation F/T
si-1(n) Sioi(n)| Ailter fi-1(n)
I NG
F1Gure 3: Encoder block diagram of the proposed algorithm.
TaBLE 3: Simulation environment. () (b)
X . . Long-t
Specification f‘ liased —> T/F decoder — :I;%h:srirsn —>

Test Database materials from MPEG USAC Riji-1(k) k

Sampling frequency 48 kHz Fi1(n) si-1(n)

Bitrates 12, 16, 20 kbps FiGURE 5: Decoder block diagram of the proposed algorithm.

Cut-off frequency 3.328 kHz

Window shape only long window

—2N -N 0 N
e N 0 N Aliased  Ri_,; ,(k) Input
si-1(n) | si(n) | Input Aliased R}, (k) Input
ri(n Output
i(n) P rio1(n) Output

(a) T/F decoder

2N -N 0 N
Si-2(n) ri-1(n) Input
Si-1(n) Output

(b) long-term synthesis

FIGURE 6: Decoder buffer of the proposed algorithm in each stage.

residual, 7;_; (n), with previous and current aliased signals as
shown in Figure 6(a). Then the synthesized signal, 5;_; (1), is
obtained through the long-term synthesis process given in
(5), that is, by utilizing optimal prediction coefficients and
optimal pitch lag.

3.3. Flexible Frame Length Algorithm. With further dividing
the analysis frame into subblocks, the performance of long-
term prediction can be improved. The length of T/F coder
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TABLE 4: Average spectral distance of speech signal.
Average spectral distance (dB) Speech 1 Speech 2 Speech 3 Speech 4 Speech 5 Speech 6
Proposed algorithm 6.13 6.45 6.77 6.17 5.81 5.27
EAAC without LTP 6.57 8.04 7.40 7.25 7.27 5.79
3000 3000 — T
2000 2000
1000 1000
0 0
—1000 [V —1000 r
~2000 bl 2000 R
~3000 = . . . .
_3000 Lo . . . .
2500 3000 3500 4000 4500 2500 3000 3500 4000 4500
Sample
Sample
—— Original
Residual — Original
—— Residual differentiation Residual

FiGUure 7: The result of long-term prediction with fixed subframe
length.

is set to N samples in the long window case. If the frame
is divided into four subblocks with fixed length, an interval
of each subblock becomes N/4 samples, which is helpful
for increasing prediction gains. In this blockwise prediction
method, however, it is inevitable to see artifacts at the block
boundary if the prediction gain rapidly varies in consecutive
blocks. Let the residual and original signal in the previous
and current subframe be r;_y, si_1, 1, si, respectively. The
transform domain signals in the overlap region are expressed
as follows,

N-1 N/2-1
Sa(w) = > siii(m)e ™+ > si(n)e ",
n=N/2 n=0
(6)
N-1 N/2-1
Ra(w) = > rii(me ™+ > ri(n)e /",
n=N/2 n=0

where N is an overlap frame length, i is a frame index, S,;(w)
is an original signal of transform domain, and Ry (w) is a
residual signal of transform domain. If the prediction lags
between previous and current subframe are same, and the
filter order is one, previous residual and current residual are
expressed as

rio1(n) = si_1(n) = boi-1s(n — d;),
ri(n) = si(n) — byis(n — d;).

—— Residual differentiation

F1GURE 8: The result of long-term prediction with flexible subframe
length.

From (6) and (7), we get the residual signal represented by

Ro(w) = Sai(w) — bo,i71sol(w)e_de*’

N2 ' (8)
+(boj1 = bo) D _si(n — d)e /™.

n=0

The last term in (8), (by,i—1 — bo,i) ijfo si(n—d;)e” /™", causes
the artifacts over all frequencies. If the original signal is band-
limited, the residual signal is also band-limited. However,
as the difference of the prediction gain between consecutive
frames becomes larger, artifacts become more severe.

Figure 7 depicts an example of artifacts obtained by
second-order differentiation. The thin solid line is the
original signal, the dashed line is a residual signal with long-
term prediction, and the thick solid line denotes the absolute
value of the second-order difference obtained by the residual
signal as follows:

x(n) =Hr(n) —r(n—=1} ={r(n—=1) = r(n - 2)}|
=lr(n) —2r(n—1)+r(n-2)|,

(9)

where r(n) is the residual signal. The discontinuity is very
large at the block boundary, which is not desirable for coding
purpose. Though the overlap-and-add (OLA) method is a
simple approach to minimize the distortion, it is impossible
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FIGURE 9: An example of speech spectrogram: (a) original signal, (b)
synthesized signal using proposed algorithm, and (c) synthesized
signal using EAAC without long-term prediction.

to use the technique in our case because another type of
distortion such as time delay and windowing effect could
occur. In this paper, a novel flexible frame length algorithm
is proposed to solve the problem. The proposed algorithm
is composed of two processing steps. In the first step, the
boundary position of subframe is determined to minimize
the net signal power at the boundary. The position of the net
signal power, p, is obtained by following:

n=M/2 N
argmin z s(—(j—1)+n) , j=1,
0=<n<N/16y—_M/2 4
p= n=M/2 N
argmin Z s(z(j—l)w“n) s J=2,3,4,

—N/8<n<N/8y,—_M/2
(10)

where j is a subframe index, N is a subframe length, and M
is the number of adjacent samples. When the constant, M,
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FIGURE 10: Spectral distance of speech signal.

is too large, net signal power does not provide the optimal
position claimed by the lowest power due to the summation
of lower region and larger region. Consequently, less adjacent
samples could be determined as the subboundary set in the
transition period.

The value, p, is adapted for changing the boundary
position between subframes. Through this calibration, the
discontinuity can be removed perfectly as given in Figure 8.

4. Implementation

The proposed algorithm is integrated into the EAAC released
by 3GPP because of its high encoding efficiency and good
sound quality compared to the other AAC versions, but it
does not have a long-term prediction module. The dehar-
monization predictor and the compensation filter consist of
the first-order filter, which is more stable and requires small
amount of additional bits.

4.1. Additional Bit Allocation. Table 2 shows the additional
bit allocation required for encoding the new long-term
prediction module. At first, it requires a mode bit that
defines whether the LTP routine is performed or not. Please
note that the prediction coefficients of the deharmonization
filter and the compensation filter might not be the same if
the small number of bits are allocated for the core coding
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FiGure 11: Results of MUSHRA test at (a) 12, (b) 16, and (c) 20 kbps.

step. Our simulation results show that as the difference
becomes higher we may easily notice artifacts. To overcome
the problem, we fixed the prediction coefficients for the
deharmonization step. Although the method could not
enjoy the full advantages of using LTP, it does not have
the artifact problem and has reasonably good performance.
Besides, It does not need to allocate additional bits for the
coefficient of the deharmonization filter. If the prediction
gain of the encoded frame is not high, only the mode bit
is transmitted. Pitch interval is encoded by a differential
quantization scheme, but the first subframe uses full pitch
range to improve perceptual quality and to be robust to
channel errors. To reduce discontinuous artifacts at frame
boundaries, the boundary of each subframe is adaptively
controlled depending on signal characteristics. For the input
signal of 48 kHz sampling frequency, the proposed algorithm
only requires the side information of 1kbps, and it might
be further reduced when some entropy coding schemes are
introduced.

4.2. Perceptual Entropy in T/F Encoder. The T/F encoder

needs to compute perceptual entropy (PE) that is defined

as the number of bits required for encoding the short term

spectrum of the signal [20, 21]. The perceptual entropy of
bit

residual signal is adopted as follows:
] dw < ) ,  (11)
sample

1 (" R(e/™)
PE = 7 L max[o,log2 (")
where R(e/") is a power spectral density of residual signals
and T(e/") denotes the masking threshold density of original
signals which is computed in each scale factor band. The
modified PE and the masking threshold are utilized for the
quantization and encoding process [16].

5. Performance Evaluation

5.1. Experimental Setup. The performance of the proposed
algorithm is compared with EAAC codec. Simulation



environments are summarized in Table 3. To make a fair
comparison, additional side information needed for the
proposed harmonic compensation method is taken into
account in the bit allocation of the T/F encoder.

In the encoding block diagram of the proposed algorithm
depicted in Figure 3, the T/F encoder covers the frequency
bandwidth of up to 3.328 kHz. To remove quality variation
caused by the block-switching effect, it is processed with the
long window mode only. It is true in practice because the
short-window processing is hardly used in low bitrate codecs
due to its bit limitation. Test signals were selected from the
database used for testing the quality of reference speech
and audio codecs during the initial stage of MPEG USAC
standard activity [22]. To separately analyze the quality
impact of the proposed algorithm, the input data set was
partitioned into four clusters such as speech, music, mixed,
and concatenated.

5.2. Objective Quality Analysis. Figure 9 depicts the spectro-
grams of original and synthesized speech in a vowel region.
The output of proposed algorithm depicted in Figure 9(b) is
clearly better than that of the EAAC reference (Figure 9(c)).
The harmonics of the proposed algorithm are more clearly
seen.

To measure similarity, the logarithmic spectral distance
between original and synthesized spectrum is measured as
follows:

SD? = 12—(7)12 J:T (long(w)I - log‘H(W) ‘ )Zdw, (12)

where |H(w)| is the original spectrum and |H(w)]| is the
synthesized spectrum.

Figure 10 shows the spectral distance of speech in each
subframe. The spectral distances of the proposed algorithm
(solid line) are smaller than EAAC without using long-
term prediction (dot line) especially in vowel regions
(Figure 10(b)).

Table 4 depicts the average spectral distance of several
speech samples. It confirms that the proposed algorithm also
shows the minimum distance in all the test samples.

5.3. Subjective Quality Analysis. We performed the
MUSHRA (MUltiple Stimuli with Hidden Reference and
Anchor) test [23] for evaluating subjective quality at 12, 16,
and 20 kbps. Eleven trained listeners were participating, and
they used headphones (Sennheiser HD600). Results denote
mean values and 95% confidence levels of test scores.

Figure 11 depicts MUSHRA test results for each cluster.
The proposed algorithm at 12, 16, and 20 kbps shows the
best quality in speech and concatenated signals. Since it is
designed for improving the signal with the relative frequency
of pitch variation, that is, voiced speech, it works better for
speech-like signals than for other signals. The statistical ¢-
tests with a confidence interval of 95% also prove that the
proposed algorithm is significantly better than the other.
Test results with music and mixed signals also show that
the proposed algorithm has comparable performance to
conventional audio codecs. From the results, we verify that
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the proposed algorithm is very efficient for speech input
signal and has consistent performance to various types of
input signals.

6. Conclusion

Since audio codecs were designed to allocate their bits based
on the psychoacoustic model in the transform domain, they
did not efficiently compress speech-like components. New
long-term prediction module by combining the deharmo-
nization predictor and the harmonic compensation filter has
been proposed. Similar to state-of-the-art speech codecs,
the analysis frame is divided by subframes to obtain pitch
information. Both subjective listening tests and objective
tests confirmed the superiority of the proposed algorithm to
the conventional audio codec, EAAC.
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