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We propose a new constant false alarm rate (CFAR) detection method from noncoherent radar echoes, considering heterogeneous
sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test.
The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly
attractive for economical CFAR detection systems. Monte Carlo simulations were used to investigate the detection performance
and demonstrated that the proposed technique provides a higher probability of detection than conventional techniques, such as
cell averaging CFAR (CA-CFAR), especially with a small number of reference cells.

1. Introduction

Noncoherent radar systems are widely used in applications
such as ship navigation, and radar signal detection from
sea clutter has been the subject of intense research for a
number of years. Considerable experimental and theoretical
investigations have studied the feasibility of detection with
a constant false alarm rate (CFAR). In CFAR detection, the
local sea clutter power in a range cell under test (CUT)
is adaptively estimated from samples adjacent to the CUT,
which are referred to as reference cells. The estimation
method is very important for detection probability enhance-
ment, and many studies have been reported.

For example, if the radar illuminates a large sea area,
then the probability distribution of the envelope of sea clutter
is approximated by a Rayleigh distribution [1]. Thus, the
sea clutter in a noncoherent radar system with a square
law detector is exponentially distributed. In this sea clutter,
the local mean clutter power is spatially a constant (i.e.,
homogeneous clutter). The local clutter power can then be
estimated by the maximum likelihood (ML) method. CFAR
implemented using ML is known as cell averaging CFAR
(CA-CFAR) [2, 3]. If the clutter power varies spatially (i.e.,
heterogeneous clutter), however, a K distribution provides
a good phenomenological expression of the sea clutter,

especially for high-resolution radar at low-grazing angle [4–
9]. Using CFAR detection against K distributed clutter, the
maximum a posterior (MAP) or the minimum mean square
error (MMSE), that is, Bayes risk minimization method,
can be applied for the clutter power estimation [10, 11].
By implementing these estimation methods, the spatial
correlation of the clutter power is regarded as strong. Thus,
the assumption can be made that the local clutter power in
the CUT equals that in the reference cells.

However, results of the measured sea clutter in [8, 9, 12]
indicate that the spatial correlation of the clutter power
is about a few tens of meters. If the reference cell extent,
which is obtained by multiplying the range cell scale by
the number of reference cells, is more than the spatial
correlation length of the clutter power, the above assumption
cannot be accepted. Thus, a mismatch can occur between
estimated and actual clutter power. This mismatch affects the
detection performance, that is, the probability of detection
degradation. In addition, the estimation accuracy does not
increase with the number of reference cells. One way to
overcome this problem lies in enhancing the probability of
detection by using a small number of reference cells, because
the local clutter power can then be regarded as almost
constant. In addition, CFAR detection with a small number
of the cells can provide distributed target detection, for
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example, identify closely separated ships or a ship near land,
compared with conventional CFAR using a large number of
cells [13].

In this study, a CFAR detection technique is introduced
for heterogeneous sea clutter with a noncoherent radar
system, where the local clutter power in the CUT is estimated
by the Bayesian theory. Typically, this requires sufficient prior
information about the sea clutter to be incorporated in the
estimation, or the estimation accuracy might be degraded,
as with ML and MAP. In the proposed technique, however,
CFAR detection is achieved without this prior information. A
Bayesian optimum radar detector (BORD) has been reported
[14] as one application of CFAR to Bayesian theory. However,
the BORD is a coherent radar system and is difficult to
implement with a noncoherent system, since complex data,
such as the Doppler frequency, is not available. To investigate
the detection probability of the proposed technique, Monte
Carlo simulations are performed under various sea clutter
conditions, including consideration of the spatial correlation
of the clutter power. The results are also compared with
conventional CFAR techniques, such as CA-CFAR, and show
the usefulness of the proposed technique, especially for a
small number of reference cells. In the proposed technique,
data from the square law detector is processed, allowing
easy implementation in existing noncoherent radar systems,
such as marine radar, making it particularly attractive for
an economical CFAR detection system. In addition, the
proposed technique can be applied to high resolution radar,
with a range resolution of 4 m [5, 8], since heterogeneous
clutter is supposed.

In the next section, the clutter and the target signal model
are described and then the proposed detection technique. In
Section 3, the detection performance with various clutters is
investigated. Finally, Section 4 concludes this study.

2. Detection Technique

The detection problem of interest here is that if we suppose a
noncoherent radar to transmit a pulse and receive the radar
echo. The echo is then detected via a square law detector and
sampled by an A/D converter. Here, the sampled echo in the
CUT and the echoes from M reference cells are denoted as
X and D = {X1, . . . ,XM}, respectively, as shown in Figure 1.
Note that cell size adaptation with respect to the target size
is outside the scope of this study. When the target signal is
absent from the CUT, it is assumed that X consists of only
the clutter; when the signal is present, it is assumed that
X consists of the sum of the clutter and the target signal
and is statistically independent of the clutter. Additionally,
the system noise is sufficiently small compared with the
clutter and is neglected. Note that information about the
sea clutter is not available, since the sea clutter’s statistical
characteristics might change frequently with factors such as
the wave structure.

2.1. Sea Clutter and the Target Signal Model. Assume that the
sea clutter is heterogeneous and modeled as the compound
Gaussian, as described in [6, 7, 10, 15]. From these references,

the clutter C can be represented by the product of two
independent random variables

C = τx, (1)

where x and τ are named speckle and texture, respectively.
The variable x is given by a noncorrelated exponential
random variable. The variable τ represents the local clutter
power, that is, the mean of the underlying conditional
exponential distribution.

In general, local clutter power fluctuations are induced
by spatial and temporal variations in the clutter. Their
correlation lengths are a few tens of meters and the order
of seconds, respectively [9, 16]. Because its long temporal
correlation time, local clutter power is regarded as a constant
during CFAR processing intervals. Thus, modeling the
spatial power distribution is important in CFAR detection.
In [7], for example, the distribution function of the power
is given by a Gamma distribution, that is, the distribution
function of the clutter is the K distribution, which is a
function of the scale and shape parameters. In this study,
the distribution function of the power is given by an
inverse Gamma distribution because this is a conjugate prior
distribution [17]. By using this prior, a prior and posterior
distributions belong to the same class of distributions. Thus,
transition from prior to posterior only involves a change
in the parameters with no additional calculation, which
reduces the computational complexity. We must consider
the justification of the inverse Gamma distribution. In the
performance analysis in Section 3, the local clutter power
of the simulated sea clutter is given as Gamma distributed
(not inverse Gamma). To determine the validity of the
proposed technique applying the inverse Gamma prior,
analysis is performed using simulated sea clutter. The inverse
Gamma distribution is also a function of the shape and
scale parameters (these parameters differ from those in the
Gamma distribution). However, no information about the
clutter is available, so the parameters are not known a priori.

Generally, atmospheric propagation effects (i.e., clear
sky, rain, etc.), target scintillation, and so on, cause the
target signal to fluctuate. From a radar specification point
of view, the pulse repetition frequency (PRF) is a few kHz,
since marine radar is assumed in this study. Thus, target
scintillation might be neglected during CFAR processing
intervals; the target echo fluctuates slowly relative to the
order of magnitude of the PRF. Therefore, the target model is
assumed as Swerling I, which has been largely used in radar
literature [18]. In this model, signal fluctuation is given by
an exponential distribution and the mean of the fluctuation
represents the signal power.

2.2. Proposed Technique. Similar to CA-CFAR, the test
statistic T in the proposed technique is defined as

T = X

τ̂
, (2)

where τ̂ is the estimated local clutter power in the CUT,
based on the Bayesian theory. Signal detection is made by



EURASIP Journal on Advances in Signal Processing 3

Antenna

Transmit signal
TX

Circulator

Received echo

Square
law

detector

Range bin

Sampled echo

X1 · · ·

Reference cell

Xm · · ·

Guard cell

X

CUT

· · ·

Guard cell

Xm+1 · · · XM

D = {X1X2 · · ·XM}: Reference cell

Reference cell

Figure 1: Data in CUT and reference cell.

comparing T with a threshold level η; if T � η (or T <
η), the target signal is present (or absent). The threshold
is given from the false alarm rate. In addition, the clutter
in the CUT and the power are estimated by the Bayesian.
With these estimated values, the proposed CFAR detection
is formulated. The following explains the estimated values by
the Bayesian theory and provides the false alarm rate and the
probability of detection.

2.2.1. Local Clutter Power Estimation. Suppose that both X
and D contain no target signal, and that the local clutter
power in the CUT is the same as that in the reference cells.
Based on Bayesian theory, a posterior distribution of the
local clutter power in the CUT τ conditioned on X and D
is expressed as

p(τ | X ,D) = L(τ | X ,D)p(τ)
∫∞

0 L(τ | X ,D)p(τ)dτ
, (3)

where L(τ | X ,D) and p(τ) are a likelihood function and a
prior distribution of the local clutter power τ. The likelihood
function is given by

L(τ | X ,D) = p(X | τ)×
M
∏

m=1

p(Xm | τ), (4)

where p(X | τ) and p(Xm | τ) are an exponential distribution
conditioned on τ

p(X | τ) = 1
τ
e−X/τ , p(Xm | τ) = 1

τ
e−Xm/τ . (5)

The prior distribution, that is, the assumed local clutter
power distribution, is the inverse Gamma distribution, as
mentioned in Section 2.1. This is denoted by IG(τ;α0,β0),

with α0 of the shape parameter and β0 of the scale parameter,
that is, hyperparameters. Thus,

p(τ) = IG
(

τ;α0,β0
) = βα0

0

Γ(α0)
τ−α0−1e−β0/τ . (6)

Since the inverse Gamma distribution is the conjugate prior,
the posterior distribution p(τ | X ,D) in (3) is also the
inverse Gamma. Thus, p(τ | X ,D) = IG(τ;α1,β1). The
hyperparameters are represented by

α1 =M + 1 + α0, (7)

β1 =
M
∑

m=1

Xm + X + β0. (8)

Therefore, the distribution of the estimated local clutter
power τ̂ based on the Bayesian theory is given by

p(τ̂ | X ,D) = IG
(

τ̂;α1,β1
)

. (9)

Next, we have to consider the value of τ̂ to output T
in (2). As seen in (9), τ̂ is not estimated as the point value
but as the distribution. Thus, we propose that the estimated
local clutter power is given as a random variable whose
distribution is the inverse Gamma, that is, τ̂ ∼ IG(τ̂;α1,β1)
(“∼” means “distributed as”). By using a Gaussian random
number generator, the estimated local clutter power is given
by

τ̂ =
⎛

⎝

1
β1

α1
∑

k=1

|nk|2
⎞

⎠

−1

, (10)

where nk is a complex random number, and its statistics are
a complex Gaussian distribution with zero mean and unit
variance.
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Figure 2: Example of threshold level in proposed CFAR.

2.2.2. Hyperparameters. The hyperparameters are not
known a priori. Thus, a noninformative prior [17, 19, 20]
that is one of the approaches to obtaining the
hyperparameters is considered in this study. By using
the noninformative prior, a prior distribution is regarded
as uniform. Thus, α0 → 0 and β0 → ∞ should be used.
However, the parameters are set to α0 = 1 and β0 = 0. For
the former value, because the estimated local clutter power
in the CUT is given by (10) and α1 as the summation index,
it must be a natural number. From (7), α0 is also a natural
number. Therefore, α0 = 1, that is, the smallest natural
number, is used. Meanwhile for the latter value β0 = 0 is
used (though this should be a large number) because a false
alarm rate is to be derived analytically. If β0 is not a zero,
the distribution of β1 is not a Gamma distribution (i.e., the
distribution of Y1 in (A.5) is not the Chi-square distribution
in the appendix). Therefore, it is extremely difficult to derive
the false alarm rate. The discussion of detection performance
dependence on the parameters is in Section 3.1.

2.2.3. Local Clutter Estimation. In (3), X is assumed as the
clutter. However, this assumption cannot be accepted in
actual detection scenarios since whether X includes the target
signal or not is unknown. Therefore, we propose replacing
X in (3) with the estimated clutter from the data in the
reference cells. The Bayesian theory is also applied for the
estimation. The estimated clutter denoted as ̂C is given as the
mean of the Bayesian predictive density function (MBPDF).
In the MBPDF, ̂C is represented by

̂C =
∫∞

0
CP∗(C | D)dC, (11)

where P∗(C | D) is the predictive density [17, 19, 21, 22].
This is defined by

P∗(C | D) =
∫∞

0
p(C | τ)p(τ | D)dτ, (12)

where p(C | τ) = 1/τe−C/τ and p(τ | D) is the posterior
distribution, that is, p(τ | D) ∝ L(τ | D)p(τ). The likelihood
function is given by

L(τ | D) =
M
∏

m=1

p(Xm | τ). (13)

Since the prior distribution is also supposed as the inverse
Gamma distribution with the hyperparameters as a0 and b0,
that is, p(τ) = IG(τ; a0, b0); the posterior distribution is thus
the inverse Gamma distribution, p(τ|D) = IG(τ; a1, b1) with
the hyperparameters as

a1 =M + a0,

b1 =
M
∑

m=1

Xm + b0.
(14)

Substitute p(C | τ) and p(τ | D) into (12), then

P∗(C | D) ∝ Γ(a1 + 1)

(X + b1)a1+1 , (15)

where “∝” signifies “proportional to.” Therefore, ̂C is given
by

̂C = A · Γ(a1 − 1)b−a1+1
1 , (16)

where A is a constant. Since the hyperparameters are
not known, the noninformative prior as described in
Section 2.2.2 is applied. Thus, a0 = 0.1 and b0 = 10 are given.
Contrary to hyperparameters α0 and β0 in Section 2.2.2,
these values of a0 and b0 do not affect a false alarm derivation.
With these values, the prior distribution, that is, the inverse
Gamma distribution, is approximated as uniform. In the
local clutter power estimation in Section 2.2.1, the posterior
distribution of the power is then estimated with ̂C instead of
X, that is, X is replaced with ̂C.

2.2.4. False Alarm Rate and Probability of Detection. The
expressions of the false alarm rate PFA and the probability
of detection PD are described in the appendix; PFA and PD

are given by (A.11) and (A.13), respectively. Note that PFA

is independent of the statistical parameters of the clutter.
Therefore the proposed technique offers CFAR capability
with respect to the clutter. Also note that PFA and PD include
integration as the confluent hypergeometric function of the
second kind [23] and the calculation of the threshold is
slightly difficult. In Figure 2, we show examples of PFA versus
η for various M.

Figure 3 shows a block diagram of the proposed detection
technique. In Figure 3(a), first, the sum of Xm is calculated
from the reference cells, and then the clutter in the CUT is
estimated by the MBPDF (the detailed process is shown in
Figure 3(b)). Using the estimated clutter and the sum of Xm,
the local clutter power distribution in the CUT is estimated
by the Bayesian theory and the estimated power τ̂ is produced
numerically by the Gaussian random number generator (the
detail is shown in Figure 3(c)). Then the data in the CUT X
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Figure 3: Block diagram of proposed detection technique.

is divided by τ̂. Finally, the test statistic T is compared with
the threshold level η to determine whether the target signal is
present.

3. Performance Analysis

In this section, the detection performance is numerically
investigated by Monte Carlo simulations. To determine the
validity of the proposed technique when applying the inverse
Gamma prior distribution of the local clutter power, the
sea clutter in the simulation is given as the K distribution.
Thus, the local clutter power is Gamma distributed (not
inverse Gamma). The K distribution is a function of the
shape parameter ν and the scale parameter θ. Generally, the
distributions with a small and large ν are far from and close
to the exponential distribution, respectively. The mean of the
local clutter power is represented by νθ. The local clutter

power is spatially correlated in range and its autocorrelation
function is defined as [24]

ACF(i) = E{τmτm+i}
E{τm2} , (17)

where E{·} is an expectation, i is the shift of range cell,
and τm is the local clutter power in the range cell m. In this
simulation, the autocorrelation function is given by [25]

ACF(i) = ρi, (18)

where ρ is the correlation coefficient. The shift at which the
ACF(i) is equal to 1/e is defined as the correlation range
cell, denoted as iC . The iC is a measure of the rate of the
local clutter power decorrelation; if two clutter cells are
separated by a distance greater than iC , then their local clutter
powers may be considered to be statistically independent.
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Figure 4 shows an example of the simulated clutter and
the autocorrelation function of the local clutter power. In
Figure 4(a), the spatial clutter power fluctuation and strong
clutter intensities (like as a spiky clutter) observed in range
cells of 22, 44, and 53 are simulated. In Figure 4(b), the
autocorrelation function with ρ = 0.1, 0.7, and 0.9 is shown
and their correlation range cells are expressed by iC =
−1/ ln ρ, that is, iC = 0.43, 2.8, and 9.4, respectively. The
signal to clutter ratio denoted by SCR is defined as SCR =
τT/νθ, where τT is the mean of the signal intensity (i.e., the
signal power). The threshold level is set to PFA = 10−4,
and a total of 1 × 106 independent Monte Carlo runs were
performed.

3.1. Performance Characteristics. The hyperparameters, α0

and β0 in (6), should be given in accordance with the
noninformative prior; α0 → 0 and β0 → ∞. However α0 = 1
and β0 = 0 are given as described in Section 2.2.2. Particu-
larly, the value of β0 is in conflict with the noninformative
prior. Therefore, the effect of α0 and β0 on the probability
of detection PD should be investigated. Figure 5 shows the
simulation results for the investigation, where M = 2 and ν =
∞ (i.e., the exponential distributed clutter; homogeneous
clutter), and the results of an ideal detector are also shown.
The ideal detector is defined as the CA-CFAR with known
local clutter power in the CUT; it provides the maximum PD.
In Figure 5(a), where β0 = 0, it is found that PD for each α0

is almost the same and is independent of α0. In Figure 5(b),
where α0 = 1, it is shown that PD is improved by increasing
β0. From these results, it is expected that the value of a larger
β0 gives a higher PD. However, in this study, β0 = 0 is chosen
because of the analytical PFA derivation.

Figure 6 shows the effect of the number of reference cells
M on PD, where ν = ∞ and ν = 0.5 (heterogeneous clutter)
are given. Figure 6(a) shows the result of the clutter with

ν = ∞. It can be seen that PD generally increases with M
and is close to the PD curve for the ideal detector. From the
PD for the ideal detector, the CFAR loss [18] at M = 2 and
PD = 0.5 is about 9 dB. Note that the loss of the CA-CFAR is
more than 10 dB at the same M and PD [2]. The CFAR loss of
the proposed technique is found to be small. The accuracy of
the estimated local clutter power is superior to the CA-CFAR
and the PD is higher. Figure 6(b) shows the result for clutter
with ν = 0.5 and ρ = 0. The clutter distribution deviates
considerably from the exponential and the condition of the
local clutter power estimation is severe since the local clutter
power is not correlated. It can also be seen that PD increases
with M. From PD for the ideal detector, the CFAR loss at
M = 2 and PD = 0.5 is about 20 dB. Compared with the
homogeneous clutter shown in Figure 6(a), PD decreases and
the CFAR loss increases.

Figure 7 shows the effect of ν on PD, where M = 2,
and ρ = 0 and 0.9. In Figure 7(a) for clutter with ρ = 0,
PD increases with ν. It is worth remembering that the K
distribution with a large ν is approximately the exponential
(homogeneous) distribution. Thus, the proposed technique
for homogeneous clutter provides higher PD than for the
heterogeneous one. This phenomenon was also observed in
the CA-CFAR [8]. Meanwhile in Figure 7(b), for clutter with
ρ = 0.9, PD is almost the same for each value of ν and is
close to that for ν = 10 in Figure 7(a). This is because the
correlation length (iC = 9.4 in Figure 4(b)) encompasses the
reference cells for M = 2; thus, the local clutter power in the
reference cells can be regarded as the same as that in the CUT.

Figure 8 shows the effect of the local clutter power
correlation ρ on PD, where ν = 0.5 and M = 2 and 16.
In Figure 8(a) for M = 2 (i.e., a small number of reference
cells), PD increases with ρ. In the clutter with large ρ and
small M, as seen in Figure 7(b) for ρ = 0.9, the local clutter
power spatial fluctuation drops and the local clutter power
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in the reference cell can be regarded as that in the CUT.
Therefore, the accuracy of the local clutter power estimation
is enhanced and PD becomes high. In Figure 8(b) for M = 16
(i.e., a large number of cells), the PD for ρ = 0.9 is the
highest. Meanwhile, PD, except for ρ = 0.9, is almost the
same because the values of iC for the clutter with ρ = 0.1 to
0.7, which are iC = 0.43 to 2.8, respectively, are considerably
smaller than the number of reference cells. The local clutter
power varies in the reference cells and the accuracy of the
local clutter power estimation is then degraded.

Here, we consider guard cells effect on the performance.
The spatial correlation between the local clutter power in the
CUT and reference cells decreases with the increase of the

number of guard cells. From the results of the effect of ρ as
shown in Figure 8, therefore, the probability might depend
on guard cells. For example, for a small number of reference
cells, PD decreases with the increase of number of guard cells
as observed in Figure 8(a).

3.2. Performance Comparison. It may be interesting to make
a comparison with conventional CFAR. Here, the CFAR
techniques with the following local clutter power estimation
methods of ML (i.e., conventional CA-CFAR), MAP, and
MMSE (Bayes risk minimization) are considered.

The ML estimator is a simple method and no prior
information of the local clutter power is needed. The local
clutter power is estimated by

τ̂ML = arg max
τ

L(τ | D) = Xm, (19)

where Xm = (1/M)
∑M

m=1 Xm and Xm is the exponential
distribution conditioned on τ, defined by the right side in
(5). The likelihood function L(τ | D) in (19) is

L(τ | D) =
M
∏

m=1

p(Xm | D). (20)

In the ML, the local clutter power is given by the mean of
the reference data. When this estimator is used, the resulting
detection structure is given by the well known CA-CFAR.

The MAP estimator depends on the details of the local
clutter power distribution p(τ). Since the K distributed
clutter is used in this simulation, the statistics of the local
clutter power are then given as a Gamma distribution

p(τ) = 1
θMΓ(νM)

τνM−1e−τ/θM , (21)

where θM and νM are the scale and shape parameters. The
statistics of the speckle are the exponential conditioned on τ,
that is, the local clutter power. The MAP estimator is found
by maximizing a posterior distribution p(τ | D) ∝ L(τ |
D)p(τ). From the likelihood function in (20) and the prior
distribution in (21), the result is

τ̂MAP = arg max
τ

p(τ | D)

= arg max
τ

L(τ | D)p(τ)

= −1
2

(M − νM + 1)θM

+

√

1
4

(M − νM + 1)2θM
2 + MXmθM.

(22)

The MMSE estimator also depends on the details of the
local clutter power distribution p(τ), given as a Gamma dis-
tribution. The estimated value by the MMSE is represented
as [26]

τ̂MMSE =
∫∞

0
τ p(τ | D)dτ

=
∫∞

0
τ

L(τ | D)p(τ)
∫∞

0 L(τ | D)p(τ)dτ
dτ,

(23)
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(b) Heterogeneous clutter; ν = 0.5, ρ = 0

Figure 6: Effect of M on PD.
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Figure 7: Effect of ν on PD; M = 2.

where p(τ | D) is the posterior distribution. Substituting
the likelihood in (20) and the prior in (21) into (23), the
estimated local clutter power is given by

τ̂MMSE

=
√

θMMXm · KM−νM−1

⎛

⎝

√

4MXm

θM

⎞

⎠

/

KM−νM

⎛

⎝

√

4MXm

θM

⎞

⎠,

(24)

where Kp(x) is the modified Bessel function of second kind
of order p.

In (22) and (24), the estimated local clutter powers,
τ̂MAP and τ̂MMSE, are the function of the parameters, θM
and νM . Thus, knowledge of these parameters is needed a
priori. If the parameters are unknown, they are estimated.
Thus, the probability of detection also depends on the
estimation technique. To remove the estimation effect on the
probability of detection, the proposed technique is compared
with conventional CFAR schemes with known parameters.
Thus, in this comparison, these conventional schemes are
not meant as realizable detectors. However, if the proposed
technique is superior to the conventional one when using
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Figure 8: Effect of ρ on PD; ν = 0.5.

known parameters, the probability of detection is higher
than that in the conventional with estimated parameters.
This is because, when using estimated parameters, the
conventional method provides lower probability than with
known parameters due to errors arising from the estimation.
Therefore, in this comparison, these parameters are assumed
as completely known and are set with the same values for the
simulated sea clutter, that is, θM = θ and νM = ν.

In the performance comparison, the K distributed clutter
with ν = 0.5, and the two with local clutter power spatial cor-
relation, ρ = 0.1 and 0.9, are used. Figure 9(a) compares the
proposed detection method with the results of ML, MAP and
MMSE estimator, where M = 2 and the clutter with ρ = 0.1.
This provides a severe situation for the local clutter power
estimation since the number of reference cells is small and
the local clutter power fluctuates extremely. The proposed
technique significantly outperforms the conventional ones.
For example, at PD = 0.5, the SCR enhancement is 13 dB
compared with MMSE. Figure 9(b) shows the performance
comparison under M = 2 and ρ = 0.9. This also provides
the severe conditions; however, the local clutter power
fluctuation is more moderate than in Figure 9(a). Again,
the proposed technique outperforms the conventional ones.
Figure 9(c) shows the performance comparison under M =
16 and ρ = 0.1. In this condition, the number of reference
cells M is considerably large relative to the correlation range
cell (iC = 0.43). The performance is almost the same, and
PD enhancement by the proposed should not be expected.
Figure 9(d) shows the comparison under M = 16 and
ρ = 0.9. Similar to Figure 9(c), PD remains almost the
same.

These results show that the proposed technique is supe-
rior to CFAR with ML, MAP, and MMSE estimator, especially

when the number of reference cells is small and the local
clutter power spatial correlation is weak.

4. Conclusions

In this paper, a CFAR detection technique in sea clutter for
noncoherent radar systems was introduced, where heteroge-
neous sea clutter is considered. The technique mainly applies
the Bayesian theory for adaptive estimation of the local
clutter power in the CUT. The technique achieves detection
with no prior clutter information and has the CFAR property
with respect to the clutter. We investigated the detection
performance through Monte Carlo simulations where K
distributed sea clutter with spatially correlated local clutter
power was used. The following conclusions can be drawn
from the simulation results.

(1) The detection performance of the proposed tech-
nique depends on the number of reference cells, the
sea clutter distribution, and the spatial correlation of
the local clutter power. The probability of detection
increases with the number of cells, the shape param-
eter of the sea clutter, and the correlation.

(2) The proposed technique is found to be very useful
compared with the conventional CFAR detector in
which the shape and the scale parameters are known
a priori, especially when the number of reference cells
is small and the spatial correlation of the local clutter
power is weak.

In a future study, we will investigate the detection
performance enhancement in a large number of reference
cells, analyze performance with the measured sea clutter data,
and further investigate the implementation of the proposed
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Figure 9: Performance comparison; ν = 0.5 (2/2, 1/2).

technique into a collision avoidance radar system for ships or
pleasure boat safety navigation.

Appendix

We derive the false alarm rate PFA. X is thus the clutter.
Here, we slightly modify (2), where both the numerator and
denominator are divided by the true local clutter power, τ,

T = X/τ

τ̂/τ
· (A.1)

When the CUT does not include the target signal, the
probability density function (pdf) of X is the exponential
distribution with τ of the mean. Thus the pdf of the
numerator in (A.1) is the exponential with unit variance.
Next we consider the pdf of the denominator. Since the
pdf of τ̂ is expressed as the inverse Gamma distribution,

as expressed in (9), τ̂ belonging to this distribution can be
expressed as

τ̂ ∼
⎛

⎝

α1
∑

m=1

∣

∣ym
∣

∣
2

⎞

⎠

−1

, (A.2)

where α1 is the order parameter given in (7), and the
distribution of ym is the noncorrelated complex Gaussian
distribution with zero mean and β1 of the variance. Here,
(A.2) is further modified as

τ̂ ∼ β1

⎛

⎝

α1
∑

m=1

|nm|2
⎞

⎠

−1

, (A.3)

where the pdf of nm is the noncorrelated complex Gaussian
distribution with zero mean and unit variance. Substituting
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(8) into (A.3), the distribution of the numerator τ̂/τ is given
by

τ̂

τ
∼ 1

τ

⎧

⎨

⎩

M
∑

m=1

Xm + X + β0

⎫

⎬

⎭

⎛

⎝

α1
∑

m=1

|nm|2
⎞

⎠

−1

= Y1

Y2
, (A.4)

where

Y1 = 1
τ

⎧

⎨

⎩

M
∑

m=1

Xm + X + β0

⎫

⎬

⎭

, Y2 =
α1
∑

m=1

|nm|2. (A.5)

Since β0 = 0, and Xm and X are the clutter, the distribution
of Y1 is the Chi-square distribution with M + 1 degrees of
freedom, denoted by χ2

M+1. Similarly, the distribution of Y2 is
given by χ2

α1
. Here, Y1/Y2 is slightly modified as

Y1

Y2
= Y1/(M + 1)

Y2/α1
· M + 1

α1

= z0 × M + 1
α1

,

(A.6)

where

z0 ≡ Y1/(M + 1)
Y2/α1

. (A.7)

Since the pdf of z0 is the F distribution [27], the pdf of z ≡
Y1/Y2 (i.e., the denominator in (A.1)) is given by

p(z)dz = Γ(M + 1 + α1)
Γ(M + 1)Γ(α1)

· zM

(1 + z)M+1+α1
dz, (A.8)

where Γ(·) is the Gamma function. Therefore, the distribu-
tion of T is represented by

p(T)dT = (M + 1)
Γ(M + 1 + α1)

Γ(α1)
·U(M + 2; 2− α1;T)dT ,

(A.9)

where U(a; b; x) is the confluent hypergeometric function of
the second kind [23], expressed by

U(a; b; x) = 1
Γ(a)

∫∞

0

ga−1

(

1 + g
)a+1−b e

−xgdg. (A.10)

Finally, PFA as a function of η is given by

PFA
(

η
) =

∫∞

η
p(T)dT

= Γ(M + 1 + α1)
Γ(α1)

·U(M + 1; 1− α1;η
)

.

(A.11)

From (A.11), PFA is not a function of the statistical parameter
τ of the clutter.

Next, we derive the probability of detection, PD. Since
the signal is assumed as the Swerling I model described in
Section 2.1, the random variable of the numerator in (A.1),
that is, X/τ, is expressed as the exponential distribution with
1 + τT/τ of the mean, where τT is the mean of the signal

intensity (i.e., the signal power). On the other hand, the
distribution of denominator in (A.1) is also given by (A.8).
Similar to the derivation of PFA, the distribution of T is thus

p(T)dT = M + 1
1 + τT/τ

· Γ(M + 1 + α1)
Γ(α1)

·U
(

M + 2; 2− α1;
T

1 + τT/τ

)

dT.

(A.12)

Therefore, PD as a function of η, is given by

PD
(

η
) =

∫ η

0
p(T)dT

= Γ(M+1 +α1)Γ(M+1)
Γ(α1)

·U
(

M+1; 1−α1;
η

1+τT/τ

)

.

(A.13)

In (A.13), it is found that PD is a function of M, α1, and
τT/τ.
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