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A double-loop iterative method is proposed to design allpass variable fractional-delay (VFD) digital filters basing on the
minimization of root-mean-squared group-delay error. In the inner loop, an iterative quadratic optimization is proposed to
replace the original nonlinear optimization for the minimization of root-mean-squared group-delay error, while an iterative
weighting-updated technique is applied in the outer loop to further reduce the maximum group-delay error. Several examples
will be presented to demonstrate the effectiveness and good convergence of the proposed method.

1. Introduction

For the past decade, the design of variable fractional-delay
(VFD) digital filters became an important topic in digital
signal processing due to their wide applications in signal
processing and communication systems such as comb filter
design, sample rate conversion, tunable modulator and
acoustic system [1–5]. Since Farrow proposed an effective
structure for implementing variable digital filter [6], several
works concerning VFD filter design have been presented,
including an excellent tutorial paper by Laakso, and so forth
[7], FIR-based design [8–11], IIR-based design [12, 13] and
allpass-based design [14–24] with their respective feature.

In this paper, the design of allpass VFD digital filters
is investigated on the possible minimization of root-mean-
squared group-delay error. Among the existing literature in
which allpass structure is applied, most applications concern
the minimization of phase-oriented error, and only [23]
focuses on the minimization of root-mean-squared group-
delay error by converting a nonlinear optimization problem
to a linear least-squares (LS) optimization problem.

In this paper, an alternative method will be presented
with comparable performance. Likely, the direct approx-
imation of group-delay response is a highly nonlinear

problem, so an iterative quadratic optimization will be
proposed to overcome it in this paper. Then a weighting-
updated technique [11, 25] is proposed to further reduce the
maximum group-delay error of the designed system, which
constitutes the outer loop of the overall process while the
iteration stated above makes up the inner loop.

As to the stability, it has been shown in previous works
[26–29] that there exists a necessary and sufficient condition
for positive-valued group delay τ(ω) of the designed allpass
filter with order N as follows:

∫ 2π

0
τ(ω)dω = 2πN. (1)

It is also pointed out in [26] that if the allpass filter design has
a phase approximating error less than π at ω = π it must be
stable. In this paper, although there is no theoretical proof,
it can be found that the designed allpass VFD filter is usually
stable when mean delay of the desired response is equal to the
order of the designed allpass filter and the range of adjustable
parameter is properly assigned.

This paper is organized as follows. In Section 2, the
review of conventional weighted least-squares (WLS) design
(as Deng’s method [21]) basing on the minimization of
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phase-oriented error and frequency-response-oriented error
is given, and it will be shown that both will lead to the same
solution. The formal formulation for LS group-delay error
design of allpass VFD filters will be presented in Section 3, in
which an iterative method is proposed to replace the original
nonlinear optimization of group-delay-oriented error. Then
in Section 4, a weighting-updated technique is proposed to
further reduce the maximum group-delay error, and design
examples will be given to demonstrate the effectiveness and
good convergence of the proposed double-loop iterative
method. Also, an example with a different range of the
adjustable variable is given to show the significant effect on
overall performance, which has also been revealed in [14, 24].
Finally, the conclusions are given in Section 5.

2. Review of Deng’s Method of Allpass VFD
Digital Filters

For the design of an allpass VFD digital filter as in [21], the
desired frequency response can be given by

Hd
(
ω, p

) = e− j(N+p)ω, |ω| ≤ ωp, (2)

where p is the parameter used to adjust fractional delay and
N denotes the order of the designed allpass filter. The transfer
function of an allpass VFD digital filter is characterized by

H
(
z, p
) = z−N

A
(
z−1, p

)
A
(
z, p
) , (3)

where

A
(
z, p
) = 1 +

N∑
n=1

an
(
p
)
z−n, (4)

and the coefficients an(p) are expressed as the polynomials
of p

an
(
p
) =

M∑
m=1

a(n,m)pm, (5)

so (3) becomes

H
(
z, p
) = z−N

1 +
∑N

n=1

(∑M
m=1 a(n,m)pm

)
zn

1 +
∑N

n=1

(∑M
m=1 a(n,m)pm

)
z−n

(6)

which can be implemented by the structure shown in
Figure 1. Comparing with the structures in [15, 19] in
which all elements are processed once for each input data,
the proposed structure is designed such that the coefficient
generator will generate an updated coefficient only on the
demand of variation and the values of coefficients can be
stored in memory, which can save enormous computation.

By (6), the frequency response of the designed system is

H
(
e jω, p

)
= e− jNω A

(
e− jω, p

)
A
(
e jω, p

)

= e− jNω 1 +
∑N

n=1

∑M
m=1 a(n,m)pme jnω

1 +
∑N

n=1

∑M
m=1 a(n,m)pme− jnω

(7)

which is used to approximate (2) as much as possible over
the region R = {(ω, p), 0 ≤ ω ≤ ωp,−0.5 ≤ p ≤ 0.5}.

2.1. Phase-Oriented Approximation. Due to the unit magni-
tude gain for allpass filters, the design problem can focus on
the phase approximation, that is, the phase of (7)

arg
(
H
(
e jω, p

))
= −Nω − 2 arg

(
A
(
e jω, p

))
,
(
ω, p

) ∈ R,

(8)

will be desirable to approximate the phase of (2)

arg
(
Hd
(
ω, p

)) = −Nω − pω,
(
ω, p

) ∈ R, (9)

so the error function can be represented by

eθ
(
ω, p

) = arg
(
Hd
(
ω, p

))− arg
(
H
(
e jω, p

))

= 2 arg
(
A
(
e jω, p

))
− pω.

(10)

2.2. Frequency-Response-Oriented Approximation. An alter-
native view point of the design problem is the direct
approximation of (2) by (7), that is, the error function is
given by

eFR
(
ω, p

) = Hd
(
ω, p

)−H
(
e jω, p

)

= e− j(N+p)ω − e− jNωe− j2 arg(A(e jω ,p))

= e− j(N+p)ω
(

1− e− j(2 arg(A(e jω ,p))−pω)
)

= e− j(N+p)ω
(

1− e− jeθ(ω,p)
)

= e− j(N+p)ω(1− cos
(
eθ
(
ω, p

))
+ j sin

(
eθ
(
ω, p

)))
.

(11)

For good approximation, eθ(ω, p) ≈ 0, (ω, p) ∈ R, so

∣∣eFR
(
ω, p

)∣∣≈
∣∣∣e− j(N+p)ω jeθ

(
ω, p

)∣∣∣=∣∣eθ(ω, p
)∣∣,

(
ω, p

)∈R.

(12)

Hence, both phase- and frequency-response-oriented ap-
proximations will lead to the same solution.

2.3. WLS Solution of the Design Problem. By (10),

eθ
(
ω, p

) = −2 tan−1

∑N
n=1

∑M
m=1 a(n,m)pm sin(nω)

1 +
∑N

n=1

∑M
m=1 a(n,m)pm cos(nω)

− pω

(13)

which is desirable to approximate zero over R, and the prob-
lem can be converted into

−
∑N

n=1

∑M
m=1 a(n,m)pm sin(nω)

1 +
∑N

n=1

∑M
m=1 a(n,m)pm cos(nω)

−→ tan
(
pω

2

)

= sin
(
pω/2

)
cos
(
pω/2

) ,
(
ω, p

) ∈ R,

(14)
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where “→ ” means “approximate.” Equation (14) can be
further replaced by

sin
(
pω

2

)

+
N∑
n=1

M∑
m=1

a(n,m)pm
[
cos(nω) sin

(
pω

2

)
+sin(nω) cos

(
pω

2

)]

−→ 0,
(
ω, p

) ∈ R.
(15)

Hence, the root-mean-squared objective error function for
WLS design of an allpass VFD digital filter can be represented
by

ec(a) =
∫ 0.5

−0.5

∫ ωp

0
W(ω)

∣∣∣∣sin
(
pω

2

)
+ aTb

(
ω, p

)∣∣∣∣
2

dωdp

= sb + rTb a + aTQba,
(16)

where W(ω) is a positive-valued weighting function, the
superscript T denotes the transpose operator,

a = [a(1.1), . . . , a(N ,M)]T ,

b
(
ω, p

) =
[
p
(

cos(ω) sin
(
pω

2

)
+ sin(ω) cos

(
pω

2

))
, . . . ,

pM
(

cos(Nω) sin
(
pω

2

)
+ sin(Nω) cos

(
pω

2

))]T
,

sb =
∫ 0.5

−0.5

∫ ωp

0
W(ω)sin2

(
pω

2

)
dωdp,

rb = 2
∫ 0.5

−0.5

∫ ωp

0
W(ω) sin

(
pω

2

)
b
(
ω, p

)
dωdp,

Qb =
∫ 0.5

−0.5

∫ ωp

0
W(ω)b

(
ω, p

)
bT
(
ω, p

)
dωdp,

(17)

and the quadratic minimization of (16) will result in

a = −1
2
Qb

−1rb. (18)

3. LS Group-Delay Error Design of Allpass VFD
Digital Filters

In this section, a delay-oriented approximation for designing
allpass VFD digital filters will be proposed. The desired
group-delay response can be obtained by

τd
(
ω, p

) = − ∂

∂ω
arg
(
Hd
(
ω, p

)) = N + p, (19)

and the actual delay response of the designed system is

τH
(
ω, p

)

= − ∂

∂ω
arg
(
H
(
e jω, p

))
= N + 2

∂

∂ω
arg
(
A
(
e jω, p

))

=N−2

(
1+ aTc

(
ω, p

))(
aTsd

(
ω,p

))−(aTcd(ω, p
))(
aTs
(
ω,p

))
(
1 + aTc

(
ω, p

))2 +
(
aTs
(
ω, p

))2 ,

(20)

where

c
(
ω, p

)

=
[
p cos(ω), . . . , p cos(Nω), . . . , pMcos(ω), . . . , pMcos(Nω)

]T
,

s
(
ω, p

)

=
[
p sin(ω), . . . , p sin(Nω), . . . , pM sin(ω), . . . , pM sin(Nω)

]T
,

cd
(
ω, p

) = ∂

∂ω
c
(
ω, p

)
,

sd
(
ω, p

) = ∂

∂ω
s
(
ω, p

)
.

(21)

Obviously, the objective error function for a delay-oriented
approximation can be represented by

eτ(a)

=
∫ 0.5

−0.5

∫ ωp

0
W(ω)

∣∣τd(ω, p
)− τH

(
ω, p

)∣∣2
dωdp

=
∫ 0.5

−0.5

∫ ωp

0
W(ω)

×
∣∣∣∣∣p + 2

A(
1 + aTc

(
ω, p

))2 +
(
aTs
(
ω, p

))2

∣∣∣∣∣
2

dωdp,

(22)

where A denotes (1 + aTc(ω, p))(aTsd(ω, p)) − (aTcd(ω,
p))(aTs(ω, p)).

However, the direct minimization of (22) is highly
nonlinear, so an iterative method is proposed to solve it
in this section and the objective error function in the kth
iteration becomes

ek(ak)

= eτ,k(ak) + αec,k(ak)

=
∫ 0.5

−0.5

∫ ωp

0
W(ω)

(
A2
k−1

(
ω, p

)
p + 2AR,k−1

(
ω, p

)
aTk sd

(
ω, p

)

−2AI ,k−1
(
ω, p

)
aTk cd

(
ω, p

))2
dωdp

+ α
(
sb + rTb ak + aTkQbak

)
,

(23)
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Table 1: Comparison of evaluated errors in (29).

Method ετ2 (%) ετ εθ2 (%) εθ Design time (seconds)

Deng’s method in Section 2, W(ω) = 1, p ∈ [−0.5, 0.5] 0.242 0.03145 0.001205 0.0001788 0.38

Lee, Caccetta, and Rehbock’s method [23], LS design,
p ∈ [−0.5, 0.5]

0.0992 0.005276 0.002199 0.0000718 3.19

Proposed LS design, p ∈ [−0.5, 0.5] 0.1474 0.004137 0.002312 0.0000707 28.36

Proposed LS design, p ∈ [−0.65, 0.35] 0.04464 0.001927 0.000724 0.0000543 28.13

Lee, Caccetta and Rehbock’s method [23], WLS design,
p ∈ [−0.5, 0.5]

0.155 0.002836 0.00307 0.0000838 58.63

Proposed minimax design, p ∈ [−0.5, 0.5] 0.1964 0.002966 0.003235 0.0000834 148.76

Proposed minimax design, p ∈ [−0.65, 0.35] 0.0664 0.001189 0.001141 0.0000365 196.56
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Figure 1: (a) The proposed structure of an allpass VFD digital filter (N = 5,M = 4). (b) Coefficient generator (1 ≤ n ≤ 5).
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Figure 2: Curves of (a) ετ and (b) εθ when α varies from 1 to 2000.
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where the vector denoted by the subscript “k” represents
coefficient vector to be determined in the kth iteration,
ec,k(ak) has been likely defined in (16), α is a relative
weighting constant, and the functions denoted by the
subscript “k − 1” are defined by

AR,k−1
(
ω, p

) = 1 + aTk−1c
(
ω, p

)
,

AI ,k−1
(
ω, p

) = aTk−1s
(
ω, p

)
,

Ak−1
(
ω, p

) = (A2
R,k−1

(
ω, p

)
+ A2

I ,k−1

(
ω, p

))1/2
.

(24)

It is noted that ec,k(ak) is included in (23) and α must
be chosen large enough to avoid the phase response of
the designed system deviating from the desired one too
much. Moreover, the denominator in (22) is ignored for the
iterative method in (23), which will yield satisfactory results.
Equation (23) can be further represented in a quadratic form
as

ek(ak) = sτ + aTkQsak + aTkQcak + rTs ak + rTc ak

+ aTkQcsak + α
(
sb + rTb ak + aTkQbak

) (25)

where

sτ =
∫ 0.5

−0.5

∫ ωp

0
W(ω)A4

k−1

(
ω, p

)
p2dωdp,

Qs = 4
∫ 0.5

−0.5

∫ ωp

0
W(ω)A2

R,k−1

(
ω, p

)
sd
(
ω, p

)
sTd
(
ω, p

)
dωdp,

Qc = 4
∫ 0.5

−0.5

∫ ωp

0
W(ω)A2

I ,k−1

(
ω, p

)
cd
(
ω, p

)
cTd
(
ω, p

)
dωdp,

rs = 4
∫ 0.5

−0.5

∫ ωp

0
W(ω)AR,k−1

(
ω, p

)
A2
k−1

(
ω, p

)
psd
(
ω, p

)
dωdp,

rc = −4
∫ 0.5

−0.5

∫ ωp

0
W(ω)AI ,k−1

(
ω, p

)

× A2
k−1

(
ω, p

)
pcd
(
ω, p

)
dωdp,

Qcs = −4
∫ 0.5

−0.5

∫ ωp

0
W(ω)AR,k−1

(
ω, p

)

× AI ,k−1
(
ω, p

)
cd
(
ω, p

)
sTd
(
ω, p

)
dωdp

− 4
∫ 0.5

−0.5

∫ ωp

0
W(ω)AR,k−1

(
ω, p

)

× AI ,k−1
(
ω, p

)
sd
(
ω, p

)
cTd
(
ω, p

)
dωdp.

(26)

Notice that Qcs is so arranged that it is symmetric and
positive-definite. Differentiating (25) with respect to ak and
setting the result to zero, the solution for minimizing (25) in
the kth iteration can be obtained as

ak = −1
2

(Qs + Qc + Qcs + αQb)−1(rs + rc + αrb). (27)

To terminate the iterative process, the relative norm is
defined by

β = ‖ak − ak−1‖
‖ak‖

. (28)

When β is small enough, for example, smaller than εinn,
where εinn is a preassigned very small positive constant, the
iterative process can stop. In this paper, εinn = 0.001 is
used. As to the initial coefficient vector a0, we can adopt the
solution in (18) by setting W(ω) = 1. The details of iterative
procedures will be described in the next section.

To evaluate the accuracy of the designed system, the
normalized root-mean-squared group-delay error, the maxi-
mum group-delay error, the normalized root-mean-squared
phase error, and the maximum phase error are defined by

ετ2 =
[∫ 0.5

−0.5

∫ ωp

0

∣∣τd(ω, p
)− τH

(
ω, p

)∣∣2
dωdp∫ 0.5

−0.5

∫ ωp

0 p2dωdp

]1/2

× 100%,

ετ = max
{∣∣τd(ω, p

)− τH
(
ω, p

)∣∣,
(
ω, p

) ∈ R
}

,

εθ2 =
[∫ 0.5

−0.5

∫ ωp

0

∣∣arg
(
Hd
(
ω, p

))− arg
(
H
(
e jω, p

))∣∣2
dωdp∫ 0.5

−0.5

∫ ωp

0

(
ωp
)2
dωdp

]1/2

× 100%,

εθ = max
{∣∣∣arg

(
Hd
(
ω, p

))− arg
(
H
(
e jω, p

))∣∣∣,
(
ω, p

) ∈ R
}

,

(29)

respectively. To compute (29), the frequency ω and the
variable p are uniformly sampled at step sizes ωp/200 and
1/300, respectively.

Example 1. This example deals with the proposed LS design
of an N = 35, M = 5, ωp = 0.9π allpass VFD filter. To
properly choose α in (23), Figures 2(a) and 2(b) present the
curves of ετ and εθ , respectively, when α varies from 1 to
2000. In this paper, α = 1000 is used, and the design took
three iterations. Figure 3(a) presents the obtained group-
delay responses while the absolute errors of group-delay
and phase are shown in Figures 3(b) and 3(c), respectively,
accompanying those of the Deng’s method in Section 2.
The related errors in (29) are tabulated in Table 1. It can
be observed that both ετ and εθ of the proposed method
are smaller than those of the existing method [23], but the
performances of ετ2 and εθ2 for the proposed method are not
as good as those in [23]. Matlab simulations show that the
design took about 28.36 seconds on a notebook PC with Intel
Core Duo CPU T8300.

4. Minimax Group-Delay Error Design of
Allpass VFDDigital Filters

In this section, a weighting-updated technique is proposed to
minimize the maximum group-delay error of an allpass VFD
filter obtained in Section 3, which constitutes the outer loop
of the overall process while the iteration in Section 3 makes
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Figure 3: Design of an N = 35, M = 5, ωp = 0.9π, p ∈ [−0.5, 0.5] allpass VFD filter. (a) Group-delay responses. (b) Absolute group-delay
errors (left: Deng’s LS design, right: proposed LS design). (c) Absolute phase errors (left: Deng’s LS design, right: proposed LS design). (d)
Absolute group-delay errors of the proposed minimax design. (e) Maximum pole radius for p ∈ [−0.5, 0.5].
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Table 2: Filter coefficients for the proposed LS design in Example 3.

m

n 1 2 3 4 5

1 −0.995911478379215 0.003037237182070 0.000674977600074 0.002203931411874 −0.001547094931521

2 0.491860988660958 0.489906840770088 −0.004126440722118 −0.004968604465653 −0.000451455145871

3 −0.321238701261896 −0.480959682281854 −0.155527315538002 0.009336078160601 0.002875779605052

4 0.234086131719820 0.429265271544100 0.228966726293102 0.025840785057596 −0.005934120518170

5 −0.180442437563948 −0.376964115092541 −0.258474768641364 −0.058885621354534 0.001432724569099

6 0.143669792117880 0.329957770218435 0.265616427088872 0.083096234713679 0.005227747340939

7 −0.116657162172812 −0.288508807455575 −0.260564239814727 −0.098781179155452 −0.011492189916140

8 0.095861039125088 0.251939854553747 0.248549917352264 0.107475439484688 0.016441996382781

9 −0.079319256800620 −0.219538064590932 −0.232515100469996 −0.110719224055686 −0.019869040384123

10 0.065857103009291 0.190720077751894 0.214249655962206 0.109824100478193 0.021858526125015

11 −0.054726435065962 −0.165033191450544 −0.194914864048044 −0.105865858472555 −0.022611233785938

12 0.045425714251763 0.142128041436134 0.175304729171998 0.099719296033186 0.022361719532284

13 −0.037603022298150 −0.121728204225754 −0.155979945905486 −0.092096431614038 −0.021344479562458

14 0.031001228444685 0.103608784007633 0.137345198030118 0.083574882334005 0.019774852983403

15 −0.025425012312619 −0.087578010616568 −0.119690472293712 −0.074621308011672 −0.017844113508204

16 0.020720915083929 0.073467158589459 0.103220353275063 0.065607022593667 0.015713946630399

17 −0.016764317587889 −0.061120833690438 −0.088069015325893 −0.056822176308913 −0.013518649356740

18 0.013451438220377 0.050393631010479 0.074315411373739 0.048485405849704 0.011363357432515

19 −0.010693672377723 −0.041145191376987 −0.061990029855892 −0.040754079903763 −0.009328571849153

20 0.008414281412575 0.033240476434287 0.051085766424762 0.033731771771784 0.007469846563140

21 −0.006545751741101 −0.026547275109895 −0.041561893474693 −0.027476917314175 −0.005823266602704

22 0.005028471552094 0.020938283213411 0.033353508964552 0.022009510808459 0.004405809839568

23 −0.003809384590832 −0.016289718620921 −0.026374265528517 −0.017318832133697 −0.003221101051906

24 0.002841516201697 0.012484128343807 0.020525052306191 0.013369584615560 0.002259936792143

25 −0.002083164017217 −0.009409316711960 −0.015695742339824 −0.010108579318228 −0.001505805273695

26 0.001497755497971 0.006961232471637 0.011773041636065 0.007470070929259 0.000935170532813

27 −0.001053228383405 −0.005042751228794 −0.008641133167121 −0.005381083473594 −0.000522366521324

28 0.000721982433284 0.003566279107085 0.006188479311859 0.003765621798479 0.000239360156968

29 −0.000480297868477 −0.002452163386710 −0.004307224739879 −0.002548399099865 −0.000059778977985

30 0.000308285023293 0.001630854379561 0.002898818696283 0.001657749575799 −0.000041970396936

31 −0.000189289826257 −0.001040887457275 −0.001872166300857 −0.001027714173915 0.000087596983292

32 0.000109818709357 0.000630593764138 0.001148101727283 0.000599713352933 −0.000096409825026

33 −0.000058932273691 −0.000355717936032 −0.000656467669958 −0.000323254739076 0.000082969883834

34 0.000028159894437 0.000180788324236 0.000339826063819 0.000157105923634 −0.000058660087578

35 −0.000010912672360 −0.000076734250069 −0.000151603214037 −0.000073350022415 0.000026749510599

up the inner loop. The overall iterative process is described
in detail below.

Step 1. Given N , M, ωp, and α, set W(ω) = 1, and find the
initial coefficient vector a0 by (18).

Step 2. Set the inner iterative counter k = 0.

Step 3. Increase the inner iterative counter k by 1, and
calculate Ak−1(ω, p), AR,k−1(ω, p), AI ,k−1(ω, p),Qs,Qc, rs, rc,
and Qcs.

Step 4. Find the coefficient vector ak by (27).

Step 5. Check whether the relative norm β is small enough
by

β < εinn. (30)

If the condition is satisfied, go to the next step; otherwise go
to Step 3.

Step 6. Find the variable p, denoted by pm, where the
maximum of group-delay error function E(ω, p), defined by

E
(
ω, p

) = ∣∣τd(ω, p
)− τH

(
ω, p

)∣∣,
(
ω, p

) ∈ R, (31)
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Table 3: Filter coefficients for the proposed minimax design in Example 3.

m

n 1 2 3 4 5

1 −0.995993596236449 0.002951361938129 0.000056522430938 0.003227364563976 −0.002459241277563

2 0.492019060719535 0.490165494401252 −0.002681420024658 −0.006345896805414 −0.000444700949259

3 −0.321471225422751 −0.481418973949900 −0.157782729637916 0.010673985821541 0.003558502797986

4 0.234388948779710 0.429936634960839 0.232014003186862 0.024803935644968 −0.007082100578430

5 −0.180809553898889 −0.377848777076039 −0.262282154813875 −0.058330113715328 0.002858896290434

6 0.144093799282764 0.331049886098540 0.270138023365234 0.083140840476517 0.003671971963968

7 −0.117129820320514 −0.289799197810240 −0.265745946995025 −0.099497954673552 −0.009920842069164

8 0.096372854062878 0.253409909828576 0.254315329105907 0.108894154915106 0.014947469673871

9 −0.079860248869537 −0.221163954074996 −0.238774548835977 −0.112836471202399 −0.018523661245126

10 0.066417235371802 0.192475127776987 0.220905131511245 0.112605063283127 0.020710959749977

11 −0.055295700680418 −0.166886921064048 −0.201858125775743 −0.109247481340844 −0.021690925658959

12 0.045994562958711 0.144048641408887 0.182424468016734 0.103618709513285 0.021681689765273

13 −0.038162626126081 −0.123683810542076 −0.163165397984585 −0.096416215678346 −0.020903696245568

14 0.031543613480551 0.105568113889007 0.144488637747372 0.088206732231356 0.019558989262805

15 −0.025943254665904 −0.089511445430816 −0.126690976298732 −0.079454047897343 −0.017831187066804

16 0.021209234821121 0.075347332574665 0.109985232980534 0.070527891068195 0.015873812332757

17 −0.017218205011616 −0.062923918561836 −0.094518367293347 −0.061725532030323 −0.013818324456679

18 0.013867583703075 0.052099069080072 0.080381481983181 0.053273169499334 0.011767529430927

19 −0.011069999914064 −0.042736331042533 −0.067618950223505 −0.045340098661654 −0.009802870961721

20 0.008749913929641 0.034705233910870 0.056239697296178 0.038045151627557 0.007982131561675

21 −0.006840717660722 −0.027876032814163 −0.046213102316074 −0.031459203715713 −0.006345583922439

22 0.005284001340328 0.022127902740351 0.037494541869108 0.025622074058447 0.004913569954169

23 −0.004027273226697 −0.017338667620351 −0.030005448553794 −0.020536165254725 −0.003696194040458

24 0.003024238308363 0.013394444480610 0.023658566786054 0.016180658703661 0.002688753419761

25 −0.002233814412328 −0.010187262429483 −0.018357061617550 −0.012518726197641 −0.001880234103510

26 0.001619612427739 0.007614467619845 0.013993527079620 0.009494927822061 0.001251724331496

27 −0.001149754797462 −0.005581013645482 −0.010458788127664 −0.007046111678278 −0.000781330341624

28 0.000796663861173 0.004000709213585 0.007645263913791 0.005101208642714 0.000441439263909

29 −0.000536633718021 −0.002795599745994 −0.005449025857033 −0.003589487278191 −0.000206255609100

30 0.000349545529838 0.001895830247705 0.003770427414620 0.002441776327828 0.000053417213621

31 −0.000218498674617 −0.001239482351210 −0.002517028536055 −0.001596601179870 0.000032333826084

32 0.000129607420879 0.000773720821702 0.001606542109353 0.000996204580929 −0.000067169661349

33 −0.000071635910779 −0.000454306657023 −0.000967504900344 −0.000587397249461 0.000068485823988

34 0.000035791801597 0.000245674851842 0.000539971198304 0.000321069026938 −0.000055829905847

35 −0.000015815837778 −0.000125519073336 −0.000300465948474 −0.000202997633437 0.000015539277740

occurs for the first outer iteration only. Find the absolute
error ripples of E(ω, pm), and denote the ith ripple with
ripple interval (ωi−1,ωi] by γi, 1 ≤ i ≤ I , where I is the
number of ripples in [0,ωp]. Then search the maximum
value δ and the minimum value ρ of γi, 1 ≤ i ≤ I .

Step 7. Check whether the error function E(ω, pm) is nearly
equiripple by

δρ =
δ − ρ

δ
< εout, (32)

where εout is a preassigned very small positive constant. If the
condition is satisfied, stop the process; otherwise go to the
next step.

Step 8. Compute the unnormalized weighting function

Ŵ(ω) =W(ω)γ2
i , 1 ≤ i ≤ I , ωi−1 ≤ ω ≤ ωi, (33)

and find its maximum value

δw = max
{
Ŵ(ω), 0 ≤ ω ≤ ωp

}
. (34)

Then update the weighting function by

W(ω) = Ŵ(ω)
δw

, 0 ≤ ω ≤ ωp. (35)

Step 9. Calculate rb, Qb in (17) and replace a0 by ak. Then go
to Step 2.
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Figure 4: Design of an N = 35, M = 5, ωp = 0.9π, p ∈
[−0.65, 0.35] allpass VFD filter. (a) Absolute group-delay errors of
the proposed LS design. (b) Absolute group-delay errors of the
proposed minimax design. (c) Maximum pole radius for p ∈
[−0.65, 0.35].

Example 2. Following Example 1, the allpass VFD filter is
continuously designed with minimax group-delay error. If
εout = 0.01 is used, the design took thirteen outer iterations

and the respective inner iterations are three and two in the
first and second outer iterations, and one in the others.
Figure 3(d) presents the final group-delay errors, and the
errors computed by (29) are also listed in Table 1. To illustrate
the stability of the designed filter, the maximum pole radius
is shown in Figure 3(e), which shows that the designed filter
is stable since the poles are all inside the unit circle for p ∈
[−0.5, 0.5].

Example 3. In practice, the range of p may not be limited in
[−0.5, 0.5], and the overall performance may be even better.
For example, if the allpass VFD filter is designed again with
p ∈ [−0.65, 0.35] for both LS design and minimax design,
the absolute errors of group-delay for LS design and minimax
design are presented in Figures 4(a) and 4(b), respectively.
The errors in (29) are also tabulated in Table 1, from which
it can be shown that the performance of the design with p ∈
[−0.65, 0.35] is much better than that with p ∈ [−0.5, 0.5].
In this example, the minimax design took eighteen outer
iterations, and the respective inner iterations are three and
two in the first and second outer iterations, and one in
the others. The final maximum pole radius is presented in
Figure 4(c), which shows that the designed allpass VFD filter
is stable. Also, the filter coefficients for LS and minimax
designs are tabulated in Tables 2 and 3, respectively.

5. Conclusions

In this paper, a double-loop iterative method has been
proposed to minimize the root-mean-squared group-delay
error in LS and minimax senses for the design of allpass VFD
digital filters. For the LS design, an iterative quadratic opti-
mization is used in the inner loop, while a weighting-updated
technique is further applied to minimize the maximum
group-delay error in the outer loop. From the presented
experiments, it has been shown that the performance in
group delay and phase for the proposed systems can be
improved drastically by appropriately specifying the range of
fractional delay. For the computational complexity, although
the design time of the proposed method is much more
than the existing methods, an alternative method has been
revealed in this paper for further research in the future.
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