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We consider the problem of detecting an unknown signal from an unknown noise type. We restrict the signal type to a class of
slowly varying periodic signals with harmonic components, a class which includes real signals such as the electroencephalogram or
speech signals. This paper presents two methods designed to detect these signal types: the ambiguity filter and the time-frequency
correlator. Both methods are based on different modifications of the time-frequency-matched filter and both methods attempt to
overcome the problem of predefining the template set for the matched filter. The ambiguity filter method reduces the number of
required templates by one half; the time-frequency correlator method does not require a predefined template set at all. To evaluate
their detection performance, we test themethods using simulated and real data sets. Experiential results show that the two proposed
methods, relative to the time-frequency-matched filter, can more accurately detect speech signals and other simulated signals in
the presence of coloured Gaussian noise. Results also show that all time-frequency methods outperform the classical time-domain-
matched filter for both simulated and real signals, thus demonstrating the utility of the time-frequency detection approach.

1. Introduction

For some applications there is a need to detect time-varying
periodic signals with harmonic components. Examples
include electrical power signals [1], recorded musical instru-
ments [2], and speech signals [3]. The work in this paper was
motivated by one particular biomedical problem where we
encounter signals with such characteristics. This application
involves the detection of seizures in newborn infants, work
which is being conducted in the Signal Processing Research
Concentration of the Perinatal Research Centre within the
UQ-CCR located in one of the largest hospitals in Australia,
the Brisbane Royal and Women’s hospital. The work involves
developing an automated method to detect seizure periods
in electroencephalogram (EEG) signals for newborns. The
goal is to develop an accurate system that can be used in a
clinical setting to assist the clinician in making a diagnosis or
prognosis. An effective detection scheme would allow for the
improvement of health outcomes for newborns.

Analyses of EEG showed nonstationary characteristics for
the seizure signals [4, 5], which lead to the development of
a detection method in the time-frequency domain [6, 7].
This method used a time-frequency-matched filter which
correlated a set of reference signals, in the time-frequency
domain, to the EEG signal. Initial results were promising [6]
but the efficacy of the method is limited somewhat by the
variability of the seizure signal [7]. The crux of the problem
is how to define the set of reference signals, known as the
template set, to accurately represent the range of seizure
types—too many templates lead to computational problems
and increase the probability of error, too few templates, and
the probability of missing a seizure increases.

This provided the motivation to develop new methods,
still using the knowledge gained from the time-frequency
characterisation of seizure periods [4, 5], without the
problems associated with predefining a template set. Two
methods, both based on modified versions of the time-
frequencymatched filter, are described in this paper. The first
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method requires only one half of the template set used by
the time-frequency-matched filter method; even better, the
second method requires no predefined template set at all.

We evaluated the detection accuracy of these two meth-
ods, and compared this performance with the performance
for the time-frequency-matched filter and the time-domain-
matched filter methods. This performance evaluation used
both simulated and real data sets. The results show two key
points: first, we were not able to identify the most accurate
detection method over all the tested data sets; and second,
all three time-frequency methods outperformed the time-
domain-matched filter for all, but one, data sets. (The one
exception was the data set of simulated signals embedded in
white Gaussian noise.) We found, unexpectedly, that for our
particular EEG seizure data set the time-frequency-matched
filter marginally outperformed the two proposed methods.
One of the proposed methods, however, outperformed all
other methods for the speech data set and for the simulated
data sets with coloured Gaussian noise.

2. Background

To introduce the topic, we start with a review of time-
frequency distributions and the matched filter.

2.1. Time-Frequency Distributions. Time-frequency distribu-
tions (TFDs) are often used to analyse nonstationary signals
because they highlight the time-varying characteristics of
these signals [8]. There are many different types of TFDs,
which are grouped into classes. Probably the most commonly
used class is the quadratic class of TFDs. At the core of this
class is the Wigner-Ville distribution (WVD). The WVD,
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is a quadratic function of the time-domain signal z(t),
where z∗(t) is the complex conjugate of z(t). The signal-
under-analysis, s(t), is transformed from a real-valued to
complex-valued signal z(t) using the Hilbert transform [9].
Because the transformation of z(t) from the time to the
time-frequency domain is bilinear, the WVD contains cross-
terms between the signal’s components [9]. Convolving the
WVD with the time-frequency kernel γ(t, f ) can suppress or
attenuate these cross-terms. This smoothed WVD represents
the quadratic TFD class ρs(t, f ; γ),
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where different kernels define different distributions in the
class [8].

2.2. Matched Filter. We can describe the problemof detecting
a seizure event from the nonseizure background in the EEG
signal as the classic detection problem of detecting a known
signal in noise. For the signal x(t) there are two possibilities:

H0: x(t) = n(t), signal absent,

H1: x(t) = s(t) + n(t), signal present,
(3)
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Figure 1: The epoch TFD split into 4 segments of length Ts. The
bold line represents the IF law of the signal.
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Figure 2: The ith TFD segment (a) ρi(t, f ) and (b) template TFD
ρTi (t, f ; θk). Note that the template TFD is a time-reversed version
of the (i−1) TFD segment. The template TFD is rotated about a set
of slope values to attempt a match with the ith TFD segment. This
example is taken from Figure 1 for i = 2.

where s(t), of duration T, represents the signal to detect and
n(t) represents the noise. The detection problem is how to
select the correct hypothesis, H0 or H1. If we assume H1, and
s(t) is present, then this is a true detection; if we assume H1,
and s(t) is not present, then this is a false detection.

The matched filter is a time-domain detection method
that linearly filters x(t) [10]. This method maximises the
signal to noise ratio (SNR) of s(t) and n(t). The basic method
requires that the signal s(t) is known and n(t) is a zero-
mean, white Gaussian noise process. To make the decision
as to whether s(t) is present or not, we form a test statistic as
follows:

η =
∫

(T)
x(t)s∗(t)dt (4)
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Table 1: Parameter values to generate the slowly-varying periodic signal with K harmonic components. All parameters are generated from
a uniform probability distribution U(a, b), where a, b represent the lower and upper limits of the distribution. The subscript k represents
the kth harmonic component and Te is the length in seconds of the signal. The parameter g defines the relative energy in the harmonic
components.

Parameter Value

Number of harmonics, K U(2, 5)

Number of turning points for IF law,M U(3, 9)

Time-value turning point for amplitude law t1i t1i = c + diTe/5,

with c ∼ U(−Te/9,Te/9) and d = {1, 2.5, 4}
Amplitude-value of turning point for amplitude law ai U(0.9, 1.1)

Amplitude scaling parameter ek , for 2 ≤ k ≤ K + 1; (e1 = 1) ek = 1/(k + g) + 0.3 + b,

with b ∼ U(−0.15, 0.15)
Time-value of turning point for IF law t2i U(M−1 − 0.1,M−1 + 0.1)

Frequency-value of turning point for IF law fi U(−0.003, 0.003)
Phase value θk U(−π,π)

and then compare this test statistic with a predefined
threshold value ζ to determine the hypothesis. Thus,

H0: η < ζ ,

H1: η > ζ.
(5)

The matched filter is known as an optimum detector
because it maximises the SNR and therefore maximises the
probability of a true detection [11].

We can extend the basic matched filter method, which
uses the time-domain signal in (4), with a time-frequency
formulation. The inner-product of the WVDs for the signals
x(t) and s(t),

ηTF =
∫∫

(T)
Wx
(
t, f
)
Ws
(
t, f
)
dt d f (6)

is directly related to the matched filter in (4) as [12–14]

ηTF =
∣
∣η
∣
∣2. (7)

(Integral limits, unless otherwise specified, span from minus
to plus infinity.) The test statistic ηTF is known as a locally
optimal detector [13, 14]. Because of the direct relation
between ηTF and η, the time-frequency approach provides no
immediate advantage over the conventional-matched filter,
apart from indirect advantages such as embedded time-
frequency filtering or use of the cross-WVD [12].

If we replace the WVD W(t, f ) with the more general
TFD representation ρ(t, f ),

ηTF =
∫∫

(T)
ρx
(
t, f
)
ρs
(
t, f
)
dt d f (8)

then this test statistic ηTF is only related to η in (7) if
the Doppler-lag kernels for ρx and ρs satisfy the condition
|g(ν, τ)| = 1 [13]. This condition severely constrains the
type of TFDs as most useful TFDs have nonunity, real-valued
kernels. The notable exception is the WVD.

The time-frequency-matched filter, using the test statistic
in (8), is known as a suboptimum detector [13, 15] because

the filter does not maximise the SNR. The method, however,
may prove useful for an application when the constraints on
the matched filter do not hold and the optimum method is
not applicable. That is, if the signal s(t) is not known and
can only be inferred from noisy measurements, or if s(t)
is randomly perturbed in some way, or if the noise n(t) is
not white Gaussian noise then the suboptimummethod may
prove useful [6, 13, 15–18].

We can shift the test statistic over time and frequency
to obtain ηTF(t, f ), which (10) in the next section describes,
and then use the generalised likelihood ratio test [13, 14] to
obtain the test statistic:

ηTF = max
(t, f )

ηTF
(
t, f
)
. (9)

This approach is useful when s(t) is shifted in time and/or
frequency.

2.3. Time-Frequency-Matched Filter. The method in [6, 7]
uses the time-frequency-matched filter method to detect
seizure in newborn EEG. This method correlates a template
set, a collection of seizure-like events, with the EEG signal
eeg(t) in time frequency as follows:

(1) form the TFD ρeeg for EEG signal eeg(t) for an epoch
of length T;

(2) for each reference signal r(t) form the TFD template
ρr and

(a) produce the time-frequency matched filter test
statistic ηTF(t, f ) shifted over time and fre-
quency:

ηTF
(
t, f
) =

∫∫

(T)
ρeeg

(
t′, f ′

)
ρr
(
t′ − t, f ′ − f

)
dt′d f ′ (10)

(b) using (9), take the maximum value of ηTF(t, f )
to obtain the final test statistic

(3) iterate over all epochs for the EEG.
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Figure 3: Simulated signal with low-energy harmonics: (a) SNR of
20 dB, and (b) SNR of 0 dB. Noise is white Gaussian noise.

The reference signal r(t) is a piecewise LFM (linear-
frequency modulated) signal [6]. The template set is a
collection of piecewise LFM signals with different LFM slope
parameters. (We use the phrase LFM slope to refer to the
slope of the instantaneous frequency (IF) law of the LFM
signal.) Note that the method in [6, 7] used a slightly
different version of the process described here; we detail the
difference in the appendix. Also, we show in this appendix
that both approaches give similar results.

Defining the template set for the time-frequency-
matched filter is problematic [19]. Although the piecewise
LFM model—or piecewise LFM model with harmonic
components [20]—can accurately model seizure events [20],
the parameters in these models vary from newborn to
newborn, or even from EEG channel to channel, in the same
patient. Thus the method requires a large template set to
represent patient or channel-specific seizures. The size of the
template set is, however, proportional to the probability of
error—as the template set size increases so does the false
alarm rate [15, 19].
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Figure 4: Simulated signal, with high-energy harmonics: (a) SNR
of 20 dB, and (b) SNR of 0 dB. Noise is coloured Gaussian noise.

Table 2: Seizure detection results using newborn EEG.

Method AUC TDR = 1 − FDR

matched filter 0.75 72%

TF matched filter 0.99 96%

ambiguity filter 0.91 88%

TF correlator 0.95 90%

3. Methods

This section describes two extensions of the time-frequency-
matched filter: the ambiguity filter method and the time-
frequency correlator method. These two new methods
attempt to address the problem of having to predefine
the template set for unknown signals types. The following
explains these two methods in more detail.

3.1. Ambiguity Filter Method. This method reduces the
size of the time-frequency-matched filter’s template set,
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Figure 5: Results for detecting signals in white Gaussian noise with lower-energy harmonics. At a specific signal to noise ratio (SNR), 50
epochs of noisy signal and 50 epochs of noise are used to generate the receiver operator characteristic curve. From this curve, the area under
the curve (AUC) and point of equal sensitivity and specificity (TDR = 1 − FDR) are calculated.

by defining the templates as real-valued functions in the
Doppler-lag domain [19]. For the time-frequency-matched
filter method, the piecewise LFM signal has 2L parameters,
where L is the number of pieces. For example, a 2-piece LFM
signal requires the parameters [T1,T2,α1,α2], where Ti is the
time duration and αi is the slope of the ith piece, to uniquely
define the signal. The modified method in [19] requires only
the slope αi parameter because, as we shall see, the templates
are independent of time duration values Ti. Thus, for our 2-
piece LFM example this modified method requires only the
parameters [α1,α2].

To explain how this method works, let us start with the
test statistic ηTF(t, f ), which equates to [19]

ηTF
(
t, f
) = F −1

ν→ t

{

F
τ→ f

{
Aeeg(ν, τ)Âr(ν, τ)

}
}

, (11)

where F represents the Fourier transform; F −1 represents
the inverse Fourier transform; and Aeeg(ν, τ) is the ambiguity
function (AF). The AF is a two-dimensional Fourier trans-
form of the TFD:

Aeeg(ν, τ) = F
t→ ν

{

F −1
f → τ

{
ρeeg

(
t, f
)}
}

. (12)

(Also, ν represents the Doppler direction, and τ represents
the lag direction.) The symbol Âr represents an AF of sorts:
the two-dimensional Fourier transform of the time- and
frequency-reversed TFD:

Âr(ν, τ) = F
t→ ν

{

F −1
f → τ

{
ρr
(−t,− f

)}
}

. (13)

We need this reversed-TFD transform to satisfy the relation
in (11) [19].

The time-frequency-matched filter method uses TFD
templates ρr(t, f ) of the piecewise LFM signal. These
template TFDs contain both auto- and cross-terms. The
reference AF templates Âr , however, use only the autoterms.
We define Âr , the reference template, as a sum of window
functions h(t) located along the (ν−αiτ) axis, as this is where
the autoterms reside [21]. (Recall that α is the slope of the
LFM signal.) Each function h(ν− αiτ) is meant to model the
auto-term for the ith piece of the piecewise LFM signal. We
construct the AF of L auto-term components as

Âr(ν, τ) =
L−1∑

i=0
h(ν− αiτ). (14)

Thus, the AF of the reference signal is independent of Ti, the
length of the pieces in the piecewise LFM model. For this
method, we used a Gaussian window for h(t) in (14).

The final stage of the detection process is to extract a
continuous IF from the test statistic ηTF(t, f ) in (11) and
then use the length of the IF as the final test statistic. We
do this because the reference templates Âr(ν, τ) are similar
to a smoothing Doppler-lag kernel, and therefore ηTF(t, f ) is
similar to a TFD. Thus, if the continuous IF is long enough,
greater than a predefined threshold, then this would indicate
the presence of a slowly varying periodic signal. We shall
refer to this method as the ambiguity filter method because
the templates set could be described as a set of filters in the
ambiguity domain.
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Figure 6: Results for detecting signals in white Gaussian noise with high-energy harmonics.

There are three advantages, comparative to the time-
frequency-matched filter method, for the ambiguity filter
method: (1) the template set is reduced by one half which
reduces the probability of error in the method [15]; (2) by
defining the AF as a sum of smoothing functions located on
the autoterms of the piecewise LFM model, the ambiguity
filter method is more robust to differences between the
template and EEG seizure epoch because the method needs
only match the autoterms and not the cross-terms; (3) the
computational load is reduced by one half because of the
smaller template set size. These first two advantages are
reflected by the results in [19] which show how the ambiguity
filter method outperforms the time-frequency-matched filter
method. Although these results reflect an improvement, the
challenging problem still remains—how to predefine the
template set when the signal to detect is not exactly known?
The next method addresses this problem.

3.2. Time-Frequency Correlator Method. The following
method does not require a predefined template set [17]. This
method uses the principle that because our slowly-varying
periodic signal is repetitive, a short-time segment of the
seizure should correlate well with an adjacent short-time
segment. That is the principle that Navakatikyan et al. [22]
use for their EEG seizure detection method. The proposed
method here uses additional prior information, however. We
know, from time-frequency analysis, that a seizure signal can
be represented by a piecewise LFM with additional harmon-
ics [20, 23]. The proposed method correlates time-adjacent,
short-time segments in the time-frequency domain to match
the slowly varying IF laws. This method correlates two TFDs,
not WVDs, in the time-frequency domain and therefore dif-
fers from the time-domain-matched filter, as the test statistic

in (8) does not, in general, reduce to (6). We shall refer to this
method as the time-frequency correlator method.

The outline of this method is as follows. First, generate a
TFD for the received signal of length Te seconds. Then, split
this TFD up into 4 segments each of length Ts = Te/4. The
method assumes that the IF laws in each segment is linear,
although these IF segments can have different slope values.
Next, correlate segment one with segment two, rotating
segment one to allow for a difference in slopes between the
two segments. Continue this procedure for all the segments;
that is, segment 2 correlated with segment 3, and segment
3 correlated with segment 4. Finally, find the minimum test
statistic from these correlations and compare this with a
threshold to produce the hypothesis. The method, in more
detail, now follows.

3.2.1. Detection Method:

(1) split the received signal up into epochs eeg j(t) of
length Te;

(2) form the TFD for eeg j(t) as ρeeg(t, f );

(3) divide this TFD, in time, into four segments of length
Ts = Te/4, known as ρi(t, f ) for i = 0, 1, 2, 3. This
segmentation process is illustrated in Figure 1;

(4) iterate the following over i = 1, 2, 3:

(a) define the template TFD ρ̂ for the ith segment
as a time inverted TFD (i− 1) segment; that is,
let

ρ̂(i−1)
(
t, f
) = ρ(i−1)

(
iTs − t, f

)
. (15)
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Figure 7: Results for detecting signals in coloured Gaussian noise with low-energy harmonics.
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Figure 8: Results for detecting signals in coloured Gaussian noise with high-energy harmonics.

Thus, the time-inverting process for ρ(i−1)(t, f )
is equivalent to turning the TFD segment
upside down in time,

(b) rotate the template TFD ρ̂(i−1) over a set of
discrete rotations Θ = {θ1, θ2, . . . , θK}; let

ρTi
(
t, f ; θk

) = ρ̂(i−1)
(
t, f
)∗

f
Wmk

(
t, f
)
, (16)

where mk(t) = ej2π(θk/2)t
2
and θk is from the set

Θ. This results in a set of rotated TFD templates.

(c) correlate the template set with the ith segment
TFD,

η̂(θk) =
∫∫

(Ts)
ρi
(
t, f
)
ρTi
(
t, f ; θk

)
dt d f (17)
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Figure 9: Epoch of newborn EEG with seizure (a) and nonseizure
(b) activity.

and then take the maximum test statistic

η̂i = max
θk∈Θ

η̂i(θk). (18)

Figure 2 illustrates this process.
Why is this rotation process necessary? Recall
that we have assumed a piecewise LFM-type
signal is present in ρeeg(t, f ) and that the
turning points of the IF in the TFD segments
are located at t = ts + iTs. Because the IF law
for the continuous component passes through
the time-frequency point (ts + iTs, fi), then
ρ(i−1)(t, f ) and ρi(t, f ) will be equal around
t = 0, as Figure 1 illustrates. If the slope of the
LFM in the (i − 1) segment, α(i−1), does not
equal the slope, αi, in LFM of the ith segment,
then the correlation between the (i − 1) and
i segments will be small. Thus, if we rotate
the template TFD ρ(i−1)(t, f ) about the point
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Figure 10: Speech segment (recorded spoken word) in 20 dB (a)
and 0 dB (b) of babble noise.

(0, fi) to the angle αk = α(i−1) + αi, then the
two TFD segments would match and produce
a large correlation (see Figure 2);

(5) the test statistic for the epoch is

η̂ = min
i∈{1,2,3}

η̂i. (19)

The rationale for this is that if the LFM component
is continuous and present throughout the four
segments, then each η̂i will remain relatively large;
likewise, if the LFM component is not present over
all segments then η̂i will be reduced. Thus, the size of
the epoch Te should reflect some lower limit on the
duration of the EEG seizure;

(6) although the seizure LFM-type components can have
slope values as large as ±0.1Hz per second, the rate
of slope change is rather small over an epoch of less
than 20 seconds [6, 20].
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Because themethod assumes that the IF laws will vary
slowly over time, which is correct for a slowly varying
periodic signal, the method has a penalisation mea-
sure to prevent false detections of components that
do not conform to this signal type. This is achieved
by first specifying the rotations selected from η̂i(θk),

θ̃i = argmax
θk∈Θ

η̂i(θk), (20)

and then defining the penalisation function as

c(σ) =
(
1− σ

w

)
, (21)

where σ is the variance of θ̃i over i = 1, 2, 3. The value
w in (21) is a predefined weighting parameter in the
range σ < w < ∞. Limiting w ensures that 0 < c(σ) <
1. Within the range σ < w < ∞, as w → ∞ then
c(σ) → 0 and as w → σ then c(σ) → 1.
We then use the function c(σ) to weight the epoch’s
test statistic η̂; that is, let

η = c(σ)η̂. (22)

If the variance of the slope values σ is large, then
c(σ) will be small and thus reduce the value of η.
Simply put, a large value for σ will penalise the test
statistic. This is desirable as a large σ value indicates a
signal type that is not slowly varying, and for the EEG
signal, not a seizure signal [6, 20]. Conversely, when
σ is small then c(σ) will be small and the test statistic
η will not be heavily penalised. A small σ value is
indicative of a signal with a slowly varying IF, such
as a seizure signal;

(7) is the seizure signal present?

η < ζ , no seizure,

η > ζ , seizure present,
(23)

where ζ is the predefined detection threshold;

(8) iterate this whole process over the different epochs
with an overlap window.

3.2.2. Limitations and Assumptions for Method. The method
assumes that the EEG signal is a piecewise LFM signal where
the end time points of the IF for the pieces, known as
turning points, are located at the end of the TFD segments
t = iTs. The turning points for the EEG will not be an
abrupt or sudden change in the IF law because, as others
have observed [6, 20], EEG seizure typically has a continuous
IF law that varies slowly and smoothly over time [6] and
because the TFD provides some time-frequency smoothing
of the components. Hence the method should be able to cope
with the situation when the turning points are not located
at values of iTs. The results in the next section support this
statement.

EEG background may have discontinuous LFM-like
components, which could result in a false detection for the

Table 3: Detection results using newborn EEG.

Method AUC TDR = 1 − FDR

time-frequency matched filter 0.99 96%

time-frequency filter 1.00 96%

method. Two scenarios could cause this: if the discontinuous
components are centred in time around iTs, or if the
discontinuous components are equidistant in time from
iTs, for i = 1, 2, 3. To ensure that these scenarios do not
produce a large η value, the method uses a sliding window
on the data with a significant overlap, larger than 75% of Te.
Thus, by shifting the EEG by a fraction of Ts, the LFM-like
components will no longer be centred around the turning
points or equidistant from the turning points and therefore
the method should not produce a large ζ value. Again, the
results in the next section support this statement.

The description of the method shows, in Figures 1 and
2, a piecewise LFM signal model without harmonic com-
ponents. Whether the piecewise LFM model has harmonic
components or not, the method will produce a large test
statistic for both these signal types. This is because the
harmonic components have IF laws that are parallel to
the main component’s IF law. Therefore, when the main
component’s IF laws are matched in the correlation process
the harmonic components will also match and the method
will produce a large η value. Also note that although this
method was developed specifically for EEG it could be
applied to other signals. Other applications, however, may
require some slight modifications, such as adjusting the
number of segments in Figure 1.

In the next section, the results section, we compare the
two methods from this section—the ambiguity filter and
the time-frequency correlator—with the two methods from
the previous section—the time-frequency matched filter and
the time-domain matched filter. For the time-frequency-
matched filter, we use the method in Section 2.3. We do
not use the version of the time-frequency-matched filter
method proposed in [6], which we call the time-frequency
filter method, because its performance is very similar to that
of the time-frequency-matched filter. (The appendix shows
the relative performance of these two methods.) There is
no compelling reason to use the more complicated, and
therefore more computational demanding, time-frequency
filter instead of the classical time-frequency-matched filter
method.

4. Results

The two methods from the previous section were initially
developed to detect seizure events in newborn EEG data. We
are interested in evaluating how they perform with other
signals loosely described as slowly varying periodic signals
with harmonic components. To do so, we test themethods on
both simulated and real data and compare with the classical
time-frequency and time-domain-matched filter methods.

Our methods use the following parameters. The time-
frequency-matched filter method uses a template set with 20
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Figure 11: Detection results using speech signals. The test data is divided up into 50 epochs of noisy speech, for different levels of dB, and
50 epochs of noise.

template TFDs. Each template TFD uses a piecewise-LFM
signal with two pieces: the parameter set is [P1,P2,α1,α2] as
L = 2. The length of the two pieces are both equal to one half
of the epoch length; P1 = P2 = Te/2; and the α (slope) values
are from the set [−0.06,−0.04,−0.02, 0, 0.02, 0.04, 0.06].

The ambiguity filter method uses 10 templates each with
two LFM components: the parameter set is [α1,α2], with α
(slope) values in the same range as the previous method.
The time-frequency correlator method uses 10 Θ (rotation)
values in (16) using the same set as α from the previous
methods.

The time-frequency-matched filter method and the time-
frequency correlator methods both use TFDs. For these tests,
we used a separable-kernel TFD [24]; this choice of kernel
was justified from the analysis in [25] for finding a suitable
kernel for an EEG seizure detection method. The separable
time-frequency kernel used was γ(t, f ) = g1(t)G2( f ), where
g1(t) is a Hamming window of length Te/12 and g2(τ), the
inverse Fourier transform of G2( f ), is a Hanning window of
length Te/3. (Te is the length of the epoch.)

The signals considered here are slowly-varying periodic
signals (with harmonics). We use the term slowly-varying
to mean that the variation of the IF over the length of the
analysis window (epoch) is slow. That is, the IF does not
vary or oscillate rapidly within the epoch. In the following
tests, we ensure that the epoch is of a sufficient length to
incorporate this slowly-varying behaviour.

4.1. Simulated Signals. The following procedure describes
the method we used to generate a simulated slowly-varying
periodic signal, with harmonic components. The test signal,

with K harmonic components, is given as

s(t) =
K+1∑

k=1

√
ekak(t) cos

(

2π
∫ t

0
k f (τ)dτ + θk

)

, (24)

where ak(t) is the time-varying amplitude modulation, ek is
an amplitude-scaling constant, f (t) is the IF law, and θk is the
initial phase of the component. The fundamental component
of the signal is when k = 1, and the harmonic components
are for k = 2, 3, . . . ,K + 1; always e1 = 1, as we scale only the
harmonic components and not the fundamental component.

To generate the time-varying amplitude modulation, we
pick a series of time-amplitude location points (t1i,ai), for
i = {1, 2, 3}, and then create a smooth function p(t) using
cubic spline interpolation from this set of 3 points [20]. For
the kth harmonic, we let ak(t) = p(t). To generate the IF law,
we follow a similar procedure: generate a series of M time-
frequency location points (t2i, fi), for i = {1, 2, . . . ,M} and
interpolate using a cubic spline to produce the IF law f (t).

We generate 50 realisations of the signal s(t) using the
random parameters in Table 1. For one set of 50 epochs, we
set the parameter g = 1 in Table 1 and for another set of
50 epochs, we set the parameter g = −0.1. For example, if
K = 4, then ek = {0.5, 0.3333, 0.25, 0.2} when g = 1 and
ek = {1.11111, 0.52632, 0.34483, 0.25641} when g = −0.1.
We shall refer to the first data set, using g = 1, as the low-
energy harmonic data set, and the other data set, using g =
−0.1, as the high-energy harmonic data set. We present two
specific data sets for the signal as we want to assess the ability
of the methods to detect signals with either low- or high-
energy harmonic components. Example signals are plotted
in time–frequency domain in Figures 3 and 4.
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Figure 12: Detection results for time-frequency filter method and time-domain-matched filter in white Gaussian noise with low-energy
harmonics.

We generated both white Gaussian noise and coloured
Gaussian noise. For the coloured noise, we used the method
described in [26] to generate the random process with a
1/ f 0.5 spectral power law. We combined these two noise
processes with two signal sets, generating four data sets in
total.

The first data set we test uses the low-energy harmonic
signal model with white Gaussian noise. We tested 50 epochs
of noisy signal and 50 epochs of noise to produce a receiver
operating characteristic curve. This receiver operating char-
acteristic is produced by comparing the test statistic with a
range of threshold values, as described in (5). Each method
defines the test statistic differently: for the time-frequency
matched filter we used the maximum value of ηTF(t, f )
in Section 2.3 as the test statistic; for the ambiguity filter
method we used the length of the IF extracted from ηTF(t, f )
in (11); for the time-frequency correlator method, we used
the value η in (22).

The receiver operator characteristic is a plot of true
detection rate, the rate of correctly detected events, often
called sensitivity versus the false detection rate, the rate
of incorrectly detected events, often called specificity. To
summarise the receiver operator characteristic function, we
use two measures: the area under the curve (AUC) [27]
and the point where the sensitivity equals the specificity,
or where the true detection rate equals one minus the false
detection rate, assuming that the false detection rate is in
the range [0, 1]. The AUC is a common summary measure
for the receiver operator characteristic plot used to compare
two or more detection methods [28]. The AUC has a range
from 0 to 1: a perfect detection method has an AUC value

of 1, with 0% false detection rate (FDR) and 100% true
detection rate (TDR) for all threshold values; and a random-
guessing method has an AUC value of 0.5, a lower limit
for a realistic detector [28]. The point of equal sensitivity
and specificity, or TDR = 1 − FDR, represents one point on
the receiver operator characteristic curve—again a summary
measurement to compare two or more detection methods.

We varied the SNR ratio of the noisy signal from 20 dB
down to −5 dB, and calculated the AUC and point of equal
sensitivity specificity at each SNR value. The detection results
for this first data set are in Figure 5. For the second data set we
again used white Gaussian noise, but this time with the high-
energy harmonic signal model. These results are in Figure 6.

The next two sets used coloured Gaussian noise. The
results for the set with the low-energy harmonic signals are
plotted in Figure 8 and for the high energy harmonic signals
are plotted in Figure 6.

For the signals with low-energy harmonic components
embedded in white Gaussian noise, the time-domain-
matched filter and the ambiguity filter has the most accurate
detection performance. If the reference signals from the
template sets match the signals exactly, then the time-
domain-matched filter is the optimum detection method for
this data set [11]. Because of this method’s accurate detection
performance, with AUC > 0.95 and equal sensitivity speci-
ficity >95% over all SNR values, we assume that the template
set represents a good match to the signals in the data set.

The trend is repeated for the test data set with high-
energy harmonic components (again embedded in white
Gaussian noise): the ambiguity filter and the time-domain-
matched filter methods outperform the other two methods.
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Figure 13: Detection results for white Gaussian noise with high-energy harmonics.
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Figure 14: Detection results for coloured Gaussian noise with low-energy harmonics.

The result is surprising: these two methods (matched filter
and ambiguity methods) use template sets without har-
monic components. Thus even for signals with high-energy
harmonic components, methods which do not account for
these harmonic components give comparable, or even more
accurate results, compared with the performance of the

method which does account for these harmonic components,
that is, the time-frequency correlator method.

We conclude for these two data sets, with white Gaussian
noise, that the methods which perform time-frequency
smoothing—the time-frequency matched filter and time-
frequency correlator methods—do not perform as well as the
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Figure 15: Detection results for coloured Gaussian noise with high-energy harmonics.
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Figure 16: Detection results for the speech data set.

methods with no time-frequency smoothing—the ambiguity
filter and the time-domain-matched filter methods.

The situation for the data sets with coloured Gaussian
noise, in Figures 7 and 8, is somewhat different. For the
data sets with both low- and high-energy harmonic com-
ponents, the time-frequency correlator method has more

accurate detection performance compared with the detection
performance for the other three methods. This difference
is prominent for the high-energy harmonic component
case in Figure 8: the time-frequency correlator method
is significantly more accurate, approximately 20% more
accurate, than the time-domain-matched filter.
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4.2. Real-World Signals. As these methods were initially
developed for the specific purpose of detecting seizure
events in newborn EEG, we evaluate the performance of the
methods on an EEG data set. This EEG data set consists of
100 epochs of EEG seizure and nonseizure events, recorded
from 6 babies at the Royal Brisbane and Women’s hospital,
Australia. (See Figure 9 for an example epoch in the time-
frequency domain.) The EEG was bandpass filtered in the
range 0.5 to 10Hz and downsampled from 256Hz to 20Hz.
We segmented the EEG into epochs of 12.8 seconds with 256
sample points per epoch. The results for the three methods
are in Table 2.

All three time-frequency methods detect seizure events
accurately, with AUC values greater than 0.9 for the three
methods. A surprise result, however, is the performance
of the time-frequency-matched filter: a near perfect AUC
score of 0.99, which is larger than the ambiguity filter’s
AUC (0.91) and time-frequency correlator’s AUC (0.95).
We note that although EEG seizure can be modelled by
piecewise LFM signal with harmonic components [20], it
does not always contain harmonic components [5, 7]. This,
coupled with the explanation that energy in the harmonic
components for EEG seizure could be relatively low, may
be why the time-frequency-matched filter performs well.
(Recall that from simulated results this same method was
performed poorly when the energy of the harmonic com-
ponents were high.) A useful outcome from this test would
be an investigation to further explore this method as an
automated EEG seizure detectionmethod for use in a clinical
setting.

Although the ambiguity filter and the time-frequency
correlator methods were developed for detecting EEG
seizures, they can be used to detect any signal described as
a slowly-varying periodic signal with harmonics, as shown
with the simulated data previously. We therefore also tested
the methods using another real-world signal—recorded
speech.

The speech test data set consists of 50 epochs of speech,
where we manually selected a spoken word from speech
signals taken from http://www.voxforge.org/. For the noise
signal, we used a recording of a large crowd talking, often
referred to as babble noise, produced by TNO, Soesterberg,
The Netherlands, and obtained from http://spib.rice.edu/.
We randomly segmented this long signal into 50 epochs and
added to the speech signals at a range of SNR values.

The speech signal has a sampling frequency of 48,000Hz
and the babble noise has a sampling frequency of 19,980Hz.
We downsampled both speech and noise signals to
3,428.6Hz after low-pass filtering with a cutoff frequency
of 1,500Hz. Each epoch contained 1,024 sampled points.
See Figure 10 for an example epoch in the time-frequency
domain. The detection results are plotted in Figure 11.

Note that the detection results rapidly decline from
approximately 0 dB to −5 dB for all methods. For larger SNR
values, however, the ambiguity filter and time-frequency
correlator methods’ detection performance is more accu-
rate compared to the performance of the time-frequency-
matched filter. This may be because the speech signals
typically have many harmonic components and therefore the

ratio of energy of the fundamental to the total energy in the
harmonic components is small.

These methods could be used as a voice activity detector
but would need to be compared with existing methods, such
as [29], to assess their relative efficacy.

5. Conclusions

Moving away from the restrictions and assumptions neces-
sary for theoretical analysis, we may find for applications
using real signals that detection performance differs to
theoretical predictions. The time-domain-matched filter
method is an optimummethod for detecting a known signal
embedded in white Gaussian noise, but as we found in this
paper, performance varies significantly for this method when
the assumptions and restrictions are not satisfied. The time-
frequency-matched filter has detection performance gains
over the time-domain-matched filter when the signal is not
precisely known or when the noise is not white Gaussian
noise [13, 15, 16]. Yet, not satisfied with this performance
gain, we aimed to further improve the time-frequency-
matched filter by proposing two new methods.

From the performance evaluation in this paper compar-
ing detection accuracy, we can conclude the following. As
expected [13, 15, 16], the three time-frequency detection
methods offer significant performance gain over the classical
time-domain method for detecting slowly-varying signals
with harmonic components. But the relative performance
of these time-frequency methods—predictably—depend on
the signal and noise type. Thus our proposed methods, for
specific signals in specific noise types, will have a detection
performance gain over the existing time-frequency-matched
filter method.

Finally, on the basis of our findings in this work, we
recommend some future research directions for the time-
frequency methods. First, performance could be improved:
(a) incorporating time-frequency filtering, by masking the
TFD of the receiver signal in the time-frequency domain
[18]; (b) using the correct discrete TFD definitions [30,
31]; (c) by optimising the parameters of the methods to
suit particular data types, for example, the parameters of
the signal model used in the template set. Second, the
methods could be made more computationally efficient by
incorporating recently proposed algorithms for the time-
frequency-matched filter [18]. Lastly, the methods could be
tested on detecting slowly-varying periodic signals without
harmonic components, as all three methods can detect either
signal type.

Appendix

Variant of the Time-Frequency-Matched Filter

The method detailed in [6, 7] varies somewhat to themethod
we called the time-frequency-matched filter in Section 2.3, as
we now show:

(1) form the TFD ρeeg for EEG signal eeg(t) for an epoch
of length T;
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(2) for each reference signal r(t) form the TFD template
ρr and

(a) produce the time-frequency-matched filter test
statistic ηTF(t, f ) using (10);

(b) threshold ηTF(t, f ) to a predefined constant c,
that is, if ηTF(t, f ) < c at the point (t0, f0) then
let ηTF(t0, f0) = 0;

(c) extract the instantaneous frequency (IF) from
ηTF(t, f );

(d) the length of the continuous IF function is the
test statistic;

(3) iterate over all epochs for the EEG.

The difference of the preceding method compared to the
time-frequency-matched filter is in how the methods define
the final test statistic: the method here defines the test
statistics as the length of the (continuous) IF is extracted
from ηTF(t, f ); the time-frequency-matched filter defines the
test statistic as the maximum from ηTF(t, f ). To distinguish
the two methods, we call the method here the time-frequency
filter as the method is more akin to a TFD than a matched
filter.

We do not present this time-frequency filter method for
evaluation in Section 4 because of two reasons: first, as the
following shows, the two methods (time-frequency filter and
time-frequency-matched filter) have similar performance;
and second, because extracting the IF is a more complicated
procedure compared with just taking the maximum point,
the time-frequency filter method is the more computation-
ally expensive of the two methods.

The results here use the same signals and procedure
from Section 4. Both methods, time-frequency filter and
time-frequency-matched filter, use the same template set
containing 20 sets of piecewise LFM signals; for each
template the number of pieces is two, that is L = 2. Figures
12, 13, 14, and 15 show the results for the simulated signals
from Section 4.1; Table 3 and Figure 16 show the results
for the real signals from Section 4.2. These results justify
our decision to include only the classical time-frequency-
matched filter in the main comparisons with the two new
proposed methods.
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